Unit A (225 m.y. old) Unit B (how old is it?) Unit C (275 m.y. old)

Similar documents
Unit 2 Lesson 3 Absolute Dating. Copyright Houghton Mifflin Harcourt Publishing Company

Measuring the Age of things (Astro 202 2/12/08) Nomenclature. Different Elements. Three Types of Nuclear Decay. Carbon 14 Decay.

3 Absolute Dating: A Measure of Time

geologic age of Earth - about 4.6 billion years

GEOLOGIC EVENTS SEDIMENTARY ROCKS FAULTING FOLDING TILTING

Name: Period: Half-life and Radiometric Dating

Determining Absolute Age

Clues to Earth s Past. Fossils and Geologic Time

Lesson Learning Goal

Radiometric Dating and the Age of the Earth

Geologic Time: Hutton s Outcrop at Siccar Point. How do we determine age (relative & absolute) What is the age of the earth? How do we know?

Geologic Time: Concepts and Principles

Absolute Ages of Rocks

6/30/2018. Geologic Time. Earth, Chapter 9 Chapter 9 Geologic Time

Notepack 19. AIM: How can we tell the age of rocks? Do Now: Regents Question: Put the layers of rock in order from oldest to youngest.

Geologic History Unit Notes. Relative age - general age statement like older, younger more recent


2. Can you name earth s three eras and explain why they are divided that way?

Page 17a. Objective: We will identify different types of radioactive decay. Warm-up:

NOTES: 25.2 Nuclear Stability and Radioactive Decay

Geochronology. study of 'Earth time' Historical Geology. study of the physical and biological evolution of the Earth & its life

SCIENCE 10: (7.1) ATOMIC THEORY, ISOTOPES AND RADIOACTIVE DECAY Name: Date: Block: (Textbook Reference pp in BC Science 10) into an

Timing of Geologic Events. Geologic Time Terms. Laws / Principles of Stratigraphy

The principle of fossil succession allows strata in different parts of the world to be correlated, and worldwide relative ages to be worked out

6. Relative and Absolute Dating

Chapter 09 Geologic Time

Principle of Uniformitarianism: Laws of nature don t change with time

Guided Notes Geologic History

Geologic Time: Hutton s Outcrop at Siccar Point

Chemistry 201: General Chemistry II - Lecture

Geologic Time. Decoding the Age of our Planet & North Carolina

9. RELATIVE AND RADIOMETRIC AGES

Welcome to General Geology!!

Radioactive Decay and Radiometric Dating

Radioactive Decay and Radiometric Dating

Notes: Part 1 - Nuclear Chemistry

HISTORICAL NOTES. Catastrophism. James Usher, mid-1600s, concluded Earth was only a few thousand years old

25.1. Nuclear Radiation

Geologic Time Essentials of Geology, 11th edition, Chapter 18 Geologic Time: summary in haiku form Key Concepts Determining geological ages

Chapter 7 Review. Block: Date:

How Old is the Solar System?

Nuclear Reactions Homework Unit 13 - Topic 4

Student Exploration: Nuclear Decay

Studying The Past. II. Why Do We Study Fossils Found in Rocks?

Clues to Earth s Past

Quiz Three (9:30-9:35 AM)

The Earth. February 26, 2013

Isotopes and Radioactive Decay

Chapter 28: Nuclear Chemistry Part 1: Notes The Basics of Nuclear Radiation and Nuclear Decay

Table of Isotopic Masses and Natural Abudances

Studying The Past. Why Do We Study Fossils Found in Rocks?

Radioactive Decay and Radiometric Dating

Earth s History. The principle of states that geologic processes that happened in the past can be explained by current geologic processes.

Chapter 3 Time and Geology

II. Knowing and Understanding the Six Principles of Stratigraphy:

Radioisotopes. alpha. Unstable isotope. stable. beta. gamma

5. Chronostratigraphy and Geological Time

Radioactive Clocks or Radiometric Dating

Geologic Time. Earth s History

Chemistry, Nuclear Chemistry & Nuclear Decay

1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology

Chapter 11 (Geologic Time)

ENVI.2030L Geologic Time

PS-21 First Spring Institute say : Teaching Physical Science. Radioactivity

NOTES: The Fossil Record and Geologic Time

Chapter 17. Geologic Time: Concepts and Principles

8. GEOLOGIC TIME LAST NAME (ALL IN CAPS): FIRST NAME: Instructions

Chapter 3 Time and Geology

Prentice Hall EARTH SCIENCE

Relative Geologic Time Scale. Geologic Time Scale

Geology of the Hawaiian Islands

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences

What we ll learn today:!

Geologic Time. Absolute versus relative time. Absolute time. Absolute time: time in specific units (hours, days, years, etc.)

