Physics 70007, Fall 2009 Answers to Final Exam

Similar documents
Angular momentum. Quantum mechanics. Orbital angular momentum

Physics 342 Lecture 26. Angular Momentum. Lecture 26. Physics 342 Quantum Mechanics I

Angular Momentum Algebra

Lecture 19 (Nov. 15, 2017)

Massachusetts Institute of Technology Physics Department

Sample Quantum Chemistry Exam 2 Solutions

Addition of Angular Momenta

Total Angular Momentum for Hydrogen

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours.

QM and Angular Momentum

The 3 dimensional Schrödinger Equation

The Simple Harmonic Oscillator

Chemistry 432 Problem Set 4 Spring 2018 Solutions

9 Angular Momentum I. Classical analogy, take. 9.1 Orbital Angular Momentum

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2

Physics 606, Quantum Mechanics, Final Exam NAME ( ) ( ) + V ( x). ( ) and p( t) be the corresponding operators in ( ) and x( t) : ( ) / dt =...

8.04 Spring 2013 March 12, 2013 Problem 1. (10 points) The Probability Current

Ch 125a Problem Set 1

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II

Summary: angular momentum derivation

Chemistry 532 Practice Final Exam Fall 2012 Solutions

= a. a = Let us now study what is a? c ( a A a )

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19

QMI PRELIM Problem 1. All problems have the same point value. If a problem is divided in parts, each part has equal value. Show all your work.

Prob (solution by Michael Fisher) 1

Physics 221A Fall 1996 Notes 14 Coupling of Angular Momenta

Rotations in Quantum Mechanics

PHYS 508 (2015-1) Final Exam January 27, Wednesday.

( ) in the interaction picture arises only

Physics 137A Quantum Mechanics Fall 2012 Midterm II - Solutions

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m.

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ.

Reading: Mathchapters F and G, MQ - Ch. 7-8, Lecture notes on hydrogen atom.

Physics 215 Quantum Mechanics 1 Assignment 5

Physics 505 Homework No. 8 Solutions S Spinor rotations. Somewhat based on a problem in Schwabl.

B. Physical Observables Physical observables are represented by linear, hermitian operators that act on the vectors of the Hilbert space. If A is such

Lecture 45: The Eigenvalue Problem of L z and L 2 in Three Dimensions, ct d: Operator Method Date Revised: 2009/02/17 Date Given: 2009/02/11

Quantum Dynamics. March 10, 2017

1. Matrix multiplication and Pauli Matrices: Pauli matrices are the 2 2 matrices. 1 0 i 0. 0 i

Second quantization: where quantization and particles come from?

Problem 1: A 3-D Spherical Well(10 Points)

Angular Momentum in Quantum Mechanics.

( ) = 9φ 1, ( ) = 4φ 2.

26 Group Theory Basics

Angular Momentum - set 1

Computational Spectroscopy III. Spectroscopic Hamiltonians

Quantum Mechanics Solutions. λ i λ j v j v j v i v i.

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11

Lecture-XXVI. Time-Independent Schrodinger Equation

Lecture 12. The harmonic oscillator

Appendix: SU(2) spin angular momentum and single spin dynamics

Implications of Time-Reversal Symmetry in Quantum Mechanics

Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 21 Square-Integrable Functions

G : Quantum Mechanics II

2 Canonical quantization

QUALIFYING EXAMINATION, Part 2. Solutions. Problem 1: Quantum Mechanics I

Solutions to exam : 1FA352 Quantum Mechanics 10 hp 1

3 Angular Momentum and Spin

Physics 342 Lecture 27. Spin. Lecture 27. Physics 342 Quantum Mechanics I

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics

The Sommerfeld Polynomial Method: Harmonic Oscillator Example

Angular Momentum - set 1

Statistical Interpretation

Spin Dynamics Basic Theory Operators. Richard Green SBD Research Group Department of Chemistry

