Digital Integrated Circuits

Similar documents
CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

DC and Transient Responses (i.e. delay) (some comments on power too!)

THE INVERTER. Inverter

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

EEE 421 VLSI Circuits

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

CMOS Inverter (static view)

Integrated Circuits & Systems

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

EE115C Digital Electronic Circuits Homework #3

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

VLSI Design and Simulation

CMOS Technology for Computer Architects

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

Topic 4. The CMOS Inverter

MOSFET and CMOS Gate. Copy Right by Wentai Liu

The Physical Structure (NMOS)

Power Consumption in CMOS CONCORDIA VLSI DESIGN LAB

Important! EE141- Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model

ECE 342 Solid State Devices & Circuits 4. CMOS

The CMOS Inverter: A First Glance

EE 434 Lecture 33. Logic Design

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

4.10 The CMOS Digital Logic Inverter

EE5311- Digital IC Design

EECS 141: FALL 05 MIDTERM 1

Lecture 5: DC & Transient Response

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Lecture 6: DC & Transient Response

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

EE5780 Advanced VLSI CAD

Lecture 4: DC & Transient Response

MOS Transistor Theory

The CMOS Inverter: A First Glance

ECE321 Electronics I

MOS Transistor Theory

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

ECE 546 Lecture 10 MOS Transistors

Lecture 5: DC & Transient Response

CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville

ESE 570 MOS INVERTERS STATIC (DC Steady State) CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania, updated 12Feb15

EE5311- Digital IC Design

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

Lecture 4: CMOS review & Dynamic Logic

Lecture 4: CMOS Transistor Theory

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

Lecture 12 Circuits numériques (II)

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET )

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

VLSI VLSI CIRCUIT DESIGN PROCESSES P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.

CMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering

Homework Assignment #3 EE 477 Spring 2017 Professor Parker , -.. = 1.8 -, 345 = 0 -

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

CMOS Logic Gates. University of Connecticut 181

EE115C Digital Electronic Circuits Homework #4

ENEE 359a Digital VLSI Design

P-MOS Device and CMOS Inverters

5. CMOS Gate Characteristics CS755

DC & Transient Responses

Digital Integrated Circuits A Design Perspective

EE40 Lec 20. MOS Circuits

Digital Integrated Circuits 2nd Inverter

Integrated Circuits & Systems

Lecture 12 CMOS Delay & Transient Response

MOSFET: Introduction

ECE 342 Electronic Circuits. 3. MOS Transistors

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Where Does Power Go in CMOS?

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE141Microelettronica. CMOS Logic

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Chapter 11. Inverter. DC AC, Switching. Layout. Sizing PASS GATES (CHPT 10) Other Inverters. Baker Ch. 11 The Inverter. Introduction to VLSI

CMOS Logic Gates. University of Connecticut 172

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

MOS Transistor Properties Review

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

Chapter 4 Field-Effect Transistors

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

Name: Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

Transcription:

Chapter 6 The CMOS Inverter 1

Contents Introduction (MOST models) 0, 1 st, 2 nd order The CMOS inverter : The static behavior: o DC transfer characteristics, o Short-circuit current The CMOS inverter : The dynamic behavior Energy, power, and energy delay 2

Introduction - 1 Zero-order model (ideal switch) of n- and p-channel MOSFETs What for a signal between 0 and 1? Inverter Source: Weste & Harris 3

Introduction - 2 First-order model of a MOSFET Non ideal switch An MOS Transistor V GS V T S Ron D V GS What s the value of R on? Abrupt transition from on to off? 4

Introduction - 3 The MOS Transistor Polysilicon Aluminum 5

Introduction - 4 MOS Transistors n- and p-channel D D G G B In general connected to GND S NMOS S Enhancement D G G B In general connected to S PMOS Enhancement 6

Introduction - 5 I-V Relations Long-channel n-most 6 x 10-4 VGS= 2.5 V G D I D I D (A) 5 4 3 Resistive Saturation VGS= 2.0 V V DS = V GS -V T S 2 VGS= 1.5 V 1 VGS= 1.0 V VGS< 0.5 V 0 0 0.5 1 1.5 2 2.5 V DS (V) 7

