Taper Roller Bearings

Similar documents
Spherical Roller Bearings

4.2 Design of Sections for Flexure

Design Guidelines for Quartz Crystal Oscillators. R 1 Motional Resistance L 1 Motional Inductance C 1 Motional Capacitance C 0 Shunt Capacitance

Flow Switch Diaphragm Type Flow Switch IFW5 10 N Diaphragm type flow switch. Thread type. Model Body size Set flow rate

CO-ORDINATION OF FAST NUMERICAL RELAYS AND CURRENT TRANSFORMERS OVERDIMENSIONING FACTORS AND INFLUENCING PARAMETERS

15. Stress-Strain behavior of soils

Principles of Humidity Dalton s law

EXST Regression Techniques Page 1

ph People Grade Level: basic Duration: minutes Setting: classroom or field site

Simulated Analysis of Tooth Profile Error of Cycloid Steel Ball Planetary Transmission

5.80 Small-Molecule Spectroscopy and Dynamics

Addition of angular momentum

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK

Strength of Materials

Part 7: Capacitance And Capacitors

A Propagating Wave Packet Group Velocity Dispersion

Unfired pressure vessels- Part 3: Design

AS 5850 Finite Element Analysis

Addition of angular momentum

ME311 Machine Design

Introduction to Condensed Matter Physics

Module 7 Design of Springs. Version 2 ME, IIT Kharagpur

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

Homotopy perturbation technique

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

Search sequence databases 3 10/25/2016

Pipe flow friction, small vs. big pipes

The pn junction: 2 Current vs Voltage (IV) characteristics

Chapter 8: Electron Configurations and Periodicity

PHA 5127 Answers Homework 2 Fall 2001

Electrons and Conductors

Where k is either given or determined from the data and c is an arbitrary constant.

Definition1: The ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions.

Einstein Equations for Tetrad Fields

Koch Fractal Boundary Single feed Circularly Polarized Microstrip Antenna

ø20, ø25, ø32, ø40, ø50, ø63, ø80, ø100 How to Order Lock position H R Load voltage 100V 12V 24V 5V 12V 100V or less Y69A 12V Y7PV Y7P Y69BL 12V

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

General Notes About 2007 AP Physics Scoring Guidelines

University of Illinois at Chicago Department of Physics. Thermodynamics & Statistical Mechanics Qualifying Examination

u 3 = u 3 (x 1, x 2, x 3 )

Supplementary Materials

4.4 Design of Sections for Flexure (Part III)

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Alpha and beta decay equation practice

Contemporary, atomic, nuclear, and particle physics

MEASURING HEAT FLUX FROM A COMPONENT ON A PCB

Hydrogen Atom and One Electron Ions

VII. Quantum Entanglement

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Tap Changer Type MHZ Specification, Assembly and Materials

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Answer Homework 5 PHA5127 Fall 1999 Jeff Stark

3 Finite Element Parametric Geometry

Direct Approach for Discrete Systems One-Dimensional Elements

Ultimate strength analysis & design of residential slabs on reactive soil

Procdings of IC-IDC0 ( and (, ( ( and (, and (f ( and (, rspctivly. If two input signals ar compltly qual, phas spctra of two signals ar qual. That is

VSMN30 FINITA ELEMENTMETODEN - DUGGA

PHYS-333: Problem set #2 Solutions

TOPOLOGY DESIGN OF STRUCTURE LOADED BY EARTHQUAKE. Vienna University of Technology

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):.

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

DIFFERENTIAL EQUATION

MA 262, Spring 2018, Final exam Version 01 (Green)

Dynamic Characteristics Analysis of Blade of Fan Based on Ansys

First derivative analysis

Coupled Pendulums. Two normal modes.

Evaluating Reliability Systems by Using Weibull & New Weibull Extension Distributions Mushtak A.K. Shiker

orbiting electron turns out to be wrong even though it Unfortunately, the classical visualization of the

CHAPTER 1. Introductory Concepts Elements of Vector Analysis Newton s Laws Units The basis of Newtonian Mechanics D Alembert s Principle

Mechanical Properties

What are those βs anyway? Understanding Design Matrix & Odds ratios

Higher order derivatives

cycle that does not cross any edges (including its own), then it has at least

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by:

CS 361 Meeting 12 10/3/18

DIELECTRIC AND MAGNETIC PROPERTIES OF MATERIALS

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

A New Approach to the Fatigue Life Prediction for Notched Components Under Multiaxial Cyclic Loading. Zhi-qiang TAO and De-guang SHANG *

That is, we start with a general matrix: And end with a simpler matrix:

Learning Spherical Convolution for Fast Features from 360 Imagery

6. The Interaction of Light and Matter

Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list.

2. Laser physics - basics

Voltage, Current, Power, Series Resistance, Parallel Resistance, and Diodes

Homework #3. 1 x. dx. It therefore follows that a sum of the

Physics 178/278 - David Kleinfeld - Fall checked Winter 2014

Extraction of Doping Density Distributions from C-V Curves

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

K

Two Products Manufacturer s Production Decisions with Carbon Constraint

Continuous probability distributions

1 Minimum Cut Problem

Status of LAr TPC R&D (2) 2014/Dec./23 Neutrino frontier workshop 2014 Ryosuke Sasaki (Iwate U.)

STRESSES FROM LOADING ON RIGID PAVEMENT COURSES

MECHANICS OF MATERIALS

Estimation of apparent fraction defective: A mathematical approach

Basic Polyhedral theory

Transcription:

Tapr Rollr Barings

1. 2....... 9. Tchnical Tabls Baring matrials Shilds and cag Baring tolrancs Baring fits Baring intrnal claranc Lubrication Load rating and lif Baring handling Allowabl spd Pags for rfr ~2 ~1 11~1 1 1~ 1 19~ 2 2 2~2

Dimnsion Tabls Tapr Rollr Baring 2 Tapr Rollr Baring Tapr Rollr Baring 1 Tapr Rollr Baring 2 Tapr Rollr Baring 22 Tapr Rollr Baring 2 Tapr Rollr Baring 29 Tapr Rollr Baring Tapr Rollr Baring 1 Tapr Rollr Baring 2 Pags for rfr 2~1 2~29 ~1 2~ ~ ~9 ~ ~ ~ ~9 ~1

Tchnical Tabls

1. Baring matrials 1.1 Racway and rolling lmnt matrials 1.1.1 High/mid carbon alloy stl In gnral,stl varitis which can b hardnd not just on th surfac but also dp hardnd by th so-calld "through hardning mthod" ar usd for th racways and rolling lmnts of barings. Formost among ths is high carbon chromium baring stl, which is widly usd. 1.1.2 Mid-carbon chromium stl Mid-carbon chromium stl incorporating silicon and mangans, which givs it hardning proprtis comparabl to high carbon chromium stl. 1.2 Cag matrials Baring cag matrials must hav th strngth to withstand rotational vibrations and shock loads. Ths matrials must also hav a low friction cofficint, b light wight, and b abl to withstand baring opration tmpraturs. 1.2.1 Prssd cags For small and mdium sizd barings, prssd cags of cold or hot rolld stl with a low carbon contnt of approx..1% ar usd. Howvr, dpnding on th application, austnitic stainlss stl is also usd. 1.2.2 Plastic cags Injction moldd plastic cags ar now widly usd: most ar mad from fibr glass rinforcd hat rsistant polyamid rsin. Plastic cags ar light wight, corrosion rsistant and hav xcllnt dampning and sliding proprtis. Hat rsistant polyamid rsins now nabl th production of cags that prform wll in applications ranging btwn - C - 12 C. Howvr, thy ar not rcondd for us at tmpraturs xcding 12 C. 2. Shilds and cag Extrnal sals hav two main functions: to prvnt lubricating oil from laking out, and, to prvnt dust,watr, and othr contaminants from ntring th baring. Whn slcting a sal, th following factors nd to b takn into considration: th typ of lubricant(oil or gras), sal priphral spd, shaft fitting rrors, spac limitations, sal friction and rsultant hat incras, and cost. Saling dvics for rolling barings fall into two main ifications: non-contact sals and contact sals. 2.1 Non-contact sals: Non-contact sals utiliz a small claranc btwn th shaft and th housing covr. Thrf or friction is ngligibl,making thm suitabl forhigh spd applications. In ordr to improv saling capability, claranc spacs ar oftn filld with lubricant. 2.2 Contact sals: Contact sals accomplish thir saling action through th contact prssur of a rsilint th sal ( th lip is oftn mad of synthtic rubbr ) th saling surfac. Contact sals ar gnrally far suprior to noncontact sals in saling fficiny, although thir friction torqu and tmpratur ris cofficints ar highr. Furthrmor, bcaus th portion of a contact sal rotats whil in contact wi th shaft,th allowabl sal priphral spd vari dpnding on sal typ.