Physics 505 Homework No. 1 Solutions S1-1

Generators for Continuous Coordinate Transformations

Physics 741 Graduate Quantum Mechanics 1 Solutions to Midterm Exam, Fall x i x dx i x i x x i x dx

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals

For a system with more than one electron, we can t solve the Schrödinger Eq. exactly. We must develop methods of approximation, such as

PHY 407 QUANTUM MECHANICS Fall 05 Problem set 1 Due Sep

P3317 HW from Lecture and Recitation 7

Quantum Physics III (8.06) Spring 2006 Solution Set 4

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Wednesday April Exam 2

Rotational motion of a rigid body spinning around a rotational axis ˆn;

Harmonic Oscillator with raising and lowering operators. We write the Schrödinger equation for the harmonic oscillator in one dimension as follows:

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11

arxiv:quant-ph/ v1 29 Mar 2003

1 Commutators (10 pts)

Page 712. Lecture 42: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 2009/02/04 Date Given: 2009/02/04

PHYS Quantum Mechanics I - Fall 2011 Problem Set 7 Solutions

CHAPTER 8 The Quantum Theory of Motion

Quantum Mechanics in Three Dimensions

16.1. PROBLEM SET I 197

An operator is a transformation that takes a function as an input and produces another function (usually).

Angular momentum & spin

Coherent states of the harmonic oscillator

Quantum Physics II (8.05) Fall 2004 Assignment 3

129 Lecture Notes More on Dirac Equation

Quantum Mechanics II Lecture 11 ( David Ritchie

Waves and the Schroedinger Equation

Hilbert Space Problems

Sommerfeld (1920) noted energy levels of Li deduced from spectroscopy looked like H, with slight adjustment of principal quantum number:

( ). Expanding the square and keeping in mind that

ψ( ) k (r) which take the asymtotic form far away from the scattering center: k (r) = E kψ (±) φ k (r) = e ikr

PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 10: Solutions

Angular Momentum. Classical. J r p. radius vector from origin. linear momentum. determinant form of cross product iˆ xˆ J J J J J J

WKB Approximation in 3D

Lecture 4: Equations of motion and canonical quantization Read Sakurai Chapter 1.6 and 1.7

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5)

Tensor Operators and the Wigner Eckart Theorem

Transcription:

Physics 70007, Fall 009 Answers to Final Exam December 17, 009 1. Quantum mechanical pictures a Demonstrate that if the commutation relation [A, B] ic is valid in any of the three Schrodinger, Heisenberg, interaction/dirac pictures, then it is valid in all pictures. Consider the three statements [A S, B S ] ic S, [A H, B H ] ic H, [A I, B I ] ic I 1 where the subscript S, H, I on the operators indicates the Schrodinger, Heisenberg, or interaction picture respectively. We need to show that any one of these statements implies the other two. One standard way of doing this, which ensures that we don't do any unnecessary work, is to show that the rst statement implies the second, the second implies the third, and the third implies the rst. This is the strategy we will pursue. We need the relations between operators in the various pictures. The Heisenberg-picture operators are given in terms of the Schrodinger-picture operators as A H e iht/ A S e iht/ with analogous relations for B and C. We have taken the initial time t 0 equal to zero without any loss of generality. Next we relate the Schrodinger and interaction pictures: A I e ih0t/ A S e ih0t/ 3 We dene the interaction picture as usual, by splitting up the full Hamiltonian H into a solvable part H 0 plus a perturbation V. Let us invert this relation to nd A S in terms of A I : A S e ih0t/ A I e ih0t/ 4 Finally we relate the Heisenberg and interaction pictures: we invert to solve for A S, and then substitute the result into 3. The result is A I e ih0t/ e iht/ A H e iht/ e ih0t/ 5 With these preliminaries done, we can proceed to our proofs. First we assume that [A S, B S ] ic S ; then we use : [A H, B H ] A H B H B H A H e iht/ A S e iht/ e iht/ B S e iht/ e iht/ B S e iht/ e iht/ A S e iht/ e iht/ A S B S e iht/ e iht/ B S A S e iht/ e iht/ [A S, B S ] e iht/ e iht/ ic S e iht/ ic H. 1

