Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Similar documents
The amazing story of Laser Cooling and Trapping

From laser cooling to BEC First experiments of superfluid hydrodynamics

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Ultracold atoms and molecules

Production of BECs. JILA June 1995 (Rubidium)

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Standing Sound Waves in a Bose-Einstein Condensate

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

On the path to Bose-Einstein condensate

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Laser cooling and trapping

Saturation Absorption Spectroscopy of Rubidium Atom

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Atomic Physics (Phys 551) Final Exam Solutions

Atom Quantum Sensors on ground and in space

Lecture 1. Physics of light forces and laser cooling

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era

Chapter 7: Quantum Statistics

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Laser Cooling and Trapping of Atoms

Chapter4: Quantum Optical Control

Week 13. PHY 402 Atomic and Molecular Physics Instructor: Sebastian Wüster, IISERBhopal, Frontiers of Modern AMO physics. 5.

Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation

THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES

Chapter 7: Quantum Statistics

A study of the BEC-BCS crossover region with Lithium 6

Ultracold Fermi Gases with unbalanced spin populations

Quantum Computation with Neutral Atoms Lectures 14-15

A novel 2-D + magneto-optical trap configuration for cold atoms

Absorption and Fluorescence Studies on Hyperfine Spectra of Rb and Dressed state picture

Les Houches 2009: Metastable Helium Atom Laser

Introduction to cold atoms and Bose-Einstein condensation (II)

Study of Collision Cross Section of Ultra-Cold Rubidium using a Magneto-Optic and pure Magnetic trap

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Bose-Einstein condensates & tests of quantum mechanics

A Mixture of Bose and Fermi Superfluids. C. Salomon

Confining ultracold atoms on a ring in reduced dimensions

A Mixture of Bose and Fermi Superfluids. C. Salomon

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Single Atom wants to meet Single Photon Controlled Processes with Neutral Atoms

Sodium Guidestar Return From Broad CW Sources. CfAO Fall Workshop Comments COVER SLIDE

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

OPTICAL METHODS. A SIMPLE WAY TO INTERROGATE AND TO MANIPULATE ATOMSI CLAUDE COHEN-TANNOUDJI

In Situ Imaging of Cold Atomic Gases

Roger Ding. Dr. Daniel S. Elliott John Lorenz July 29, 2010

Modeling magneto-optical trapping of CaF molecules

Large atom number Bose-Einstein condensate of sodium

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5

Possibilities for a Bose-Einstein Condensed Positronium Annihilation Gamma Ray Laser

Prospects for Bose-Einstein condensation of metastable neon atoms

Molecular spectroscopy

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago

Experimental Storage Ring - ESR E max = 420 MeV/u, 10 Tm, electron-, stochastic- and laser cooling. Indian Institute of Technology Ropar

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

Optimization of transfer of laser-cooled atom cloud to a quadrupole magnetic trap

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

EYLSA laser for atom cooling

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris

Artificial Gauge Fields for Neutral Atoms

Transit Time Broadening and Laser-Dressed State Interference Effects in Spectral Profiles of Atoms Interacting with Coherent Light

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

9 Atomic Coherence in Three-Level Atoms

BOSE-EINSTEIN CONDENSATION AND MACROSCOPIC INTERFERENCE WITH ATOMIC TUNNEL ARRAYS

EE-LE E OPTI T C A L S Y TE

PHYS 172: Modern Mechanics Fall 2009

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Coherent manipulation of atomic wavefunctions in an optical lattice. V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M.

Bose-Einstein condensates in optical lattices

PHYS 3313 Section 001 Lecture # 24

Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

The interaction of light and matter

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Cold fermions, Feshbach resonance, and molecular condensates (II)

All-optical formation of a Bose-Einstein condensate for applications in scanning electron microscopy

Investigating the Dynamics of a Bose Einstein Condensate on an Atom Chip

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK

lennart christiaan karssen T R A P P I N G C O L D AT O M S W I T H U LT R A S H O RT L A S E R P U L S E S

Magneto-Optical Trap for Sodium Atoms from a Vapor Cell and Observation of Spatial Modes

The Application of Four-Wave Mixing to Cold and Ultra-Cold. Atom Imaging

Microfibres for Quantum Optics. Dr Síle Nic Chormaic Quantum Optics Group

POSITRON ACCUMULATOR SCHEME for AEGIS

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms. Nathan D. Lemke

Boltzmann Distribution

Workshop on Topics in Quantum Turbulence March Experiments on Bose Condensates

PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Laser Cooling of Gallium. Lauren Rutherford