. Baring tolrancs.1 Standard of tolrancs Tapr rollr barings "tolrancs" or dimnsional accuracy and running accuracy, ar rgulatd by ISO and JIS standards (rolling baring tolrancs). For dimnsional accuracy, ths standards prscrib th tolrancs ncssary whn installing barings on shafts or in housings. Running accuracy is dfind as th allowabl limits for baring runout during opration. Tabl.1 Barings typs and applicabl tolranc Baring typ Applicabl standard Applicabl tolranc Applicabl tabl Tapr rollr baring chang Tabl.2 Complx baring Sphrical rollr baring thrustf rollr baring Thrust rollr barings Radial baring Thrust baring Radial baring Thrust baring JIS B 11 ISO 92 ( NIKO standard) NIKO NIKO NIKO NIKO NIKO NIKO NIKO NIKO NIKO NIKO Tabl.2 Tabl. Tabl.2 Tabl. Tabl. Rollr followr/cam followr Tabl.2 Not: JIS B 11 and ISO 92 hav th sam spcification lvl.

Tabl.2 Tolranc for radial barings Tabl.2.1 Innr rings Nominal bor diamtr ovr 1 12 1 1 2 d incl. 12 1 1 2 1 Singl plan man bor diamtr dviation Singl radial plan bor diamtr variation Man singl plan bor diamtr variation Innr ring radial runout dmp Vdp Vdmp Kia 1 high low high low high low high low max. max. max. -1 - - - 1 1 1-12 -1 - - 1 1 9 1 1-1 -12-9 - 19 1 9 11 9. 2 1-2 -1-1 - 2 19 1 1 11. 2 1-2 -1-1 -1 1 2 1 1 19 1. 1-2 -1-1 -1 1 2 1 1 19 1. 1 - -22-1 -12 2 1 12 2 1. 2 1 - -2-1 1 1 2 19 9 2 1...... Not: 1 Th dimnsional diffrnc ds of th bor diamtr to b applid for is th sam as th tolranc of dimnsional diffrnc dmp of th avrag bor diamtr (Unit: m) Nominal bor diamtr Fac runout with bor Innr ring axial runout (with sid) Innr ring width dviation Innr ring width variation ovr 1 d incl. 1 Sd max. Sia 2 max., high low -12 Bs, high low - 2 VBs max. 2 1-12 -12 2 2-12 -12 2 2-1 -1 2 2. 12 9 9-2 -2 2 2. 12 1 1 1-2 -2. 1 1 1. 1. -2-2. 1 2 11. 1. - - 1. 2 1 1 1 - - 1 1 1 2 - - 1 Not: 2 To b applid for sphrical rollr barings. Not: dmp: dviation of th man bor diamtr from th nominal ( dmp = dmp - d ). Vdp: bor diamtr variation; diffrnc btwn th largst and smallst singl bor diamtrs in on plan. Vdmp: man bor diamtr variation; diffrnc btwn th largst and smallst man bor diamtrs of on ring or washr. Kia: radial runout of assmbld baring innr ring and assmbld baring outr ring, rspctivly. Sd: sid fac runout with rfrnc to bor (of innr ring). Sia: sid fac runout of assmbld baring innr ring and assmbld baring outr ring, rspctivly. Bs: dviation of singl innr ring width or singl outr ring width from th nominal ( Bs = Bs - B tc.) Vbs: ring width variation; diffrnc btwn th largst and smallst singl widths of innr ring and of outr ring, rspctivly.

Tabl.2.2 Outr rings Nominal outsid diamtr ovr 12 1 1 2 1 D incl. 12 1 1 2 1 Singl plan man outsid diamtr dviation Singl radial plan Man singl plan outsid outsid diamtr variation diamtr variation Outr ring radial runout Dmp VDp VDmp Ka high low high low high low high low max. max. max. -11-1 -1-1 -2 - - - - -9-11 -1-1 -1-2 -2-2 - - -9-1 -11-1 -1-1 -2-2 - - - -9-1 -11-1 -1 1 1 19 2 1 11 1 1 19 2 2 1 1 9 1 11 1 1 1 2 2 9 1 11 1 1 1 11 1 19 2 2 1 11 1 1 19 21 2 9 1 12....... 2 2 1 1 1 2 2 2 1 11 1 1 1 2 2 1 11 1 Not: Th dimnsional diffrnc Ds of th outr diamtr to b applid for is th sam as th tolranc of dimnsional diffrnc Dmp of th avrag outr diamtr. (Unit: m) Nominal outsid diamtr Outsid surfac inclination Outsid ring axial runout Outr ring width dviation Outr ring width variation ovr D incl. Sd max. Sia max. Cs all typ, VCs max. 1 Idntical to 12 1 1 2 12 1 1 2 1 9 1 1 11 1 11 1 1 1 1 1 1 Idntical to Bs of innr ring of sam baring Bs and Vbs of innr ring of sam baring 1 11..... 1 1 1 2 1 1. 1 2 1 Not: To b applid for sphrical rollr barings. Not: Dmp: dviation of th man outsid diamtr from th nominal ( Dmp = Dmp - D ). Vdp: outsid diamtr variation; diffrnc btwn th largst and smallst singl outsid diamtrs in on plan. Vdmp: man bor diamtr variation; diffrnc btwn th largst and smallst man bor diamtrs of on ring or washr. Ka: radial runout of assmbld baring innr ring and assmbld baring outr ring, rspctivly. Sd: sid fac runout with rfrnc to bor (of innr ring). Sia: sid fac runout of assmbld baring innr ring and assmbld baring outr ring, rspctivly. Cs: dviation of singl innr ring width or singl outr ring width from th nominal ( Bs = Bs - Btc.) Vcs: ring width variation; diffrnc btwn th largst and smallst singl widths of innr ring and of outr ring, rspctivly. 9

Tabl. Tolranc of thrust rollr barings Tabl..1 Innr rings (Unit: m) Nominal outr diamtr ovr 1 12 1 2 d incl. 12 1 2 1 Singl plan man bor diamtr dviation Singl radial plan Thrust baring shaft washr racway bor diamtr variation (or cntr washr racway) thicknss variation dmp Vdp Si,, high low high low -1-12 -1-2 -2 - - - -1-12 -1-1 -22-2,, 9 11 1 19 2 2 max. 9 11 1 1 19 1 1 1 1 1 2 2 9 1 1 max. 2 2 Tabl..2 Outr rings (Unit: m) Nominal outsid diamtr ovr 12 1 2 1 D incl. 12 1 2 1 high Singl plan man outsid diamtr dviation,, low -1-19 -22-2 - - - - Singl radial plan outsid diamtr variation Dmp VDp S high low -9-11 -1-1 -2-2 -2 -,, 12 1 1 19 2 2 max. 1 11 1 19 21 2 Thrust baring housing washr racway thicknss variation max. According to th tolranc Si d d2 of against " " or " " of th sam barings Not: Dmp: dviation of th man bor diamtr from th nominal ( Dmp = Dmp - D ). Vdp: bor diamtr variation; diffrnc btwn th largst and smallst singl bor diamtrs in on plan. Si: thicknss variation, masurd from middl of racway to back (sating) fac of shaft washr and of housing washr, rspctivly (axial runout). Dmp: dviation of th man outsid diamtr from th nominal ( Dmp = Dmp - D). Vdp: outsid diamtr variation; diffrnc btwn th largst and smallst singl outsid diamtrs in on plan. S: thicknss variation, masurd from middl of racway to back (sating) fac of shaft washr and of housing washr, rspctivly (axial runout). 1

. Baring fits.1 Intrfrnc For rolling barings, innr and outr rings ar fixd on th shaft or in th housing so that rlativ movmnt dos not occur btwn fittd surfacs during opration or undr load. This rlativ movmnt (rfrrd to as "crp") btwn th fittd surfacs of th baring and th shaft or housing can occur in a radial dirction, an axial dirction, or in th dirction of rotation. To hlp prvnt this crping movmnt, baring rings and th shaft or housing ar installd with on of thr intrfrnc fits, a "tight fit" (also calld shrink fit), "transition fit," or "loos fit" (also calld claranc fit), and th dgr of intrfrnc btwn thir fittd surfacs varis. Th most ffctiv way to fix th fittd surfacs btwn a baring's racway and shaft or housing is to apply a "tight fit." Th advantag of this tight fit for thin walld barings is that it provids uniform load support ovr th ntir ring circumfrnc without any loss of load carrying capacity. Howvr, with a tight fit, as of installation and disassmbly is lost; and whn using a non-sparabl baring as th floating-sid baring, axial displacmnt is not possibl. For this rason, a tight fit cannot b rcondd in all cass..2 Th ncssity of a propr fit In som cass, impropr fit may lad to damag and shortn baring lif, thrfor it is ncssary to mak a carful analysis in slcting a propr fit. Som of th ngativ conditions causd by impropr fit ar listd blow. Racway cracking, arly pling and displacmnt of racway Racway cracking, arly pling and displacmnt of racway Racway and shaft or housing abrasion causd by crping and frtting corrosion Sizing causd by loss of intrnal clarancs Incrasd nois and lowrd rotational accuracy du to racway groov dformation. Fit slction Slction of a propr fit is dpndnt upon thorough analysis of baring oprating conditions, including considration of: Shaft and housing matrial, wall thicknss, finishd surfac accuracy, tc. Machinry oprating conditions ( natur and magnitud of load, rotational spd, tmpratur, tc. )..1 "Tight fit," "transition fit," or "loos fit" For racways undr rotating loads, a tight fit is ncssary. (Rfr to Tabl.1) "Racways undr rotating loads" rfrs to racways rciving loads rotating rlativ to thir radial dirction. For racways undr static loads, on th othr hand, a loos fit is sufficint. ( Exampl ) Rotating innr ring load - th dirction of th radial load on th innr ring is rotating rlativly For non-sparabl barings, such as dp groov ball barings, it is gnrally rcondd that ithr th innr ring or outr ring b givn a loos fit. 11