Next we assume [A H, B H ] ic H and use 5: [A I, B I ] A I B I B I A I e ih0t/ e iht/ A H e iht/ e ih0t/ e ih0t/ e iht/ B H e iht/ e ih0t/ e ih0t/ e iht/ B H e iht/ e ih0t/ e ih0t/ e iht/ A H e iht/ e ih0t/ e ih0t/ e iht/ A H B H e iht/ e ih0t/ e ih0t/ e iht/ B H A H e iht/ e ih0t/ e ih0t/ e iht/ [A H, B H ] e iht/ e ih0t/ e ih0t/ e iht/ ic H e iht/ e ih0t/ ic I. Finally we assume [A I, B I ] ic I and use 4: [A S, B S ] A S B S B S A S e ih0t/ A I e ih0t/ e ih0t/ B I e ih0t/ e ih0t/ B I e ih0t/ e ih0t/ A I e ih0t/ e ih0t/ A I B I e ih0t/ e ih0t/ B I A I e ih0t/ e ih0t/ [A I, B I ] e ih0t/ e ih0t/ ic I e ih0t/ ic S. b Calculate the time dependence of the position operator x H t of a free particle in the Heisenberg picture. We need to solve the Heisenberg equation of motion for x H t: d dt x H t 1 i [x, H] H 6 where operators without a subscript are in the Schrodinger picture, and the Hamiltonian is H p /m for a free particle. The needed commutator is ] [x, H] [x, p 1 [ x, p ] 1 m m m i p i p m using a known result from previous homework Sakurai problem 1.9 to evaluate the commutator. The equation of motion becomes d dt x H t 1 m p H t 7 and we see that we need to know the time evolution of p H. Its equation of motion is d dt p H t 1 i [p, H] H 1 i [p, p m since p commutes with any function of itself. Thus p H is just a constant in time: ] H 0 p H t p H 0 p 0 8 The initial condition for a Heisenberg-picture operator is that it equals the Schrodinger operator at the initial time t 0, which we took equal to zero. Using 8, we can trivially integrate the dierential equation 7 and apply the initial condition x H 0 x 0, to nd x H t x 0 + p 0 m t

which is our desired result.. Particle in one-dimensional potential a Show that the energy eigenstates of a simple harmonic oscillator obey the following property under the x x parity transformation: x n 1 n x n The parity operator P takes x to x, and is dened in such a way that P 1 and that P is Hermitian see Sakurai for details; thus x x P 9 Now we take as given that the ground state of the simple harmonic oscillator has even parity: P 0 + 0 10 we saw this from our explicit solution for the energy wavefunctions. The higher eigenstates are found from the ground state by n 1 n! a n 0 11 where a is the usual raising operator: a mω x ip mω How does this operator behave under parity? Since position and momentum both invert: P xp x P pp p then clearly a inverts as well: P a P a, or equivalently P a a P 1 That is, P anti-commutes with a. Now we put together our results 9,10,11,1: 1 x n x a n 0 n! 1 x P a n 0 n! 1n x a n 0 P n! 1n x a n 0 n! 1 n x n b Use the above result to obtain the energy spectrum and eigenstates of a quantum mechanical particle trapped in the following potential: V x if x < 0 and V x 1 mω x if x > 0. 3

