Some Extensions of the Prabhu-Srivastava Theorem Involving the (p, q)-gamma Function

Similar documents
arxiv: v1 [math.nt] 28 Apr 2014

Proof of a conjecture of Amdeberhan and Moll on a divisibility property of binomial coefficients

ON MONOTONICITY OF SOME COMBINATORIAL SEQUENCES

Super congruences concerning Bernoulli polynomials. Zhi-Hong Sun

The 4-Nicol Numbers Having Five Different Prime Divisors

Integral Representations and Binomial Coefficients

Bijective Proofs of Gould s and Rothe s Identities

Some identities involving Fibonacci, Lucas polynomials and their applications

On a general q-identity

A generalization of Morley s congruence

Harmonic Number Identities Via Euler s Transform

MONOTONICITY OF SEQUENCES INVOLVING GEOMETRIC MEANS OF POSITIVE SEQUENCES WITH LOGARITHMICAL CONVEXITY

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE

The log-behavior of n p(n) and n p(n)/n

A q-analogue of some binomial coefficient identities of Y. Sun

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers

General Properties Involving Reciprocals of Binomial Coefficients

arxiv: v1 [math.nt] 5 Jan 2017 IBRAHIM M. ALABDULMOHSIN

arxiv: v2 [math.nt] 9 May 2017

Factors of sums and alternating sums involving binomial coefficients and powers of integers

Asymptotic distribution of products of sums of independent random variables

Turan inequalities for the digamma and polygamma functions

A Note on the Kolmogorov-Feller Weak Law of Large Numbers

Applicable Analysis and Discrete Mathematics available online at ON JENSEN S AND RELATED COMBINATORIAL IDENTITIES

Chapter 8. Euler s Gamma function

TRACES OF HADAMARD AND KRONECKER PRODUCTS OF MATRICES. 1. Introduction

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers

Mi-Hwa Ko and Tae-Sung Kim

Sequences of Definite Integrals, Factorials and Double Factorials

Physics 116A Solutions to Homework Set #9 Winter 2012

Lecture 7: Properties of Random Samples

MDIV. Multiple divisor functions

On some properties of digamma and polygamma functions

Estimates of (1 + x) 1/x Involved in Carleman s Inequality and Keller s Limit

Proc. Amer. Math. Soc. 139(2011), no. 5, BINOMIAL COEFFICIENTS AND THE RING OF p-adic INTEGERS

<, if ε > 0 2nloglogn. =, if ε < 0.

Interesting Series Associated with Central Binomial Coefficients, Catalan Numbers and Harmonic Numbers

MAXIMAL INEQUALITIES AND STRONG LAW OF LARGE NUMBERS FOR AANA SEQUENCES

MAJORIZATION PROBLEMS FOR SUBCLASSES OF ANALYTIC FUNCTIONS INVOLVING

Factors of alternating sums of products of binomial and q-binomial coefficients

On the Inverse of a Certain Matrix Involving Binomial Coefficients

arxiv: v1 [math.co] 6 Jun 2018

(p, q)-type BETA FUNCTIONS OF SECOND KIND

A note on the p-adic gamma function and q-changhee polynomials

Bounds for the Extreme Eigenvalues Using the Trace and Determinant

Some families of generating functions for the multiple orthogonal polynomials associated with modified Bessel K-functions

Dirichlet s Theorem on Arithmetic Progressions

The Arakawa-Kaneko Zeta Function

1, if k = 0. . (1 _ qn) (1 _ qn-1) (1 _ qn+1-k) ... _: =----_...:... q--->1 (1- q) (1 - q 2 ) (1- qk) - -- n! k!(n- k)! n """"' n. k.

On Divisibility concerning Binomial Coefficients

Approximation theorems for localized szász Mirakjan operators

De la Vallée Poussin Summability, the Combinatorial Sum 2n 1

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION

International Journal of Mathematical Archive-3(4), 2012, Page: Available online through ISSN

[ 11 ] z of degree 2 as both degree 2 each. The degree of a polynomial in n variables is the maximum of the degrees of its terms.