Tabl.1 Radial load and baring Static load Illustration Baring rotation Ring load Fit Innr ring: Rotating Outr ring: Stationary Rotating innr ring load Innr ring: Tight fit Imbalancd load Innr ring: Stationary Outr ring: Rotating Static outr ring load Outr ring: Loos fit Static load Innr ring: Stationary Outr ring: Rotating Static innr ring load Innr ring: Loos fit Imbalancd load Innr ring: Rotating Outr ring: Stationary Rotating outr ring load Outr ring: Tight fit..2 Rcondd Fits Th systm of limits and fits dfin th tolrancs of th outsid diamtr of th shaft or th bor diamtr of a housing ( th shaft or housing to which a mtric baring is installd). Baring fit is govrnd by th slction of tolrancs for th shaft outsid diamtr and housing bor diamtr. Fig..1 suarizs th intrrlations btwn shaft outsid diamtr and baring bor diamtr, and btwn housing bor diamtr and shaft outsid diamtr.tabl.2 provids th rcondd fits for coon radial ndl rollr barings (machind ring ndl rollr barings with innr ring), rlativ to dimnsions and loading conditions. Tabl. is a tabl of th numrical valu of fits... Intrfrnc minimum and maximum valus Th following points should b considrd whn it is ncssary to calculat th intrfrnc for an application: In calculating th minimum rquird amount of intrfrnc kp in mind that: 1) intrfrnc is rducd by radial loads 2) intrfrnc is rducd by diffrncs btwn baring tmpratur and ambint tmpratur ) intrfrnc is rducd by variation of fittd surfacs Maximum intrfrnc should b no mor than 1:1 of th shaft diamtr or outr diamtr. Rquird intrfrnc calculations ar shown blow....1 Fittd surfac variation and rquird intrfrnc Intrfrnc btwn fittd surfacs is rducd by roughnss and othr slight variations of ths surfacs which ar flattnd in th fitting procss. Th dgr of rducd intrfrnc dpnds upon th finish tratmnt of ths surfacs, but in gnral it is ncssary to assum th following intrfrnc rductions. For ground shafts: 1. ~ For lathd shafts :. ~. m m 12

...2 Maximum intrfrnc Whn baring rings ar installd with an intrfrnc fit, tnsion or comprssion strss may occur along thir racways. If intrfrnc is too grat, this may caus damag to th rings and rduc baring lif. For ths rasons, maximum intrfrnc should not xcd th prviously mntiond ratio of 1:1, of th shaft or outsid diamtr. Class Dmp G G H H H Loos fit Typs of fits Housing J J K K M M N N P P Transition fit Tight fit Transition fit Shaft Tight fit n n m m Class k k J J dmp h h g g p Tabl.2 Gnral standards for tapr rollr baring fits Tabl.2.1 Shaft fits Fig..1 Natur of load Indtrminat dirction load Rotating innr ring load Static innr ring load Fit Tight fit/ Transition fit Transition fit Load condition, magnitud Light load Normal load 1 Havy load or shock load Innr ring axial displacmnt possibl Innr ring axial displacmnt unncssary 1 1 Shaft diamtr ovr incl ~ ~ 1 1 ~ 2 ~ ~ 1 1 ~ 1 1 ~ 2 2 ~ ~ 1 1 ~ All shaft diamtrs Tolranc js k m k m m n p n p r g h Rmarks Whn gratr accuracy is rquird m may b substitutd for m. Whn gratr accuracy is rquird m may b substitutd for m. Whn gratr accuracy is rquird us g. For larg barings, f may b usd. Whn gratr accuracy is rquird us h. Cntric axial load only Transition fit All loads All shaft diamtrs js Gnral; dpnding on th fit, shaft and innr rings ar not fixd. 1 Standards for light loads, normal loads, and havy loads Light loads : quivalnt radial load. Cr Normal loads:. Cr quivalnt radial load.12 Cr Havy loads :.12 Cr quivalnt radial load Not: All valus and fits listd in th abov tabls ar for solid stl shafts. 1

Tabl.2.2 Housing fits (Housing of th drawn cup tapr rollr barings.) Natur of load Housing Fit Load condition, magnitud Tolranc Outr ring axial displacmnt 2 Rmarks Rotating outr ring load or static outr ring load Solid housing or split housing Loos fit Transition or loos fit Light 1 All loads to normal load High rotation accuracy rquird with light to normal loads J H K Displacmnt possibl Displacmnt possibl Displacmnt not possibl(in principl) G also accptabl for larg typ barings as wll as outr rings and housings with larg tmpratur diffrncs Applis primarily to rollr barings Dirction indtrminat load Innr ring static load or outr ring rotating load Solid housing Tight to transition fit Tight fit Light to normal load Normal to havy load Havy shock load Light or variabl load Normal to havy load Havy load (thin wall housing)or havy shock load J K M M N P Displacmnt possibl Displacmnt not possibl(in principl) Displacmnt not possibl Displacmnt not possibl Displacmnt not possibl Displacmnt not possibl Whn gratr accuracy is rquird substitut j for J and K for K. Cntrd axial load only - Loos fit Loos fit Slct a tolranc that will provid claranc btwn outr ring and housing. 1 2 Standards for light loads, normal loads, and havy loads Light loads: quivalnt radial load. Cr Normal loads:. Cr quivalnt radial load.12 Cr Havy loads:.12 Cr quivalnt radial load Indicats whthr or not outr ring axial displacmnt is possibl with non-sparabl typ barings. Not 1 : All valus and fits listd in th abov tabls ar for cast iron or stl housings. 2 : In cass whr only a cntrd axial load acts on th baring, slct a tolranc that will provid claranc in th axial dirction for th outr ring. 1

Tabl. Numric valu tabl of fitting for radial baring of Tabl..1 Fitting against shaft Nominal bor diamtr of baring d Singl plan man bor diamtr dviation dmp ovr incl. high low 1 1-1 -1-12 -1 12-2 12 1 1 1-2 1 1 1 2 2 22-22 2 2 2 2 1 - g g h h j js j baring shaft baring shaft baring shaft baring shaft baring shaft baring shaft baring shaft 2T ~ 1L T ~ 1L T ~ 2L T ~ 2L T ~ 2L 11T ~ 2L 1T ~ L 1T ~ L 2T ~ 1L T ~ 2L T ~ 2L T ~ 29L T ~ L 11T ~ 9L 1T ~ L 1T ~ 9L T~L 1T~9L 12T ~ 11L 1T ~ 1L 2T ~ 1L 2T ~ 1L T ~ 2L T ~ 2L T ~ 11L 1T ~ 1L 12T ~ 1L 1T ~ 19L 2T ~ 22L 2T ~ 2L T ~ 29L T ~ 2L 1T~L 1T~L 1ST~L 21T~L 2T~9L 2T ~ 11L T ~ 1L 2T ~ 1L 12T ~ L 1.T ~.L 1.T ~.L 2T ~.L 2.T ~.L T ~ 9L T ~ 1L.T ~ 1L 1T~L 19T~L 2T~L 2T~L T~9L 9T ~ 11L T ~ 1L 1T ~ 1L Tabl..2 FiTtting against housing Nominal outsid diamtr of baring d Singl plan man outsid diamtr dviation Dmp ovr incl. high low 1 1-1 -9-11 -1 12-1 12 1-1 1 1-2 1 2-2 1 - G H H J J Js K housing baring L ~ 2L L ~ L 9L ~ L 1L ~ L 12L ~ 2L 1L ~ 2L 1L ~ 9L 1L ~ 91L 1L ~ 1L housing baring housing baring housing baring housing baring housing baring housing baring ~ 19L ~ 22L ~ 2L ~ 2L ~ L ~ L ~ L ~ 9L ~ L ~ 2L ~ L ~ L ~ L ~ L ~ L ~ L ~ L ~ L T ~ 1L T ~ 1L T ~ 21L T ~ 2L T ~ 1L T ~ L T ~ L T ~ 2L T ~ L T ~ 1L 9T ~ 21L 11T ~ 2L 12T ~ 1L 1T ~ L 1T ~ L 1T ~ 1L 1T ~ L 1T ~ 1L 9T ~ 1L 1.T ~ 19.L 1T ~ 2.L 1T ~ 2L 1.T ~ L 2T ~ L 2T ~ L 2T ~ L 2T ~ 1L 9T ~ 1L 11T ~ 11L 1T ~ 1L 1T ~ 1L 1T ~ 19L 21T ~ 22L 21T ~ 29L 2T ~ L 2T ~ L Not: T = tight, L = loos 1