Positronium: Old Dog, New Tricks

Teaching philosophy. learn it, know it! Learn it 5-times and you know it Read (& simple question) Lecture Problem set

LASER COOLING AND TRAPPING OF ATOMIC STRONTIUM FOR ULTRACOLD ATOMS PHYSICS, HIGH-PRECISION SPECTROSCOPY AND QUANTUM SENSORS

Development of the Zeeman Slower for the Ultra-cold Atomic Interference Experiment

EDM. Spin. ν e. β - Li + Supported by DOE, Office of Nuclear Physics

1 Longitudinal modes of a laser cavity

Transcription:

Quantum Mechanica Peter van der Straten Universiteit Utrecht Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 1 / 22

Matrix methode Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 2 / 22

Light pressure initial mv0 hk absorption mv0 hk spontaneous emission mv0 hk + hki = mv0 hk Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 3 / 22

Light pressure initial mv0 hk recoil kick v r = k m 3 cm/s (Na) absorption mv0 hk spontaneous emission mv0 hk + hki = mv0 hk Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 3 / 22

Light pressure initial absorption mv0 mv0 hk hk recoil kick v r = k m 3 cm/s (Na) thermal v 1000 m/s N stop 33.000 fotons spontaneous emission mv0 hk + hki = mv0 hk Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 3 / 22

Light pressure initial absorption spontaneous emission mv0 mv0 hk hk mv0 hk + hki = mv0 hk recoil kick v r = k m 3 cm/s (Na) thermal v 1000 m/s N stop 33.000 fotons lifetime τ = 16 ns T stop 1 msec l stop 0.5 m Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 3 / 22

Light pressure initial absorption spontaneous emission mv0 mv0 hk hk mv0 hk + hki = mv0 hk recoil kick v r = k m 3 cm/s (Na) thermal v 1000 m/s N stop 33.000 fotons lifetime τ = 16 ns T stop 1 msec l stop 0.5 m acceleration a 9 10 5 m/s 2 Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 3 / 22

Excitation of Na with laser light 5 Na 4 5s 5p 4p 4d 3d 4f 3 4s Energy (ev) 2 3p Laser cooling 1 λ= 589.1583 nm 0 3s 2 S 2 P 2 D 2 F Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 4 / 22

Excitation of Na 62 MHz 36 MHz 16 MHz 3 2 1 0 +1 +2 +3 F=3 F=2 F=1 F=0 3 2 P 3/2 192 MHz F=2 F=1 3 2 P 1/2 D 2 589.0 nm 1772 MHz 2 D 1 589.6 nm 1 0 +1 +2 F=2 F=1 3 2 S 1/2 Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 5 / 22

Polarisation dependence Lineair gepolariseerd licht Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 6 / 22

Polarisation dependence Lineair gepolariseerd licht Circulair gepolariseerd licht Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 6 / 22

Doppler effect S D S D Doppler shift : Detector (D) moving towards source (S) and vice versa ν = ν ( 1 v ), c with ν = c/λ the frequency and c the velocity of light. Sodium (λ=590 nm) at 1000 m/s: ν = ν ν = 1700 MHz Γ= 10 MHz. D:/Upload/Phys2000/bec/lascool1.html D:/Upload/Phys2000/bec/lascool2.html D:/Upload/Phys2000/bec/lascool3.html Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 7 / 22

Simple picture Zeeman slowing SOLENOID LASER BEAM MOVING ATOM Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 8 / 22

Zeeman technique Na oven 600 K 1.25 m solenoid extraction coils cooling beam B z aom probe beam pump beam Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 9 / 22

Zeeman technique Na oven 600 K 1.25 m solenoid extraction coils cooling beam B z aom probe beam pump beam detect Pump Gate Probe Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 9 / 22

Zeeman shift of the states 2000 Zeeman shift [MHz] 1000 0-1000 -2000 0 200 400 600 800 1000 1200 Magnetic field [Gauss] Shift of the ground state Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 10 / 22

Zeeman shift of the states 2000 2000 Zeeman shift [MHz] 1000 0-1000 Zeeman shift [MHz] 1000 0-1000 -2000 0 200 400 600 800 1000 1200 Magnetic field [Gauss] Shift of the ground state -2000 0 200 400 600 800 1000 1200 Magnetic field [Gauss] Shift of the excited state Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 10 / 22