Radiogenic Isotopes. W. F. McDonough 1 1 Department of Earth Sciences and Research Center for

Atoms and Nuclear Chemistry. Atoms Isotopes Calculating Average Atomic Mass Radioactivity

1.1 ALPHA DECAY 1.2 BETA MINUS DECAY 1.3 GAMMA EMISSION 1.4 ELECTRON CAPTURE/BETA PLUS DECAY 1.5 NEUTRON EMISSION 1.6 SPONTANEOUS FISSION

Geohistory Review. Things you need to know:

Types of radiation resulting from radioactive decay can be summarized in a simple chart. Only X-rays, Auger electrons and internal conversion

The Geology of Pacific Northwest Rocks & Minerals Activity 1: Geologic Time

Geologic History. Earth is very, very old

RADIOACTIVITY: spontaneous disintegration of the nucleus of certain atoms accompanied by the emission (release) of particles and/or energy

Atomic Notation (or Nuclear Symbol): Shorthand for keeping track of protons and neutrons in the nucleus

7.1 Atomic Theory and Radioactive Decay

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Lecture Outline Friday Feb. 21 Wednesday Feb. 28, 2018

CHAPTER 8 DETERMINING EARTH S AGE RELATIVE AND ABSOLUTE ROCK AGES. Loulousis

SCIENTIFIC DATING IN ARCHAEOLOGY

Section 10: Natural Transmutation Writing Equations for Decay

Science 10 Radioactivity Review v3

Radioactive Decay 1 of 20 Boardworks Ltd 2016

Geologic Time Test Study Guide

Teacher: Mr. gerraputa. Name: Which two radioisotopes have the same decay mode?

Nuclear Study Packet. 1. What subatomic particles are involved in nuclear reactions? 2. What subatomic particles are involved in chemical reactions?

What does rate of reaction mean?

Earth Science 11: Geologic Time Unit

Absolute Age - Radioactive Decay. Absolute Age - Isotopes. Absolute Age - Radioactive Decay

Age Dating and the Oceans

Science 20. Unit C: The Changing Earth. Assignment Booklet C1

Science 10. Unit 4:Physics. Block: Name: Book 3: radioactivty

Transcription:

Radiometric Dating

Relative dating techniques are based on principles can be used to differentiate the relative age rock units and landforms. Relative dating techniques by themselves cannot be used to assign independent ages. Numerical or Radiometric dating allows geologist to assign actual ages to a deposit or landform. Many of the methods are based on the ratio of radioactive and their respective decay products measured in a material to be dated. In many cases relative dating techniques are used in tandem with numerical dating techniques to constrain the age of a landform or deposit. This is called. Unit A (225 m.y. old) Unit B (how old is it?) Unit C (275 m.y. old)

Bracketing Dating of volcanic ash Certain layers in rock, particularly volcanic deposits like ash or lava flows, are more useful for radiometric dating techniques than others. For example, a volcanic ash layer: Represent a very period of time in geologic history Might be in an area Contains radioactive elements that are for radiometric dating.

Isotopes = 2 atoms of the same element (same atomic #) that have different numbers of neutrons, and therefore different. Most elements have one isotope that is prevalent. Many elements have isotopes that are radioactive. Isotopes Fig. 3 3 All isotopes with the same atomic mass (number of ) are the same element The number given before or after the element symbol is the atomic Examples: H, D, T (see fig 3-3) Carbon 12 & Carbon 14 ( 12 C & 14 C) U-235 & U-238

Stable vs. Radioactive isotopes The atomic (number of protons) determines what element it is (i.e. Carbon will always have 6 protons) Different elements may have the same mass, depending on the number of.

Radioactivity Radioactive decay refers to the process in which an atomic nucleus of an unstable atom loses energy by emitting particles. The radioactive parent atom is converted to atom which can be stable, or radioactive (subject to further decay). Radioactive decay occurs via three decay processes: Alpha Decay, Beta Emission, Electron Capture.

For the radioactive decay process to be useful for finding the age of a rock or fossil, the daughter isotope must only be able to be created through the of the parent isotope. Otherwise, there would be no way to tell how much daughter was produced from the original radioactive parent isotope.

Age Equation D = Do + N(e λt -1) D= number of daughter atoms N = number of existing parent atoms D o = number of initial daughter atoms e = exponential function λ = decay constant t = time Radioactive isotopes will decay spontaneously to form daughter atoms. Radioactive decay is. Different radioactive elements will have different decay rates, but the decay curve will be the same (purple curve). As radioactive parent atoms decay, daughter atoms are correspondingly created (blue curve). If you can measure the of parent to daughter atoms in a isotope system, you can solve for the age (T).

Radioactive Decay Processes Simple Decay: represents a decay process where a radioactive isotope will decay to a radiogenic daughter atom. For example, radiocarbon ( 14 C) will always decay to nitrogen ( 14 N). Branched Decay: represents a decay process where the radioactive isotope can decay to radiogenic daughter atom. For example 40 K can decay to either 40 Ca (88.2% of the time) or 40 Ar (11.8% of the time).

Radioactive Decay Unstable isotopes undergo radioactive decay to form other isotopes, & in the process energy is emitted in three forms: alpha particle: protons + neutrons (He nucleus) beta particle: fast moving, gamma rays: high energy electromagnetic

Alpha decay the atomic number and mass of the element, since a 2 P and 2 N are emitted. Beta electron decay (ß-) does not the mass number. The atomic number because the electron is produced by the decay of a neutron which results in a.