(Unit: m) js k k m m n p r baring shaft 1.T ~.L 1.T ~.L 2T~L 2.T ~ 9.L 1T ~11L.T ~ 1L.T ~ 1.L 1T ~ 1L baring shaft baring shaft baring shaft baring shaft baring shaft baring shaft baring shaft 1T~1T 21T~2T 2T~2T T~2T T~T T~T T~T 2T~T 2T~1T 2T~2T T~2T T~2T T~2T T~T T~T 1T~T 2T~T 2T~T 2T~9T 9T ~ 11T T ~ 1T T ~ 1T T ~ 1T T ~ 2T 2T~T 1T~T T~9T T ~ 11T T ~ 1T T ~ 1T T ~ 1T T ~ 2T 1T ~ 12T T ~ 1T T ~ 1T T ~ 2T T ~ 2T T ~ 2T 9T ~ 1T 11T ~ T T ~ 1T T ~ 22T T ~ 2T T ~ 2T 9T ~ T 9T ~ T 19T ~ T 12T ~ T 11T ~ T 11T ~ T 11T ~ T 1T ~ T 19T ~ T 1T ~ T 11T ~ 9T 1T ~ 9T Nominal bor diamtr of baring d ovr incl 1 1 1 12 12 1 1 1 1 1 1 2 2 22 22 2 2 2 2 1 K 12T ~ 1L 1T ~ 1L 1T ~ 1L 21T ~ 22L 2T ~ 2L 2T ~ L 2T ~ L T ~ L T ~ 1L M housing baring housing baring housing baring housing baring 1T~L 21T~9L 2T ~ 11L T ~ 1L T ~ 1L T ~ 1L T ~ 2L T ~ L 2T ~ L N 2T~L 2T~2L T~L 9T~L T~L 2T~L 2T ~ 1L T ~ 1L T ~ 21L P 29T~L T~L 2T~L 2T~L 9T~9L T ~ 1L T~L 9T~L T~1L Nominal outsid diamtr of baring d ovr incl 1 1 12 1 1 2 (Unit: m) 1 12 1 1 2 1 1

. Baring intrnal claranc Tabl.1 Radial intrnal claranc of tapr rollr barings (Unit: m) Nominal bor diamtr d () C2 CN C C ovr incl. min. max. min. max. min. max. min. max. 1 1 1 2 1 2 1 2 2 1 1 2 9 2 9 1 2 1 12 1 1 11 9 1 1 12 1 9 1 1 1 12 1 1 1 9 1 11 I 1 1 1 11 1 1 1 19 1 1 2 12 11 1 1 21 1 2 2 9 1 12 19 1 2 2 22 1 1 1 21 1 2 22 2 11 9 1 1 2 2 2 2 2 12 1 1 1 2 2 1 2 1 1 11 19 19 2 2. Lubrication.1 Lubrication of rolling barings Th purpos of baring lubrication is to prvnt dirct mtallic contact btwn th various rolling and sliding lmnts. This is accomplishd through th formation of a thin oil (or gras) film on th contact surfacs. Howvr, for rolling barings, lubrication has th following advantags: (1) Friction and war rduction (2) Friction hat dissipation () Prolongd baring lif () Prvntion of rust () Protction against harmful lmnts In ordr to achiv th abov ffcts, th most ffctiv lubrication mthod for th oprating conditions must b slctd. Also a good quality, rliabl lubricant must b slctd. In addition, an ffctivly dsignd saling systm that prvnts th intrusion of damaging lmnts ( dust, watr, tc. ) into th baring intrior, rmovs othr impuritis from th lubricant, and prvnts lubricant from laking to th outsid, is also a rquirmnt. Almost all rolling barings us ithr gras or oil lubrication mthods, but in som spcial applicatic solid lubricant such as molybdnum disulfid or graphit may b usd. 1

.2 Gras lubrication Gras typ lubricants ar rlativly asy to handl rquir only th simplst saling dvicsfor ths rasons, gras is th most widly usd lubricant rolling barings..2.1 Typs and charactristics of gras Lubricating gras ar composd of ithr a minral bas or a synthtic oil bas. To this bas a thicks othr additivs ar addd. Th proprtis of all grass ar mainly dtrmind by th kind of bas oil us th combination of thickning agnt and various additivs. Standard grass and thir charactristics ar Tabl.2. As prformanc charactristics of vn sam typ of gras will vary widly from brand, it is bst to chck th manufacturrs' data whn slcting a gras. Tabl.1 Gras varitis and charactristics Gras nam Lithium gras Sodium gras (Fibr gras) Thicknr Li soap Na soap Bas oil Minral oil Dropping poin C 1 ~ 19 Oprating - ~ +1 tmpratur rang C Mchanical stability Excllnt Prssur rsistanc Good Watr rsistanc Good Widst rang of applications. Applications Gras usd in all typs of rolling barings. Distr oil 1 ~ 19 - ~ +1 Good Good Good Excllnt low tmpratur and war charactristics. Suitabl for small sizd and miniatur barings. Silicon oil 2 ~ 2 - ~ +1 Good poor Good Suitabl for high and low tmpraturs. Unsuitabl for havy load applications du to low oil film strngth. Minral oil 1 ~ 1-2 ~ +1 Excllnt ~ Good Good Good ~ poor Som mulsification whn watr is introducd. Excllnt charactristics at rlativly high tmpraturs. Calcium compound bas gras Ca+Na soap Ca+Li soap Minral oil 1 ~ 1-2 ~ +12 Excllnt ~ Good Excllnt ~ Good Good ~ poor Excllnt prssur rsistanc and mchanical stability. Suitabl for barings rciving shock loads. Gras nam Thicknr Bas oil Minral oil Dropping poin C ~9 Oprating -1 ~ + tmpratur rang C Mchanical stability Good ~ poor Prssur rsistanc Good Watr rsistanc Good Excllnt viscosity charactristics. Applications Aluminum gras Al soap Suitabl for barings subjctd to vibrations. Non-soap bas gras Thicknr Bnton, silica gl, ura, carbon black, fluorin compounds, tc. Minral oil Synthtic oil 2 or abov 2 or abov -1 ~ +1 Good Good - ~ +2 Good Good Good Good Can b usd in a wid rang of low to high tmpraturs. Shows xcllnt hat rsistanc, cold rsistanc, chmical rsistanc, and othr charactristics whn matchd with a suitabl bas oil and thicknr. Gras usd in all typs of roiling barings. 1

. Load rating and lif.1 Baring lif Evn in barings oprating undr normal conditions, th surfacs of th racway and rolling lmnts ar constantly bing subjctd to rpatd comprssiv strsss which causs flaking of ths surfacs to occur. This flaking is du to matrial fatigu and will vntually caus th barings to fail. Th ffctiv lif of a baring is usually dfind in trms of th total numbr of rvolutions a baring can undrgo bfor flaking of ithr th racway surfac or th rolling lmnt surfacs occurs. Othr causs of baring failur ar oftn attributd to problms such as sizing, abrasions, cracking, chipping, gnawing, rust, tc. Howvr, ths so calld "causs" of baring failur ar usually thmslvs causd by impropr installation, insufficint or impropr lubrication, faulty saling or inaccurat baring slction. Sinc th abov mntiond "causs" of baring failur can b avoidd by taking th propr prcautions, and ar not simply causd by matrial fatigu, thy ar considrd sparatly from th flaking aspct..2 Basic ratd lif and basic dynamic load rating A group of smingly idntical barings whn subjctd to idntical load and oprating conditions will xhibit a wid divrsity in thir durability. This " lif " disparity can b accountd for by th diffrnc in th fatigu of th baring matrial itslf. This disparity is considrd statistically whn calculating baring lif, and th basic ratd lif is dfind as follows. Th basic ratd lif is basd on a 9% statistical modl which is xprssd as th total numbr of rvolutions 9% of th barings in an idntical group of barings subjctd to idntical oprating conditions will attain or surpass bfor flaking du to matrial fatigu occurs. For barings oprating at fixd constant spds, th basic ratd lif (9% rliability) is xprssd in th total numbr of hours of opration. Th basic dynamic load rating is an xprssion of th load capacity of a baring basd on a constant load which th baring can sustain for on million rvolutions (th basic lif rating). For radial barings this rating applis to pur radial loads, and for thrust barings it rfrs to pur axial loads. Th basic dynamic load ratings givn in th baring tabls of this catalog ar for barings constructd of NIKO standard baring matrials, using standard manufacturing tchniqus. Plas consult NIKO Enginring for basic load ratings of barings constructd of spcial matrials or using spcial manufacturing tchniqus. Th rlationship btwn th basic ratd lif, th basic dynamic load rating and th baring load is givn in formula (.1). L C 1 =( ) P... Formula (.1) P whr, P = 1/... For ndl rollr barings L 1 : Basic rating lif 1 rvolutions C : Basic dynamic rating load, N ( Cr: radial barings, Ca: thrust barings) P : Equivalnt dynamic load, N ( Pr: radial barings, Pa: thrust barings) 19