In the region x > 0, the particle experiences a harmonic oscillator potential, so its wavefunction will be a linear combination of simple harmonic oscillator energy eigenfunctions. In particular, any eigenfunction for our problem must be an eigenfunction of the ordinary SHO. However, since the potential is innity for x < 0, the particle is absolutely forbidden to be there: the wavefunction is forced to be zero. And since ψ must be continuous even where the potential changes by an innite amount, it must be the case that ψ 0 + lim x 0 + ψ x 0 which acts as a boundary condition which the wavefunction in the x > 0 region must satisfy. What does this condition do? For the even-parity SHO eigenfunctions, there is nothing forcing ψ 0 to be zero, and in fact it can be shown from the exact form of the wavefunction given in Appendix A.4 of Sakurai that it will always be non-zero. Therefore, the even-parity solutions do not satisfy the boundary conditions and can be eliminated. But, the odd-parity solutions satisfy ψ x ψ x; in particular, letting x 0, we nd that ψ 0 0. These solutions do satisfy the boundary condition, and hence are allowed to be eigenfunctions of our current potential. There is a small adjustment we have to make to the normalization of these eigenfunctions: as is, they are normalized so that ˆ dx ψ 1 where the integral goes over the full range of x, from to. But now ψ is set to zero for negative values of x; so the eective range of integration shrinks to 0 x <, and over this range we have ˆ 0 dx ψ 1 To restore normalization, we have to scale up ψ by a factor of. What, then, happens to the energy of the odd-parity functions, as given by ˆ dx ψ Hψ E ˆ dx ψ ψ E ˆ 0 dx ψ On the one hand, ψ is scaled up by a factor of, but on the other hand the range of integration shrinks to half of the original. These factors cancel each other, with the consequence that the total energy of the state remains the same. So let us dene n p + 1, where p 0, 1,,... and thus n is odd. Then the eigenfunctions for our potential are given by 0, x 0 ψ p x x n, x 0 where n is an eigenstate of the original simple harmonic oscillator. The energy of the state ψ p x is ω n + 1 ω p + 1 + 1. 3. Angular momentum operators: general properties. [ ˆ a Show that L, ˆL ] i 0. Here i x, y, z}. I will omit the hats from the operators, and show all sums explicitly rather than using the Einstein summation convention. 4

First let us establish a general relation for any operators A, B, C, which we will use throughout this entire problem: [A, BC] ABC BCA ABC BAC + BAC BCA [A, B] C + B [A, C] So, since L k L kl k, we have [ L, L i ] k [L k L k, L i ] k [L i, L k L k ] k [L i, L k ] L k + L k [L i, L k ] Next we use the fundamental property satised by angular momenta, namely [L i, L k ] l iɛ ikll l : [ ] L, L i i ɛ ikl L l L k + L k L l k l Now notice that we are summing over indices k and l, and what we are summing is a product of one factor which is anti-symmetric in k, l and a second factor which is symmetric in k, l. We can instantly conclude that the sums give zero, the reason being that the summands with k l cancel in pairs for example, the term with k, l 1, cancels k, l, 1, since ɛ i1 ɛ i1 while L 1 L + L L 1 L L 1 + L 1 L, while the terms with k l are zero all by themselves e.g. ɛ i11 0. This is another technique we will be using repeatedly in this problem. [ ] So L, L i 0: we are done. b Demonstrate that [L i, x k ] iɛ ikl x l. First we use the denition of orbital angular momentum, L x p, to write L i ɛ ijl x j p l j notice how we avoid using the index k which is already being used in the problem statement. Improperly reusing an index is a frequent source of error in this type of computation. Then [L i, x k ] ɛ ijl [x j p l, x k ] ɛ ijl [x k, x j p l ] j l j l ɛ ijl [x k, x j ] p l + x j [x k, p l ] j l ɛ ijl 0 + x j i δ kl j l l i j ɛ ijk x j i j i l ɛ ikj x j ɛ ikl x l. c Similarly, show that [L i, p k ] i ɛ ijl p l. 5