An analog of the arithmetic triangle obtained by replacing the products by the least common multiples

A solid Foundation for q-appell Polynomials

New proofs of the duplication and multiplication formulae for the gamma and the Barnes double gamma functions. Donal F. Connon

Introductions to HarmonicNumber2

On matchings in hypergraphs

The natural exponential function

Chapter 8. Euler s Gamma function

On Summability Factors for N, p n k

Shivley s Polynomials of Two Variables

MAT1026 Calculus II Basic Convergence Tests for Series

The Gamma function Michael Taylor. Abstract. This material is excerpted from 18 and Appendix J of [T].

SHARP INEQUALITIES INVOLVING THE CONSTANT e AND THE SEQUENCE (1 + 1/n) n

CONGRUENCES CONCERNING LEGENDRE POLYNOMIALS III

Bertrand s Postulate

THE TRANSFORMATION MATRIX OF CHEBYSHEV IV BERNSTEIN POLYNOMIAL BASES

A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS. Mircea Merca

Fibonacci numbers and orthogonal polynomials

The Positivity of a Sequence of Numbers and the Riemann Hypothesis

Xhevat Z. Krasniqi and Naim L. Braha

HARMONIC SERIES WITH POLYGAMMA FUNCTIONS OVIDIU FURDUI. 1. Introduction and the main results

Generalization of Samuelson s inequality and location of eigenvalues

arxiv: v2 [math.nt] 10 May 2014

Bangi 43600, Selangor Darul Ehsan, Malaysia (Received 12 February 2010, accepted 21 April 2010)

Modified Decomposition Method by Adomian and. Rach for Solving Nonlinear Volterra Integro- Differential Equations

Notes on the prime number theorem

Solutions for Math 411 Assignment #8 1

An elementary proof that almost all real numbers are normal

1. ARITHMETIC OPERATIONS IN OBSERVER'S MATHEMATICS

APPROXIMATE FUNCTIONAL INEQUALITIES BY ADDITIVE MAPPINGS

A Combinatorial Proof of a Theorem of Katsuura

Some p-adic congruences for p q -Catalan numbers

Gamma Distribution and Gamma Approximation

ON SOME INEQUALITIES IN NORMED LINEAR SPACES

Several properties of new ellipsoids

Vienna, Austria α n (1 x 2 ) n (x)

The Gamma function. Marco Bonvini. October 9, dt e t t z 1. (1) Γ(z + 1) = z Γ(z) : (2) = e t t z. + z dt e t t z 1. = z Γ(z).

ON POINTWISE BINOMIAL APPROXIMATION

CHAPTER 10 INFINITE SEQUENCES AND SERIES

A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II 1. INTRODUCTION

Journal of Mathematical Analysis and Applications 250, doi: jmaa , available online at http:

Proof of Fermat s Last Theorem by Algebra Identities and Linear Algebra

E.W.BARNES APPROACH OF THE MULTIPLE GAMMA FUNCTIONS

arxiv: v1 [math.ca] 29 Jun 2018

Euler-type formulas. Badih Ghusayni. Department of Mathematics Faculty of Science-1 Lebanese University Hadath, Lebanon

The Ratio Test. THEOREM 9.17 Ratio Test Let a n be a series with nonzero terms. 1. a. n converges absolutely if lim. n 1

Transcription:

Filomat 31:14 2017), 4507 4513 https://doi.org/10.2298/fil1714507l Published by Faculty of Scieces ad Mathematics, Uiversity of Niš, Serbia Available at: http://www.pmf.i.ac.rs/filomat Some Extesios of the Prabhu-Srivastava Theorem Ivolvig the p, )-Gamma Fuctio Ji-Cai Liu a, Jichu Liu b a College of Mathematics ad Iformatio Sciece, Wezhou Uiversity, Wezhou 325035, PR Chia b School of Mathematics Zhuhai), Su Yat-Se Uiversity, Zhuhai 519000, PR Chia Abstract. I this paper, we obtai some it formulas for derivatives of p, )-gamma fuctio ad p, )- digamma fuctio at their poles. These it formulas exted the Prabhu-Srivastava theorem ivolvig gamma fuctio ad digamma fuctio. 1. Itroductio It is well-ow that for all complex umbers x 0, 1, 2,, the gamma fuctio ad digamma fuctio [1, pp. 255] are defied by! x Γx) = xx + 1) x + ) ad ψx) = Γ x) Γx), respectively. A. Prabhu ad H.M. Srivastava [8] have cosidered the its of ratios betwee two gamma fuctios ad digamma fuctios at their poles x = 0, 1, 2,, ad obtaieome ice formulas: Theorem 1.1. [8, Theorem 1 ad 2]) For o-egative iteger ad positive itegers ad m, we have ad Γx) Γmx) = m 1) m) m)! )!, 1) ψx) ψmx) = m. 2010 Mathematics Subject Classificatio. Primary 33D05; Secodary 33B15 Keywords. p, )-Gamma fuctio; -Gamma fuctio; Faà di Bruo formula; Prabhu-Srivastava theorem; Derivative Received: 06 April 2016; Accepted: 20 July 2016 Commuicated by Hari M. Srivastava Research supported by Natural Sciece Foudatio of Fujia Provice No. 2015J05002), ad Fujia Provicial Foudatio of Educatio ad Research for Youg Teachers No. JA15531). Email addresses: jc2051@163.com Ji-Cai Liu), liujc1982@126.com Jichu Liu)