Th basic rating lif can also b xprssd in trms of hours of opration (rvolution), and is calculatd as shown in formula (.2). L p 1h = h f... Formula (.2) C f h = f n P... Formula (.). 1/p f n = ( n )... Formula (.) whr, L1 : Basic rating lif, h f h : Lif factor f n : Spd factor n : Rotational spd, r/min Formula (.2) can also b xprssd as shown in formula (.). L 1h 1 = ( C P )... Formula (.) n P 1.. Th rlationship btwn Rotational spd n and spd factor 1. 1 1. 2. fn as wll as th rlation btwn th basic rating lif L1h and Fig..1 Baring lif rating scal th lif factor fn is shown in Fig..1. Whn svral barings ar incorporatd in machins or quipmnt as complt units, all th barings in th unit ar considrd as a whol whncomputing baring lif (s formula.). Th total baring lif of th unit is a lif rating basd on th viabl liftim of th unit bfor vn on of th barings fails du to rolling contact fatigu. L =... Formula (.) whr, = 9/...For rollr barings L = Total basic rating lif or ntir unit, h L, L...L : Basic rating lif or individual barings, 1, 2,... n, h 1 2 n 1 ( 1 L + 1 +... 1 ) 1/ 1 L 2 L n Rollr barings. Machin applications and rquisit lif Whn slcting a baring, it is ssntial that th rquisit lif of th baring b stablishd in rlation to th oprating conditions. Th rquisit lif of th baring Is usually dtrmind by th typ of machin in which th baring will b usd, and duration of srvic and oprational rliability rquirmnts. A gnral guid to ths rquisit lif critria is shown in Tabl.1. Whn dtrmining baring siz, th fatigu lif of th baring is an important factor; howvr, bsids baring lif, th strngth and rigidity of th shaft and housing must also b takn into considration. n r/min 2 1 1 2 1 1 2 1 1 2 1.1.12.1.1.1.2.22.2.2.2........9 1. 1.1 1.2 fn L 1h n 2 1 1 2 1 1 9 f h... 2 1.9 1. 1. 1. 1. 1. 1.2 1.1 1..9.9. 2

. Adjustd lif rating factor Th basic baring lif rating ( 9% rliability factor) can b calculatd through th formula mntiond arlir in Sction.2. Howvr, in som applications a baring lif factor of ovr 9% rliability may b rquird. To mt ths rquirmnts, baring lif can b lngthnd by th us of spcially improvd baring matrials or spcial construction tchniqus. Morovr, according to lastohydrodynamic lubrication thory, it is clar that th baring oprating conditions (lubrication, tmpratur, spd, tc.) all xrt an ffct on baring lif. L na P = a. a. a (C/P)... Formula (.) 1 2 whr, L : Adjustd lif rating in millions of rvolutions (1 na )(adjustd for rliability, matrial and oprating conditions) a1 : Rliability adjustmnt factor a2 : Matrial adjustmnt factor a : Oprating condition adjustmnt factor..1 Lif adjustmnt factor for rliability a1 Th valus for th rliability adjustmnt factor as (for a rliability factor highr than 9%) can b found in Tabl.1. Tabl.1 Rliability adjustmnt factor valus a 1 Rliability % Ln Rliability factor a1 9 9 9 9 9 99 L1 L L L L2 L1 1..2....21 21

..2 Lif adjustmnt factor for matrial a2 Th lif of a baring is affctd by th matrial typ and quality as wll as th manufacturing procss. In this rgard, th lif is adjustd by th us of an a factor. Th basic dynamic load ratings listd in th catalog ar basd on NIKO's standard matrial and procss, thrfor, th adjustmnt factor a2 =1. Whn spcial matrials or procsss ar usd th adjustmnt factor can b largr than 1. NIKO barings can gnrally b usd up to 12 C. If barings ar opratd at a highr tmpratur, th baring must b spcially hat tratd (stabilizd) so that inadmissibl dimnsional chang dos not occur du to changs in th micro-structur. This spcial hat tratmnt might caus th rduction of baring lif bcaus of a hardnss chang... Lif adjustmnt factor a for oprating conditions Th oprating conditions lif adjustmnt factor a is usd to adjust for such conditions as lubrication, oprating tmpratur, and othr opration factors which hav an ffct on baring lif. Gnrally spaking, whn lubricating conditions ar satisfactory, th a factor has a valu of on; and whn lubricating conditions ar xcptionally favorabl, and all othr oprating conditions ar normal, a can hav a valu gratr than on. Howvr, whn lubricating conditions ar particularly unfavorabl and th oil film formation on th contact surfacs of th racway and rolling lmnts is insufficint, th valu of a bcoms lss than on. This insufficint oil film formation can b causd, for xampl, by th lubricating oil viscosity bing too low for th oprating tmpratur (blow 1 2/s for tapr rollr barings; blow 2 2/s for rollr barings); or by xcptionally low rotational spd (n r/min x dp lss than 1,). For barings usd undr spcial oprating conditions, plas consult NIKO Enginring. As th oprating tmpratur of th baring incrass, th hardnss of th baring matrial dcrass. Thus, th baring lif corrspondingly dcrass. Th oprating tmpratur adjustmnt valus ar shown in Fig..2.. Lif of baring with oscillating motion Th lif of a radial baring with oscillating motion can b calculatd according to formula (.). Losc = LRot... Formula (.) whr, Losc LRot : lif for oscillating baring : rating lif at assumd numbr of rotations sam as oscillation cycls : oscillation factor (Fig.. indicats th rlationship btwn half oscillation angl and ). 2 Lif adjustmnt valu a 1.....2 1 1 2 2 Oprating tmpratur c Fig..2 Lif adjustmnt valu for oprating tmpratur 22

Fig.. is valid only whn th amplitud xcds a crtain dgr (critical angl 2 c ). Th critical angl is dtrmind by th intrnal dsign of th baring, in particular by th numbr of rolling lmnts in on row. Critical angl valus ar givn in Tabl.. Whn th magnitud of th oscillation is lss than th critical angl, th lif may b shortr than that calculatd to b th valu in Fig.. It is safr to calculat lif with th factor corrsponding to th critical angl. For th critical angl of an individual baring, plas consult NIKO Enginring. Whr th amplitud of th oscillation 2 is small, it is difficult for a complt lubricant film to form on th contact surfacs of th rings and rolling lmnts, and frtting corrosion may occur. Thrfor it is ncssary to xrcis xtrm car in th slction of baring 2 typ, lubrication and lubricant. 2 Tabl. Critical angl Numbr of rolling lmnts Half critical angl c 1 2 1 2.. Lif of baring with linar motion With a linar motion baring such as a linar ball baring or linar flat rollr baring, th rlation among th axial travl distanc, baring load, and load rating is xprssd by formulas (.9). 1 2 1.....2.1 1 2 1 2 1 dgrs Fig.. Rlationship btwn half angl and factor Whn th rolling lmnts ar rollrs: 1 C L = 1 X ( )...(.9) whr, L : Load rating km Cr Pr P r r : Basic dynamic load rating [kgf] : Baring load [kgf] Cr/Pr 1 2 Fig.. suarizs th rlation btwn Cr/Pr and L. Ball baring Rollr baring..1.2....1 2 1 2 1 Fig.. Lif of baring with axial motion L 1 km 2