The method of proof is very similar to that of part b: [L i, p k ] ɛ ijl [x j p l, p k ] ɛ ijl [p k, x j p l ] j l j l ɛ ijl [p k, x j ] p l + x j [p k, p l ] j l ɛ ijl i δ kj p l + 0 j i ɛ ikl p l. l l d Finally, show that [ L i, x ] 0 and that [ L i, p ] 0. Proceeding directly: [ Li, x ] [L i, x k x k ] k [L i, x k ] x k + x k [L i, x k ] k Use the result of part b: [ Li, x ] i ɛ ikl x l x k + x k x l k l As in part a, we are summing over the product of anti-symmetric and symmetric; thus [ L i, x ] 0. Similarly using part c: [ Li, p ] [L i, p k p k ] k [L i, p k ] p k + p k [L i, p k ] k i ɛ ikl p l p k + p k p l k l 0. 4. Angular momentum operators in spherical coordinates. Start from the expression for the gradient operator in spherical coordinates r, θ, φ: er r + e θr θ + e φ r φwhere e α is the unit vector in direction α, and calculate the following operators all results should be given in spherical coordinates : a the angular momentum operator L: We use the denition L r p r i ; then we write r e r r, and use the given expression for and the fact that e r, e θ, e φ form an orthogonal triad with e r e θ e φ, e θ e φ e r, e φ e r e θ 6

so L i e r r e r r + e θ i e φ θ e θ φ r θ + e φ r φ [I will do part c before part b] c all Cartesian components L α α x, y, z} of L: The Cartesian components are given by e.g. L x e x L, so we need to be able to express the Cartesian unit vectors in terms of spherical coordinates and spherical unit vectors. To do this, we recall what the unit vector for a given coordinate means: it is a vector of length 1, in the direction of greatest increase for that coordinate i.e. in the direction of the gradient of that coordinate: so x e x x For reference, we write out the transformation between spherical and Cartesian: x r cos φ y r sin φ z r cos θ So we calculate: x e r r + e θ r θ + e φ r φ r cos φ e r cos φ + e θ cos θ cos φ e φ sin φ It is easy to check that this vector already has length 1; so this is also e x. Therefore, L x e x L i e r cos φ + e θ cos θ cos φ e φ sin φ i cos θ cos φ φ sin φ θ e φ θ We repeat this for the next component: y e r r + e θ r θ + e φ r φ r sin φ This vector has length 1, and so equals e y. So L y e y L e r sin φ + e θ cos θ sin φ + e φ cos φ i e r sin φ + e θ cos θ sin φ + e φ cos φ i cos θ sin φ φ + cos φ θ e φ θ e θ φ e θ φ 7

Finally we work through z: z e r r + e θ r θ + e φ r φ r cos θ e r cos θ e θ Again this is unit and so equals e z. Then L z e z L i e r cos θ e θ i φ. e φ θ e θ φ b the angular momentum squared operator L : We know that L L x + L y + L z; so now that we have expressed the individual components of L as dierential operators in spherical coordinates, our strategy will be to apply L to a generic function f r, θ, φ: L f L xf + L yf + L zf First we calculate a useful derivative: d cos θ cos θ cos θ dθ sin 1 θ sin θ With this done, we compute each term in turn: L xf i cos θ cos φ φ sin φ θ cos θ f f cos φ sin φ φ θ i cos θ cos φ sin φ f f cos φ sin φ f sin θ φ sin θ + cos θ cos φ sin φ φ + cos θ cos φ sin θ φ + cos θ cos φ } f φ θ + sin φ f θ L yf i cos θ sin φ φ + cos φ θ cos θ f f sin φ + cos φ φ θ i cos θ cos φ sin φ f sin θ φ + cos θ sin φ sin θ + cos φ sin φ f sin θ φ cos θ cos φ sin φ f φ + cos θ sin φ } f φ θ + cos φ f θ L zf i f φ Adding these, we nd L f i 0 f cos φ + θ cos sin φ + sin φ + 1 f θ } +0 f φ θ + cos φ + sin φ f θ i 1 f sin θ φ + cos θ f i 1 f sin θ φ + 1 } θ + f θ f } θ θ 8 f θ φ + cos θ f θ + cos θ cos φ sin φ cos θ cos φ sin φ cos φ + sin φ f θ f φ θ f φ θ