Excitation in a magnetic field 2500 Transition frequency [MHz] 2000 1500 1000 500 0 Cooling transition -500 0 200 400 600 800 1000 1200 Magnetic field [Gauss] Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 11 / 22

Optical pumping with circular polarised light 3 2 1 0 +1 +2 +3 F =3 2 1 0 +1 +2 F =2 Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 12 / 22

Laser cooling +hk mv -hk Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 13 / 22

Laser cooling +hk mv -hk ω 0 δ ω e +kv g Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 13 / 22

Laser cooling +hk mv -hk ω 0 δ ω e +kv F v g Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 13 / 22

Laser cooling +hk mv -hk ω 0 δ ω e +kv F v g δ < 0 F βv with β max = k2 4 Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 13 / 22

Laser cooling +hk mv -hk ω 0 δ ω e +kv F v g δ < 0 F βv with β max = k2 4 m v = βv v = v 0 exp( t/t 0 ) Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 13 / 22

Laser cooling +hk mv -hk ω 0 δ ω e +kv F v g δ < 0 F βv with β max = k2 4 m v = βv v = v 0 exp( t/t 0 ) t 0 = m β max = 12.8µsec Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 13 / 22

Laser cooling +hk mv -hk ω 0 δ ω e +kv F v g δ < 0 F βv with β max = k2 4 m v = βv v = v 0 exp( t/t 0 ) t 0 = m β max = 12.8µsec Cooling limit: Damping by Doppler tuning vs. heating by random recoil Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 13 / 22

Laser cooling +hk mv -hk ω 0 δ ω e +kv F v g δ < 0 F βv with β max = k2 4 m v = βv v = v 0 exp( t/t 0 ) t 0 = m β max = 12.8µsec Cooling limit: Damping by Doppler tuning vs. heating by random recoil kt D = Γ 2 [Na : 240µK] Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 13 / 22

Principle MOT (Magneto-Optical Trap) M = 1 M =0 M =+1 000000000 111111111 000000000 111111111 000000000 111111111 000000000 111111111 000000000 111111111 000000000 111111111 000000000 111111111 000000000 111111111 000000000 111111111 000000000 111111111 000000000 111111111 000000000 111111111 000000000 111111111 0000000000 111111111 000000000 111111111 01 01 00 11 00 00 11 00 00 0 11 11 111 00 11 0 00 11 00 000 11 1 00 11 1 00 11 00 11 00 00 00 11 11 00 11 11 00 11 00 00 00 00 11 11 11 00 11 00 11 00 11 00 11 11 11 00 11 00 σ 00 11 00 11 σ + 11 00 11 00 11 00 11 00 00 00 11 11 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 1100 00 110 1 000000000 111111111 000000000 111111111 000000000 111111111 000000000 111111111 0000000000 111111111 J =0 J =1 M =0 σ + : right handed circular polarized light σ : left handed circular polarized light Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 14 / 22

Principle of the magneto-optical trap Energy M e =+1 δ δ + δ M e =0 M e = 1 σ + beam ω l σ beam z M g =0 Position Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 15 / 22

Cold Atoms D:/upload/Phys2000/bec/lascool4.html Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 16 / 22

Bose-Einstein condensation Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 17 / 22

What is Bose-Einstein condensation (BEC)? Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 18 / 22

What is Bose-Einstein condensation (BEC)? Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 18 / 22

What is Bose-Einstein condensation (BEC)? Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 18 / 22

What is Bose-Einstein condensation (BEC)? Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 18 / 22

Bose-Einstein condensation ρ = nλ deb 3 = 2.612375349... with Λ deb = h 2πmkB T Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 19 / 22

Magnetic trapping Zeeman structure of the ground state of Na: 2 2 1 0-1 Energy [GHz] 0 F=2-2 F=1-2 0-1 1-4 0.00 0.05 0.10 0.15 0.20 0.25 Magnetic field [T] Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 20 / 22

Magnetic Trap Cloverleaf trap: Trap frequency 8 Hz 88 Hz Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 21 / 22

Magnetic Trap Cloverleaf trap: Trap frequency 8 Hz 88 Hz No spin polarization: 1 / 3 loaded in trap Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 21 / 22

Magnetic Trap Cloverleaf trap: Trap frequency 8 Hz 88 Hz No spin polarization: 1 / 3 loaded in trap 360 optical access Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 21 / 22

Background pressure: < 10 12 mbar Lifetime: 256 sec! Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 22 / 22 Lifetime in MT Remaining fraction % 100 80 60 40 20 0 100 200 300 400 500 600 Time s