If th cycl and travl distanc within a particular travl motion rmain constant, th rating lif of th baring can b dtrmind by formulas (.1). X1 1 Cr Lh = 1.S ( P )... Formula (.1) r Whr, Lh : Travl lif, h S : Travl distanc pr minut, m/min. S =2. L. N L n : Strok lngth, m : Strok cycl, N{kgf}. Basic static load rating Whn stationary rolling barings ar subjctd to static loads, thy suffr from partial prmannt dformation of th contact surfacs at th contact point btwn th rolling lmnts and th racway. Th amount of dformity incrass as th load incrass, and if this incras in load xcds crtain limits, th subsqunt smooth opration of th barings is impaird. It has bn found through xprinc that a prmannt dformity of.1 tims th diamtr of th rolling lmnt, occurring at th most havily strssd contact point btwn th racway and th rolling lmnts, can b tolratd without any impairmnt in running fficincy. Th basic ratd static load rfrs to a fixd static load limit at which a spcifid amount of prmannt dformation occurs. It applis to pur radial loads for radial barings and to pur axial loads for thrust barings. Th maximum applid load valus for contact strss occurring at th rolling lmnt and racway contact points ar givn blow. For rollr barings, Mpa. Allowabl static quivalnt load Gnrally th static quivalnt load which can b prmittd is limitd by th basic static ratd load as statd in Sction.. Howvr, dpnding on rquirmnts rgarding friction and smooth opration, ths limits may b gratr or lssr than th basic static ratd load. In th following formula (.11) and Tabl. th safty factor So can b dtrmind considring th maximum static quivalnt load. So = Co / Po... Formula (.11) whr, So : Safty factor Co : Basic static ratd load, N (radial barings: Cor, thrust barings: Coa ) Po max : Maximum static quivalnt load, N (radial: Por max, thrust: Coa max) 2

Tabl. Minimum safty factor valus So Oprating conditions High rotational accuracy dmand Normal rotating accuracy dmand (Univrsal application) Slight rotational accuracy dtrioration prmittd (Low spd, havy loading, tc.) Rollr barings 1. Not 1 : For drawn-cup sphrical rollr barings, min. So valu=. 2 : Whn vibration and/or shock loads ar prsnt, a load factor basd on th shock load nds to b includd in th Po max valu.. Baring handling Baring storag Most rolling barings ar coatd with a rust prvntativ bfor bing packd and shippd, and thy should b stord at room tmpratur with a rlativ humidity of lss than %. 9. Allowabl spd As baring spd incrass, th tmpratur of th baring also incrass du to friction hat gnratd in th baring intrior. If th tmpratur continus to ris and xcds crtain limits, th fficincy of th lubricant start to fail down drastically, and th baring can no longrcontinu to oprat in a stabl mannr. Thrfor, th maximum spd at which it is possibl for th baring to continuously oprat without th gnration of xcssiv hat byond spcifid limits, is calld th allowabl spd ( r/min ). Th allowabl spd of a baring dpnds on th typ of baring, baring dimnsions, typ of cag, load, lubricating conditions, and cooling conditions. Th allowabl spds listd in th baring tabls for gras and oil lubrication ar for standard NIKO barings undr normal oprating conditions, corrctly installd, using th suitabl lubricants with adquat supply and propr maintnanc. Morovr, ths valus ar basd on normal load conditions (P.9C, Fa/Fr.). For ball barings with contact sals (LLU typ), th allowabl spd is dtrmind by th priphral lip spd of th sal. For barings to b usd undr havir than normal load conditions, th allowabl spd valus listd in th baring tabls must b multiplid by an adjustmnt factor. Th adjustmnt factors f L and fc ar givn in Figs. 9.1 and 9.2. Also, whn radial barings ar mountd on vrtical shafts, lubricant rtntions and cag guidanc ar not favorabl compard to horizontal shaft mounting. Thrfor, th allowabl spd should b rducd to approximatly % of th listd spd. It is possibl to oprat prcision barings with high spd spcification cags at spds highr than thos listd in th baring tabls, if spcial prcautions ar takn. Ths prcautions should includ th us of forcd oil circulation mthods such as oil jt or oil mist lubrication. 2

Undr such high spd oprating conditions, whn spcial car is takn, th standard allowabl spds givn in th baring tabls can b adjustd upward. Th maximum spd adjustmnt valus, /B, by which th baring tabl spds can b multiplid, ar shown in Tabl 9.1. Howvr, for any application rquiring spds in xcss of th standard allowabl spd, plas consult NIKO Enginring. Fig.9.1 Valu of adjustmnt factor FL dpnds on baring load Fig.9.2 Valu of adjustmnt factor Fc dpnds on combind load 1..9... 1..9... Angular contact ball barings Dp groov ball barings Cylindrical rollr barings Taprd rollr barings ( Fa/Fr 2 ). 9 1 11.. 1. Tabl 9.1 Adjustmnt factor, f B, for allowabl numbr of rvolutions Typ of baring Dp groov ball barings Angular contact ball barings Adjustmnt factor f B 2

Dimnsion Tabls

Basic load ratings Boundary dimnsions Cr Cor Limiting spds min -1 Baring numbrs d D B kn 2 gras oil rs min 1) NIKOR dynamic static dynamic static Cr Cor T C rls min 1) kgf 2 2 2 2 2 2 29 21 211 212 21 21 21 21 21 21 219 22 221 222 22 22 22 2 22 1 2 2 9 9 1 1 11 12 1 1 1 1 2 2 2 9 1 11 12 12 1 1 1 1 1 1 19 2 21 2 2 2 29 1.2 1.2 1.2 1.2 1.2 19. 2. 21. 22. 2. 2. 2.2 2.2 2.2... 9. 1.... 9. 12 1 1 1 1 1 19 2 21 22 2 2 2 2 2 2 2 11 12 1 1 1 1 1 1 1 19 2 21 22 22 2 2 2 29 2 1. 1. 1. 1..... 1. 1. 1. 1. 2. 2.2.. 1... 9 1. 12 11. 19. 1. 1 2. 22. 2. 2. 2... 2.. 2. 2. 2..... 9 111. 12. 1. 1 1. 2. 2 2. 29........ 2. 2,9 2,,2,,,2,9, 9, 1, 12, 1, 1,2 1, 1, 21,2 2, 2, 29,,,,,,, 2, 2,9,,9,2,, 9, 11, 12, 1, 1, 1,9 2, 2, 2,2 29,,,,, 1,, 1,, 9,9,,,,,9,,,,,1 2,9 2, 2, 2, 2,2 2,1 2, 1,9 1, 1, 1, 1, 1, 1,2 1, 12, 9,,,,,9,,9,,2,9,,,2, 2, 2, 2, 2, 2,2 2, 1,9 1, 1, Tapr Rollr Baring sris 2 D C T B a r d r1

Tapr Rollr Baring sris 2 Sa Sb r 1a Da db da Db r a Equivalnt radial load dynamic Pr = XFr+YFa Fa Fr Fa Fr X Y X Y 1. Y2 Static Pr =.Fr+YoFa Whn Por Fr us Por= Fr For valus of Y2, and Yo s th tabla blow. Abutmnt and fillt dimnsions da db Da Db Sa Sb ras rlas min max max min min min min max max 2 2. 2 1. 1. Load cntr a 9. Constant. Axial load factors Y2 1. Y.9 Mass kg (approx.). 2. 2 2 1. 1. 1. 1..9.12. 1. 2 1. 1. 1. 1...1.. 2 1. 1. 1.. 1...21.. 2 1.. 1.... 9 9. 1.. 1...... 1.. 1..1.9. 9. 19..2 1..9.. 9 9. 21.. 1..1.. 1 9 1. 2. 1..1.99. 11 1 11. 2.. 1..1 1.1. 1 11. 11 11. 2..2 1..9 1.2. 12 11 12. 2.. 1.. 1.1 9 91 1. 12 12. 2..2 1..9 1.2 9. 9 1. 12 11...2 1..9 2.1 1 1 1. 1 1..2 1..9 2. 19. 11 1. 19 19...2 1..9 11. 11 1. 1 1...2 1..9. 119. 122 1. 1 1 9...2 1..9.9 12. 129 1. 1 1 9...2 1..9.1 1. 1 2 1 2 9... 1...2 1. 12 21. 2 21 9... 1...2 1. 1 2. 219 2 9... 1.. 9.2 1. 1 2. 2 2 11.. 1.. 11.2 1. 19 2. 22 22 1.. 1.. 12.9 29