so we conclude that L i 1 sin θ φ + 1 }. θ θ d the raising and lowering operators L ±. We calculate directly from the denition of L ± : L ± L x ± il y i cos θ cos φ φ sin φ θ ± i cos θ } sin φ φ + cos φ θ i cos θ } cos φ ± i sin φ φ ± i cos φ ± i sin φ θ i cos θ } e±iφ φ ± ie ±iφ θ i e ±iφ cos θ } φ ± i θ. 5. The rotation group. Rotations R in three dimensions form a non-commutative three-parameter three dimensional group. Show that rotations around a single axis form a commutative, one-parameter group: a Give the rotation matrix R z φ that corresponds to a rotation around the z axis with angle φ. If we consider active rotations i.e. rotations of the object rather than the axes, then the rotation matrix is given by [ cos φ ] sin φ sin φ cos φ Working this problem in terms of passive rotations is OK as well just switch the o-diagonal terms of the matrix, throughout the entire problem. b Calculate the generator A z lim φ 0 φ R z φ. The derivative of R z φ is given by sin φ cos φ cos φ sin φ As φ 0, we have cos φ 1 and sin φ 0, so the generator is 0 1 A z. 1 0 c Show that R z φ exp [φa z ]. First we show that A z I: A z 0 1 1 0 0 1 1 0 1 0 0 1 9

So now, let n be an even number; then we can write n p where p is an integer, and so A n z A p z I p 1 p I We can obtain a corresponding result for odd n p + 1, by multiplying through by A z : A p+1 z 1 p A z Then we compute directly: exp [φa z ] I n0 p0 p0 1 n! φa z n φ p p! Ap z + p0 1 p φ p p! + A z φ p+1 p + 1! Ap+1 z p0 1 p φ p+1 p + 1! I cos φ + A z sin φ cos φ 0 0 sin φ + 0 cos φ sin φ 0 cos φ sin φ sin φ cos φ R z φ. d Show all group properties of rotations around the z axis: d.1 existence of the identity element 1 z ; We take the binary operation of the group to be ordinary matrix multiplication. Then as we know, the identity element for matrix multiplication is the identity matrix 1 0 0 1 And if we let φ 0, then R z φ 0 is exactly the identity matrix. Thus the group does possess an identity element, as required. Actually φ πn where n is any integer, will also work; if we are concerned with the uniqueness of the identity element, we should restrict the allowed range for the group parameter to e.g. 0 φ < π. d. closure: R z φ 1 R z φ is also a rotation around z; Calculating directly: R z φ 1 R z φ cos φ1 sin φ 1 cos φ sin φ sin φ 1 cos φ 1 sin φ cos φ cos φ1 cos φ sin φ 1 sin φ cos φ 1 sin φ sin φ 1 cos φ sin φ 1 cos φ + cos φ 1 sin φ sin φ 1 sin φ + cos φ 1 cos φ cos φ1 + φ sin φ 1 + φ sin φ 1 + φ cos φ 1 + φ R z φ 1 + φ where we have used the standard angle addition formulas for sin and cos. This shows explicitly that R z φ 1 R z φ is also a rotation around the z-axis, and so the group is closed with respect to the group operation. 10

If we restrict the range of φ to 0 φ < π as in the previous part, then R z φ 1 + φ is altered to R z φ 1 + φ mod π, which is completely equivalent since cos α + πn cos α and sin α + πn sin α for any α and integer n. d.3 associativity: R z φ 1 R z φ R z φ 3 R z φ 1 R z φ R z φ 3, Using the closure property demonstrated above, showing associativity for group multiplication becomes easy: we have and R z φ 1 R z φ R z φ 3 R z φ 1 + φ R z φ 3 R z φ 1 + φ + φ 3 R z φ 1 R z φ R z φ 3 R z φ 1 R z φ + φ 3 R z φ 1 + φ + φ 3 which are manifestly equal. Essentially, associativity for the group elements reduces to associativity of addition of ordinary numbers. d.4 commutativity: R z φ 1 R z φ R z φ R z φ 1. In particular, show that R z φ 1 R z φ R z φ 1 + φ. We have already shown the lemma in d., demonstrating closure. Using the lemma, we have and R z φ 1 R z φ R z φ 1 + φ R z φ R z φ 1 R z φ + φ 1 R z φ 1 + φ so the group operation is commutative: that is, the group is Abelian. We see that commutativity of the group operation reduces to commutativity of addition of ordinary numbers. 6. Representations of the rotation group. a The rotation operator around the z axis is dened by the equation ˆD z α φ φ + α. Assume that all derivatives of the ket φ with respect to the angle variable φ exist. ˆD z α exp α φ exp i αl z where Lz i φ. Show that To express φ + α as the result of some operator upon φ, we simply expand φ + α in a Taylor series around φ: φ + α φ + α d α d φ + dφ! dφ φ +... note: we are committing a very common abuse of notation by using φ to represent both the general variable and the particular value of the variable at which we are evaluating the ket and derivatives of the ket. At any rate, we can then write φ + α I + α d dφ + α d! dφ +... φ exp α φ φ 11