J.-C. Liu, J. Liu / Filomat 31:14 2017), 4507 4513 4508 Applyig 1) ad Gauss-Legedre multiplicatio formula, they also obtaied a iterestig product idetity for the gamma fuctio: 1 Γ + j ) = 1) 1) 1 1 2 2π) 2 1)! )!, j=1 for o-egative iteger ad positive iteger 2. I 2013, F. Qi [9] cosidered the its of ratios betwee two derivatives of gamma fuctio ad digamma fuctio at their poles. Theorem 1.2. [9, Theorem 1.2]) For o-egative itegers s, ad positive itegers, m, we have ad ) x) m s+1 mx) = 1) m) m)! )!, 2) ψ s) x) ) m s+1 ψ s) mx) =. 3) Remar. Theorem 1.2 is cotaied i the Prabhu-Srivastava theorem Theorem 1.1) by obvious use of the L Hôpital s rule for its. For a o-egative iteger p, the p-gamma fuctio is defied by Γ p x) = p!p x xx + 1) x + p), 4) which was first itroduced by Euler. Similarly, the p-digamma fuctio is give by ψ p x) = Γ px) Γ p x). Note that p Γ p x) = Γx) ad p ψ p x) = ψx), ad both Γ p x) ad ψ p x) are aalytic o the complex plae except for x = 0, 1, 2,, p. Recetly, L. Yi ad L.-G. Huag [5] provided alterative proofs of 1) ad 3) by establishig the followig results: Theorem 1.3. [5, Theorem 2.3 ad 2.6]) Let, p, s be o-egative itegers ad m, be positive itegers such that m, p. The Γ p x) Γ p mx) = m ) ) p p p)m ) /, 5) m ad ψ s) p x) ) m s+1 ψ s) p mx) =. 6) Lettig p i 5) ad 6) ad otig that ) ) p p p pm ) / = m)! m )!, we are led to 1) ad 3). They also posed the followig cojecture:

J.-C. Liu, J. Liu / Filomat 31:14 2017), 4507 4513 4509 Cojecture 1.4. [5, Cojecture 2.9]) Let s, ad p be o-egative itegers ad m, be positive itegers such that m, p. The p x) ) m s+1 ) p p p mx) = p) m ) /. 7) ) m It is ot hard to see that 7) reduces to 2) whe p. Remar. Theorem 1.3 ad Cojecture 1.4 ca be cosidered as the p-extesios of the Prabhu-Srivastava theorem Theorem 1.1). F. H. Jacso defied the followig -gamma fuctios [4, I.35), pp.353]: ad Γ x) = ; ) x ; ) 1 ) 1 x for 0 < < 1, Γ x) = 1 ; 1 ) x ; 1 ) 1) 1 x x 2) for > 1, 8) where a; ) 0 = 1 ad a; ) = 1 =0 1 a ). This fuctio have may aalogues of the classical facts about the gamma fuctio [2, 7]. Similarly, the -digamma fuctio is give by ψ x) = Γ x) Γ x). It is well-ow that 1 Γ x) = Γx) ad 1 ψ x) = ψx), ad both Γ x) ad ψ x) have the poles at x = 0, 1, 2,. V.B. Krasii, H.M. Srivastava ad S.S. Dragomir[3] cosidered the followig p, )-gamma fuctio ad p, )-digamma fuctio: x 1 2 ) [p] x [p]! Γ p, x) = for > 1, 9) [x] [x + 1] [x + p] ad ψ p, x) = Γ p,x)/γ p, x), where p is a o-egative iteger ad [x] = 1 x )/1 1 ). They have also obtaieome complete mootoicity properties of the p, )-gamma fuctio. Both Γ p, x) ad ψ p, x) have the poles at x = 0, 1,, p. Note that 9) reduces to 4) whe 1, ad reduces to 8) whe p. I this paper, we shall establish some extesios of the Prabhu-Srivastava theorem Theorem 1.1) ivolvig the p, )-gamma fuctio. We will see that all of Theorem 1.1, 1.2, 1.3 ad Cojecture 1.4 are special cases of these theorems. 2. Statemets of the Results We ca rewrite 9) as Γ p, x) = 1 1 ) 1 ; 1 ) p x ; 1 ) p+1 1 p 1 1 It is clear that the defiitio 10) is euivalet to ) x x 1 2 ) for > 1. 10) Γ p, x) = 1 ); ) p[p] x x 1 2 ) x ; ) p+1 for < 1, 11) where [p] = 1 p )/1 ). I what follows we will use the defiitio 11) for Γ p, x).

J.-C. Liu, J. Liu / Filomat 31:14 2017), 4507 4513 4510 Theorem 2.1. Let s, ad p be o-egative itegers ad, m be positive itegers such that, m p. The ψ s) ) p,x) m s+1 ψ s) p,mx) =. 12) Lettig 1 i 12), we obtai 6). Theorem 2.2. Let s, ad p be o-egative itegers ad, m be positive itegers such that, m p. The ) p,x) m s+1 [ [ ] p,mx) = ) m ) p p [p] /, 13) ] m where [p] = 1 p )/1 ) ad the -biomial coefficiet is give by [ ] a ; ) a =. b ; ) b ; ) a b Lettig 1 i 13), we obtai 7), ao we cofirm Cojecture 1.4. Theorem 2.3. Let a, b be positive itegers a, ad p be o-egative itegers such that p. The p, x) a x) = b a a b)+1)2 p, b ) 1 a +1 1 bp 1 b 1 ap ) / a. 14) b 3. Proof of the Results I order to prove the results, we eeome importat lemmas. Lemma 3.1. Faà di Bruo) If ad f are fuctios with a sufficiet umber of derivatives, the f x)) = dxs This is the famous Faà di Bruo formula [6]. s! r 1! r 2! r s! r 1+r 2 + +r s ) f x)) f 1) ) r1 x) f s) ) rs x). 15) 1! s! Lemma 3.2. Let F ad log F be fuctios with a sufficiet umber of derivatives. For ay positive iteger s, there exist some coefficiets ar 1, r 2,, r s ) idepedet of x such that F s) x) = Fx) ar 1, r 2,, r s ) f 1) x) ) r 1 f s) x) ) r s, 16) where f x) = log Fx). Proof. Lettig x) = e x ad f x) = log Fx) i 15), we immediately get F s) x) = Fx) This completes the proof. s! r 1! r s! f 1) ) r1 x) f s) ) rs x). 1! s!