Half-Life: The amount of time that it takes half of a radioactive sample to decay to something else.

Determining amount of radioactive isotope remaining 1 half-life ½ (1/2 1 ) 2 half- lives ¼ (1/2 2 ) 3 half-lives 1 / 8 (1/2 3 ) 4 half-lives 1 / 16 (1/2 4 ) Formula: N = N o (0.5) t t= number of half-lives N = amount left N o = original amount http://www.colorado.edu/physics/2000/isotopes/radioactive_decay3.html

Radioactive Decay Processes A involves the radioactive decay of intermediate radioactive daughter atoms that eventually decay to stable daughter such as the decay of 238 U to 206 Pb. T 1/2 of U-238 = 4.5 billion years T 1/2 of U-235 = 703.8 million years

The decay constant and half-life (The half life is the time it takes one half of the existing parent atoms to decay to daughter atoms) of a radionuclide are related mathematically: T 1/2 = 0.693/λ λ = decay constant Generally, the greater the half-life of a radioactive isotope pair the greater the for dating purposes, but the less useful it is for more events.

Potassium-Argon dating can be used to date potassium-rich basalt flows that exceed years in age. 40 K will also decay to stable 40 Ca by beta decay (but that ratio is not used for dating purposes- Why?)

K-Ar Dating 40 Ca is the stable and common form of Calcium. It would be impossible to determine how much 40 Ca was produced from the decay of 40 K.

K-Ar dating was utilized to assign chronology of early hominid finds in northern Ethiopia. Paleomagnetic data can be used to fill in gaps within the chronology.

is used to date the age of the basaltic ocean floor. Although the K content of the ocean basalts is relatively low, there is enough potassium to yield meaningful ages.

In the 1950 s and 1960 s magnetic stripes were discovered by geophysicists along the ocean floor. These stripes represent fluctuating polarity changes of the Earth s magnetic field preserved in the basaltic ocean crust. The reversals have been dated using K-Ar dating, producing a paleomagnetic time scale.

K-Ar dating has been very important in assigning ages to the timing of polarity changes and establishing the paleomagnetic time scale. The paleomagnetic time scale is subdivided into which represent intervals of time defined by a given magnetic polarity.

The steep front of this Hawaiian basalt flow represents an ice-contact front. The basalt flow abutted against glacial ice and its K-Ar age provides constraints on the timing of glacial advance on the Big Island of Hawaii.

Up-thrown Block Down-dropped Block The range front fault (trace shown by dotted line) exposed along the eastern Sierra Nevada cross-cuts a basaltic cinder cone that was dated using K-Ar dating. How could this age be used to constrain the uplift rate along this fault?

Radiocarbon Dating Radiocarbon is first produced in the atmosphere by collisions of with nitrogen atoms (Nitrogen has 7 protons and 7 neutrons in its nucleus). The neutron will knock out a from the nitrogen atom s nucleus. How many protons will now be present in the atom s nucleus? How many neutrons? The carbon atom is now radioactive 14 C (radiocarbon) with a half-life of 5730 years. It will decay back to 14 N via Beta decay. Organisms keep a constant level of 14 C while they are alive, but once they die, the level of 14 C drops as it decays to 14 N.

Radiocarbon Dating

Radiocarbon Decay Activity 14 C decays to 14 N as it emits a beta (β) particle ( ). Modern carbon (1850 A.D.) has a decay activity of ~15 dpm/gm. The decay activity (Beta emission rate) will decrease by 50% every half-life (5,730 years). Radiocarbon ages can be determined for organic matter by directly counting β-emissions. What will the approximate decay activity be for a sample that is 6000 years old? dpm/gm dpm = disintegrations/minute 12,000 years old? dpm/gm After about years, there is not enough radicarbon left to have enough activity to measure (see earlier chart).

Organic samples are prepared for radiocarbon dating by combusting (paper or wood) or dissolving (calcite in shells) the organics and producing CO 2 gas (stored in glass containers). The decay activity in the CO 2 gas will be directly related to the of the organic material.

Improvement in accelerator mass spectrometry (AMS) have allowed geochronologists to directly measure the 14 C to stable carbon( 12 C and 13 C) ratio. The ratio of 14 C to 12 C or 13 C will be reduced by after each half-life. AMS 14 C dating requires a much smaller organic sample (milligrams versus grams) than the beta-counting method. Most 14 C analyses today are measured using AMS. Why do you think we do not measure the ratio of parent ( 14 C) to daughter ( 14 N) ratio to determine a 14 C age?

Radiocarbon dating is useful for assigning ages to sediment that may incorporate organics during erosion and deposition, such as this log present in glacial till. How is the glacial till age related to the age of the log incorporated into the till?

Radiocarbon dating is useful for assigning ages to young (<50,000 years old) volcanic ash layers, such as the Mazama (Crater Lake) tephra shown above. Why can t we simply date the 6800 year old Mazama ash using K-Ar dating?