Basic load ratings Boundary dimnsions Cr Cor Limiting spds min -1 Baring numbrs d D B kn gras oil rs min 1) NIKOR dynamic static dynamic static Cr Cor T C rls min 1) kgf 1 1 2 2 9 9 1 1 11 12 1 1 1 1 Tapr Rollr Baring sris 2 9 1 11 12 1 1 1 1 1 1 19 2 21 22 2 2 2 2 2 2 2 2 9 1 11 12 1 1 1 1 1 1 19 2 21 22 2 2 2 2 1.2 1.2 1.2 1.2 2. 22. 2.2 2.2 29.2...... 9... 9.... 1 1 1 1 19 21 2 2 2 29 1 9 1 9 2 11 12 1 1 1 1 2 22 2 2 2 2 1 9 1 2 9 1. 1............ 1. 1..... 2.2 2.9.... 9 111. 1 1. 1. 2 2. 2. 291.... 1...... 2. 91. 2. 2... 1.. 1 12. 1 19. 21. 2. 2....... 9. 9.. 9. 1. 12. 2, 2,9,,9,1, 9, 11, 1, 1, 1, 2, 2, 2, 29, 1,,, 1,, 9,,,,, 9, 2,12 2,,,,2,9 1, 12, 1, 1, 21, 2, 2, 1,,, 1,, 1,,, 1,, 9, 19, 122, 9,9 9,,,,,,,,,, 2, 2, 2, 2, 2,1 2, 1,9 1, 1, 1, 1, 1, 1, 1,2 1,1 1, 12, 11,,9,,,9,,,,,,,2, 2,9 2, 2, 2, 2, 2,2 2, 1, 1, 1, 1, D C T B a r d r1

Abutmnt and fillt dimnsions Mass (approx.) kg 2. 2 2........ 9.. 9. 9. 1 1. 11 11. 12 12. 1. 1 1 1 1 da 1 Tapr Rollr Baring sris NIKOR db Da Db Sa Sb ras rlas min max max min min min min max max Load cntr Constant Axial load factors Y Y2 a 2 2. 2.... 9.. 1.. 9. 9. 1 1. 11 11. 12. 1 11. 1 1. 1. 19 2..... 9 1. 11. 11. 12. 1. 1. 1. 1. 1. 1. 21. 211. 22. 2. 2 2 2..... 9. 1. 11 12 1. 19. 1. 1. 1. 1 1. 19 2. 221. 29. 2 29. 2...... 9 1 111. 12. 1. 1. 19. 19. 1. 1. 1. 2. 29. 22 29. 2. 2. 29 1. 2 9 1.......... 9. 9. 1. 1. 1 1 1 1 1. 1. 1. 1. 1. 1. 1..... 1. 1. 9. 1. 1. 1 1. 1. 19. 21. 2 2. 2. 2........ 9... 1...29.29...1.1.................... 2.11 2.11 1.9 1.9 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.1 1.1 1.1 1.1 1. 1..9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.1.1.22...9 1.1 1.1 1...1.2..9. 9.9 11. 1.2 1. 21.2 2. 29.9 db Da da Db r a r a 1 Sa Sb Equivalnt radial load dynamic Pr XFr+YFa = Fa Fr Fa Fr X Y X Y 1. Y2 Static Pr Fr+YoFa =. Whn us For valus of and s th tabla blow. Por Fr Por= Fr Y2 Yo,

Basic load ratings Boundary dimnsions Cr Cor Limiting spds min -1 Baring numbrs d D B kn 2 gras oil rs min 1) NIKOR dynamic static dynamic static Cr Cor T C rls min 1) kgf 2 9 9 1 1 11 Tapr Rollr Baring sris 1 1 1 1 1 19 11 111 112 11 11 11 11 11 11 119 12 X 121 X 122 X 2 2 9 1 11 12 1 1 1 1 1 1 19 2 21 22 2 D C T B a r d r1 1.2 2. 22. 2.2 2.2 29.2...... 9... 1 19 21 2 2 2 29 1 9 1 1 1 1 1 2 1 19 21 22 2 2 2 2 2 2........ 1.. 91. 1. 121. 1. 1. 1. 29. 22. 2 2. 29...... 1 12. 1. 1. 19 22. 2. 2. 2. 1.....,,,,,,2 2, 2, 2,2 2, 1,9 1,9 1, 1, 1, 1, 1, 1,,,,,,,,,,2, 2, 2, 2, 2, 2, 2, 2, 2,2,,2,2,2 9,1 1,1 12, 1,9 1, 19,2 21,2 22, 2,9 2,99 29,9, 9,,,2,12,,1 1, 12,2 1,9 1,99 19,9 22,9 2, 2,1 29,2 2,1,22,,,

Tapr Rollr Baring sris 1 Sa Sb r 1a Da db da Db r a Equivalnt radial load dynamic Pr = XFr+YFa Fa Fr Fa Fr X Y X Y 1. Y2 Static Pr =.Fr+YoFa Whn Por Fr us Por= Fr For valus of Y2, and Yo s th tabla blow. Abutmnt and fillt dimnsions da db Da Db Sa Sb ras rlas min max max min min min min max max 2 9. 1. 1. Load cntr a 2. Constant. Axial load factors Y2.2 Y. Mass kg (approx.).2. 1. 1. 2..2..9 1 2. 2...2..2 9 1 2. 19.. 1..9.2 91 9 9 9. 1...2..9 2 1 1 1....2. 1.2 11 9 11 1....2. 2 11 1 12 1 9...2. 1.9 12 111 12 1..2. 2. 2 1 11 11 1...2. 2.9 91 1 12 11 1....2.. 9 92 1 1 19 1...2.. 1 99 1 1 19 1....2.. 19 1 1 11 19 1....2..9 11 19 1 1 1 1....2..9 11 121 21 1 22 2 9..... 12 12 211 1 211 2... 9. 12 1 22 1 22 2..... 11.9

Tapr Rollr Baring sris 2 r1 C T r B D d a Boundary dimnsions Basic load ratings dynamic static dynamic static kn kgf Limiting spds min -1 Baring numbrs d D T B C rs min 1) rls min 1) 2 2 1 1 1.. Cr 2.9 Cor 2.9 Cr 2, Cor 2, gras 9, oil 1, 2 X 22 1 1 1.. 2. 2,,2,9 12, 2/22 X 2 1 1 1.. 2.. 2,,,9 11, 2 X 2 2 1 1 1 1. 1..,,1, 9, 2/2 X 1 1 1 1. 1...,,,9 9,2 2 X 2 1 1 1 1. 1...,,,, 2/2 X 2 1 1 1. 1. 1.,2,,1,1 2 X 19 19 1. 1. 1...,1,,,1 2 X 2 2 1. 1. 1...,,,, 29 X 2 2 1. 1. 1.., 9,,, 21 X 9 2 2 1.. 11.,2 12,,, 211 X 9 2 2 1. 12, 12,,,9 212 X 1 2 2 1. 12., 1,,, 21 X 11 2 2 19. 1. 1. 1, 1,,2,2 21 X 11 2 2 19. 1. 1. 1, 1,,, 21 X 12 29 29 2 19. 21. 1,2 22, 2,, 21 X 1 29 29 2 1 22. 1, 22,9 2,, 21 X 9 1 2 2 2. 1. 2. 1,2 2, 2,, 21 X 9 1 2 2 2. 11. 2. 1, 2, 2,,1 219 X 1 1 11 12 1 1 1 1 1 1 1 1 2 21 22 2 2 1 2 1 2. 2. 29. 29..... 1. 21. 2. 2. 2.... 21.. 9. 2.... 9. 1, 2, 2, 2, 2,,,, 2,, 9,,, 9,,, 2,2 2,1 2, 1, 1, 1, 1, 1,, 2, 2, 2, 2,2 2,1 1,9 1, 22 X 221 X 222 X 22 X 22 X 22 X 2 X 22 X

Abutmnt and fillt dimnsions Mass (approx.) kg 2. 2. 29.............. 9. 1. 1. 11. 11. 12 1 1 1 1. 1. da Tapr Rollr Baring sris 2 NIKOR db Da Db Sa Sb ras rlas min max max min min min min max max Load cntr Constant Axial load factors Y Y2 a.9.1.11.1.1.11.22.2.......99 1.2 1. 1.9 1. 1.91 2.2.2.9.2.. 2 2 1 2 9 9 1 1 19 11 122 11 1 1 1 1. 9.. 9.. 9... 9 1 1. 11. 12 1 1. 1 1. 1. 1. 19. 2. 21 22. 2 1 9 9 1 112 11 12 1 1 1 12 11 1 1 2 21 9 1 9 2 9 2 91 9 1 11 12 12 1 1 1 1 1 1 192 22 21 21................... 9. 9. 9. 11. 11. 1 1... 1. 1. 1. 1. 1. 1. 1.... 1. 1. 1. 1. 1. 1. 1. 1. 11. 1 1 1. 1. 1. 1. 1. 1. 2. 21. 2 2. 2. 2. 2.... 9... 9..........9.2.1.....2..2......... 1. 1 1.9 1.9 1.9 1.2 1.2 1.2 1. 1.9 1.1 1. 1.1 1.2 1. 1.2 1. 1.1 1. 1.9 1.1 1. 1.1 1.1 1.1...........1..2..2.....2...2..2.2.2 db Da da Db r a r a 1 Sa Sb Equivalnt radial load dynamic Pr XFr+YFa = Fa Fr Fa Fr X Y X Y 1. Y2 Static Pr Fr+YoFa =. Whn us For valus of and s th tabla blow. Por Fr Por= Fr Y2 Yo,