Introduction - 6 I-V Relations Long-channel p-most 6 x 10-4 5 VGS=- 2.5 V S 4 Resistive Saturation VGS= -2.0 V G I D (A) 3 I D V DS = V GS -V T D 2 VGS= -1.5 V 1 VGS= -1.0 V VGS>- 0.5 V 0 0 0.5 1 1.5 2 2.5 -V DS (V) 8

Introduction - 7 9

Introduction - 8 I D versus V GS Saturation mode: V DS >V GS -V T 6 x 10-4 5 V DS =2.5 V V T = 0.5 V constant I D (A) 4 3 quadratic 2 1 0 0 0.5 1 1.5 2 2.5 V GS (V) 10

Introduction 9 Experimental setup - V GS S 1 + + G 2 B I D 1 - V DS + + - VDD = 3.3 V [0,3.3] step 0,5 V - D 3 + [0,3.3] step 0,050 V - 11

Introduction 9 An experiment Circuit description (SPICE) http://www.inf.ufsc.br/~santos/ine5442/experi ment/pmosa.cir Steps http://www.inf.ufsc.br/~santos/ine5442/experi ment/roteiro.txt 12

Introduction 10 Simulation 6.1a lambda = 0.1 V GS =-3.3 V V GS =-2.8 V V GS =-2.3 V V GS =-1.8 V V GS =-1.3 V 13

Introduction - 12 The Transistor as a Switch I D V GS = V GS V T S Ron D I DSAT R mid R 0 1 Req R0 + R 2 ( ) mid /2 V DS KP W I V V 2 L ( ) 2 DSAT DD T 14

Introduction - 13 CMOS static logic the beginning 15

Introduction - 14 CMOS static logic the beginning 16

Introduction - 15 CMOS device structure from Frank Wanlass's patent drawing. U. S. Patent Office. 17

Introduction - 16 Schematic and layout -1 N Well PMOS 2λ PMOS Contacts In Out In Out Metal 1 NMOS Polysilicon NMOS GND 18

Introduction - 17 Schematic and layout -2 19

Static characteristics - 1 R p V in C L R n V in NMOS PMOS 0 OFF ON ON OFF V in = V in = 0 VGSn = VDD > VTn VGSn = 0 < VTn V = 0 > V V = V < V GSp Tp GSp DD Tp 0 20

Static characteristics - 1 R p V in C L R n V in NMOS PMOS 0 OFF ON ON OFF V in = V in = 0 VGSn = VDD > VTn VGSn = 0 < VTn V = 0 > V V = V < V GSp Tp GSp DD Tp 0 21

Static characteristics - 1 R p V in C L R n V in NMOS PMOS 0 OFF ON ON OFF V in = V in = 0 VGSn = VDD > VTn VGSn = 0 < VTn V = 0 > V V = V < V GSp Tp GSp DD Tp 0 22

Static characteristics - 2 V in C L Voltage swing is equal to the supply voltage; Logic levels are not dependent upon the relative device sizes; In steady state there always exists a path with finite resistance between the output and either or ground; The input resistance ; No direct path exists between supply and ground rails under steady-state operating conditions (this is first order approx. and is far from reality in more advanced technologies) static power 0 23

Static characteristics - 3 - PMOS Load Line I Dn V GSp + - V DSp V in = +V GSp I Dn = - I Dp V in I Dp + = +V DSp I Dn CL I Dp =2.5 V V in =0 I Dn I Dn V in =0 V in =1.5 V in =1.5 V GSp =-1 V DSp V DSp 2.5 V GSp =-2.5 V in = +V GSp I Dn = - I Dp = +V DSp 24

Static characteristics - 4 VTC V in - V GSp + I Dp I Dn - V DSp + IDn Vin= 1.5 Vin= 2 Vin= 2.5 Vin= 0 0.5 PMOS 1 1.5 NMOS 1.5 1 Vin= 2.5 2 Vin= 1 Vin= 0.5 Vin= 0 0.5 1 1.5 2 2.5 NMOS off PMOS res NMOS sat PMOS res NMOS sat PMOS sat NMOS res PMOS sat Vout NMOS res PMOS off 0.5 1 1.5 2 2.5 V in 25