Proof of Theorem 2.1. By 11), we have ) p, x) = ds 1 dx log[p] s 1 + ds 1 3 dx s 1 2 x log Lettig x) = log x ad f x) = 1 i+x i 15) gives dx s log1 x+i ) = log ) s J.-C. Liu, J. Liu / Filomat 31:14 2017), 4507 4513 4511 p i=0 s! r 1! r 2! r s! dx s log1 x+i ). 17) R 1)! 1!) r 1 2!) r 2 s!) r s x+i)r 1 x+i ) R, 18) where R = r 1 + r 2 + + r s. Sice 1 r 1 + 2 r 2 + + s r s = s, R has the maximum value R = s whe r 1 = s ad r 2 = = r s = 0, ao we ca write 18) i the form dx s log1 x+i ) = log ) s s x+i)r C s R) 1 x+i ), 19) R R=0 where C s R) is idepedet of x ad C s s) 0. Note that 19) has the pole at x = i. Combiig 17) ad 19), we have for s 1 ad, m p, Notig that p, x) p, mx) = x+)s 1 x+) ) s 1 mx+) ) s mx+)s. 1 mx+) = m 1 x+), 20) we obtai p, x) p, mx) = m ) s for s 1, which is euivalet to 12). Proof of Theorem 2.2. We first prove the case s = 0. Γ p, x) Γ p, mx) = m+2 2 ) +2 2 ) [p] m ) Applyig 20) ad otig that i ; ) i = 1) i i+1 2 ) ; )i, we obtai Γ p, x) Γ p, mx) = m [ ] ) m ) p [p] m ; ) m ; ) p m ; ) ; ) p z 1 mx+) 1 x+). /. 21) m Let f p, x) = log Γ p, x). By 16), we have p,x) = Γ p, x) ar 1, r 2,, r s ) f 1) p, x) ) r 1 f p,x) ) s) r s. 22)

Notig that f d) p, x) = ψ d 1) p, x) ad the usig 12), we get f d) p, x) f d) p, mx) = m It follows from 22) ad 23) that J.-C. Liu, J. Liu / Filomat 31:14 2017), 4507 4513 4512 ) d for d 1. 23) p,x) p,mx) = Γ p, x) ) m s Γ p, mx). 24) The proof of 13) the directly follows from 21) ad 24). Proof of Theorem 2.3. We first prove the case s = 0. Γ p, ax) Γ p, bx) = a b)+2 2 ) Usig 20) ad otig that we obtai ) 1 a +1 1 bp 1 b 1 ap a ; a ) p b ; b ) b ; b [ ] ) p = a b)+1 b ; b ) p a ; a ) a ; a 2 ) p ) p Γ p, ax) Γ p, bx) = b a a b)+1)2 a / ) 1 a +1 1 bp 1 b 1 ap ) a ; a ) p b ; b ) b ; b ) p b ; b ) p a ; a ) a ; a ) p 1 bx+) 1 ax+)., b ) / a I order to prove 14), by 16) ad 25), it suffices to prove that log Γp, ax) ) s). 25) b log Γp, bx) ) s) = 1 for s 1. Replacig by a i 19) yields dx s log1 ax+i) ) = a log ) s s ax+i)r C s R) 1 ax+i) ). R R=0 Similarly to the proof of Theorem 2.1, we have log Γp, ax) ) s) log Γp, bx) ) s) = a b ) s ax+)s 1 ax+) ) 1 bx+) ) s = 1 by 20)). s bx+)s This completes the proof. Acowledgmets. The authors would lie to tha the referee for valuable commets which improved the presetatio of the paper.

J.-C. Liu, J. Liu / Filomat 31:14 2017), 4507 4513 4513 Refereces [1] M. Abramowitz ad I. A. Stegu, Hadboo of Mathematical Fuctios with Formulas, Graphs, ad Mathematical Tables, Natioal Bureau of Stadards, Applied Mathematics Series 55, 9th pritig, Washigto, 1970. [2] R. Asey, The -gamma ad -beta fuctios, Appl. Aal. 8 1978), 125 141. [3] V.B. Krasii, H.M. Srivastava ad S.S. Dragomir, Some complete mootoicity properties for the p, )-gamma fuctio, Appl. Math. Comput. 219 2013), 10538 10547. [4] G. Gasper ad M. Rahma, Basic hypergeometric series, Cambridge Uiversity Press, 2004. [5] L. Yi ad L.-G. Huag, Limit formulas related to the p-gamma ad p-polygamma fuctios at their sigularities, Filomat 29 2015), 1501 1505. [6] W. P. Johso, The curious history of Faà di Bruo s formula, Amer. Math. Mothly 109 2002), 217 234. [7] D.S. Moa, The -gamma fuctio for > 1, Aeuatioes Math. 20 1980), 278 285. [8] A. Prabhu ad H.M. Srivastava, Some it formulas for the gamma ad psi or digamma) fuctios at their sigularities, Itegral Trasforms Spec. Fuct. 22 2011), 587 592. [9] F. Qi, Limit formulas for ratios betwee derivatives of the gamma ad digamma fuctios at their sigularities, Filomat 27 2013), 601 604.