so we can identify ˆD z α exp α φ. Then remembering that L z i φ i φ which we derived in problem 4c, we have also ˆD z α exp i αl z. b The rotation operator with angle φ around an arbitrary axis ˆn is given by [ ij ˆD nφ exp ] nφ. Show that J ˆD nφ jm j j + 1 ˆD nφ jm. In other words, this means that ˆD nφ jm is still an eigenket of J. Hint: the commutation rules you proved between J and J α in [problem 3a] will be very useful here. [ ] We showed in problem 3a that J, J α 0 for any given component α of J; then, by linearity, [ J, J n] 0 for any constant vector n as well. So J will also commute with any function of J n, in particular with ˆD nφ. So J ˆD nφ jm ˆD nφ J jm ˆD nφ j j + 1 jm j j + 1 ˆD nφ jm. Thus ˆD nφ jm is an eigenket of J with eigenvalue j j + 1, and so is itself a state with denite j. c The matrix elements of the rotation operator with angle φ around the axis n, i.e. the n + 1- dimensional representation of the rotation group are D j j m m nφ j m jm ˆD nφ. Use the results obtained in the previous part of this problem to argue that D j j m m is diagonal in j: D j j m m nφ δ j,j Dj m m nφ. We saw in the previous part that ˆD nφ jm has denite j; then we can write this state as m c m jm : i.e. a linear combination of states with dierent m but the same j. So then, D j j m m nφ j m jm ˆD nφ m c m j m jm But the various states jm are orthonormal, so for any overlap matrix element j m jm to be non-zero, we must have j j. Thus the whole sum will also be zero unless j j, and so we are done. d Show that for small rotation angles ɛ D j m m nɛ δ m,m iɛ x + ɛ y j m j + m + 1δm,m+1 iɛ x ɛ y j + m j m + 1δm,m 1 iɛ z mδ m,m. 1

We write nɛ ɛ x e x + ɛ y e y + ɛ z e z ; then for ɛ x, ɛ y, ɛ z 1 we can write ˆD nɛ [ ] i ɛx J x + ɛ y J y + ɛ z J z exp 1 i ɛ xj x + ɛ y J y + ɛ z J z Since J ± J x ± ij y, we have J x 1 / J + + J and J y 1 /i J + J i / J + J, so we rewrite the above as ˆD nɛ 1 i ɛx J + + J iɛ y J + J + ɛ z J z 1 1 iɛx + ɛ y J + + iɛ x ɛ y J + iɛ z J z Then so using D j j m m nɛ j m 1 1 iɛx + ɛ y J + + iɛ x ɛ y J + iɛ z J z jm J + jm j m j + m + 1 j, m + 1 J jm j + m j m + 1 j, m 1 J z jm m jm we nd D j j m m nɛ δ j jδ m m iɛ x + ɛ y j m j + m + 1δj jδ m,m+1 iɛ x ɛ y j + m j m + 1δj jδ m,m 1 iɛ z mδ j jδ m m δ j jd j m m nɛ Thus, factoring out δ j j from the right-hand side, we obtain the desired expression for D j m m nɛ. 13