Basic load ratings Boundary dimnsions Cr Cor Limiting spds min -1 Baring numbrs d D B kn gras oil rs min 1) NIKOR dynamic static dynamic static Cr Cor T C rls min 1) kgf Tapr Rollr Baring sris 22 22 B 22 B 22 22 B 22 22 229 B 229 221 B 221 2211 B 2211 2212 221 221 221 221 221 221 2219 222 2221 2222 222 222 222 22 222 22 2 9 9 1 1 11 12 1 1 1 1 1 2 2 2 2 2 9 9 1 1 11 12 12 1 1 1 1 1 1 19 2 21 2 2 2 29 1 19.2 21.2 21.2 2.2 2.2 2. 2. 2. 2. 2. 2. 2. 29. 2..2.2.2.. 9... 1... 91. 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 19 19 19 19 19 1 19 19 21 2 2 2 2 2 9 1 1. 1. 1...... 1. 1. 1..... 9... 11. 1. 1. 19. 1. 1. 199. 22. 2 299... 2... 1.. 9. 1...... 9. 9 1. 1. 19. 12. 1. 1. 2. 22. 22. 2... 1..... 1. 92. 1. 12. 1.,,1,,9,,1,2,,1,9 1, 11, 1,2 1,2 1,9 1,1 2, 22,9 2,,,,,,, 2, 1, 9, 12,,,1,,,9 9, 9,9 1,2 1,12 11,1 12,99 1, 1, 21, 22, 22, 2,,, 2,,, 2, 9,, 9, 1,9 1, 1,,,1,,,,9,,,,,,,,1 2,9 2, 2, 2, 2,2 2,1 2, 1,9 1, 1, 1, 1, 1, 1,2 1,1 9,,1,,1,,,,9,,,,9,,2,9,,,2, 2, 2, 2, 2, 2,2 2, 1,9 1, 1, 1, D C T B a r d r1

Abutmnt and fillt dimnsions Mass (approx.) kg.............. 9 9. 1 19. 11. 119. 12. 1. 1. 1. 1. 1. 19 da Tapr Rollr Baring sris 22 NIKOR db Da Db Sa Sb ras rlas min max max min min min min max max Load cntr Constant Axial load factors Y Y2 a.1.29.1.1........ 1.1 1. 1. 2.1 2..9..12.2. 9. 11.2 1.1 1.2 2. 2. 1 2 2 9 9 9 12 1 11 119 12 1 1 1 1 12 21....... 91. 9 1 11 11. 12 1. 1. 1. 1. 1. 1. 1. 2 21. 2. 2. 2. 29 9 2 9 1 9 1 1 11 122 1 1 1 1 11 1 11 19 21 22 22 2 9. 9...... 1... 9. 9. 1. 11. 119. 12. 1. 1 1 11. 11. 1. 19. 2. 219. 2. 2. 2. 29................. 9.. 1. 1..................... 1. 1. 1. 1 1. 1. 1. 1. 2. 1. 1. 1. 1. 1.. 1. 1. 1. 1. 1. 1. 1. 1. 2 1. 19. 2 2. 2. 21. 2. 2 2. 2. 2.. 1... 9.... 1..............2.....2..2.2.2.2.2.2.2...... 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1..92.9......1..9..1.1.1.9..9.9.9.9.9.9.9...... db Da da Db r a r a 1 Sa Sb Equivalnt radial load dynamic Pr XFr+YFa = Fa Fr Fa Fr X Y X Y 1. Y2 Static Pr Fr+YoFa =. Whn us For valus of and s th tabla blow. Por Fr Por= Fr Y2 Yo,

Tapr Rollr Baring sris 22 r1 C T r B D d a Boundary dimnsions Basic load ratings dynamic static dynamic static kn kgf Limiting spds min -1 Baring numbrs d D T B C rs min 1) rls min 1) 1 2 91 1 Cr 1, Cor 1,9 Cr 1, Cor 12, gras 1,1 oil 1, 22 19 9 92 1, 1, 12, 11, 1, 1, 22 2 1 9 2 1,2 2,1 1, 21, 9 1, 22 22 11 1 9 1,1 2, 1,2 2,1 1,1 22

Tapr Rollr Baring sris 22 Sa Sb r 1a Da db da Db r a Equivalnt radial load dynamic Pr = XFr+YFa Fa Fr Fa Fr X Y X Y 1. Y2 Static Pr =.Fr+YoFa Whn Por Fr us Por= Fr For valus of Y2, and Yo s th tabla blow. Abutmnt and fillt dimnsions da db Da Db Sa Sb ras rlas min max max min min min min max max 22 2. 2 2. 1 2 Load cntr a. Constant. Axial load factors Y2 1. Y. Mass kg (approx.). 212 21. 22 2 2 11 22..9 1.2.. 222 22. 2 299 11 22..1 1..1. 2 2. 2 9. 1 2 9.. 1... 9

Basic load ratings Boundary dimnsions Cr Cor Limiting spds min -1 Baring numbrs d D B kn gras oil rs min 1) NIKOR dynamic static dynamic static Cr Cor T C rls min 1) kgf Tapr Rollr Baring sris 2 1 2 2 9 9 1 2 2 2 2 2 B 2 2 B 2 29 B 29 21 B 21 211 211 B 212 212 B 21 21 B 21 21 B 21 21 B 21 21 B 21 21 B 21 219 22,1,9, 9,1 12, 11, 1, 1, 1,99 19, 22,1 2, 2, 2,1 2, 1,122,,2 1,,1,,9,,1,,1,,, D C T B a r d r1,1,,2,2 9, 1, 11, 12, 1, 1, 1,29 1, 21,9 19, 2,9 22,9 2, 2,12 1, 2,,,2,,1 1, 9,9, 1,, 2 2 2 9 9 1 1 11 11 12 12 1 1 1 1 1 1 1 1 1 1 1 1 19 2 21 2.2 22.2 2.2 2. 2. 2..2.2.2.2 2.2 2.2.... 1. 1......... 1 1 2 2 2 2 2 2 9 9 2 2 9 9 1...... 1... 1. 9 11. 11. 12 1. 1. 11. 1. 21. 19. 2. 22. 2 2. 1. 21... 9... 91....... 9. 11. 11. 1. 1. 1. 191. 21. 2 2. 2. 1........ 2. 2. 2.. 9...,,,,,,2,,,,2,, 2,, 2, 2, 2,2 2, 2, 2, 1,9 2, 1, 2,1 1, 2, 1,9 1, 11, 11,,9,,,,,9,,,,,,,,,,2,,,2 2,, 2, 2,9 2, 2, 2, 2, 2 2............ 9. 9... 9. 9. 9. 9. 1 1 1. 11 11.

Abutmnt and fillt dimnsions Mass (approx.) kg 2 2 2 2 2 2 91 9 92 12 99 1 11 121 da 1 Tapr Rollr Baring sris 2 NIKOR db Da Db Sa Sb ras rlas min max max min min min min max max Load cntr Constant Axial load factors Y Y2 a.1.2.1..9. 1.1 1. 1. 1. 1. 1.92 2. 2 2.....2...1..1.. 1.1 12. db Da da Db r a r a 1 Sa Sb Equivalnt radial load dynamic Pr XFr+YFa = Fa Fr Fa Fr X Y X Y 1. Y2 Static Pr Fr+YoFa =. Whn us For valus of and s th tabla blow. Por Fr Por= Fr Y2 Yo, 9.... 91. 9 1. 1. 11. 11. 11. 11. 12. 12. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 21. 1 2 9 2 2 9 99 91 1 99 11 1 12 11 1 12 12 1 1 1 1 1 1 2 9 9 1 12 111 112 12 122 1 11 1 11 19 11 19 1 1 19 1 1 2.......... 9. 9. 1. 1. 1 1 1 1 1 1 1 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 1. 1. 1. 2. 2. 2. 2. 2.. 2..... 1... 9.... 9..2...1..1....................... 2.1 1.9 1.1 1.9 1.1 1. 1.1 1. 1.1 1. 1. 1.1 1. 1.1 1. 1.1 1. 1.1 1. 1.1 1. 1.1 1. 1.1 1. 1. 1. 1.1 1.1 1.1 1.. 1...9..9..9.9..9..9..9..9..9..9..9.9.9 2. 2............ 9. 9... 9. 9. 9. 9. 1 1 1. 11 11.

Tapr Rollr Baring sris 2 r1 C T r B D d a Boundary dimnsions Basic load ratings dynamic static dynamic static kn kgf Limiting spds min -1 Baring numbrs d D T B C rs min 1) rls min 1) 1 22 Cr 1 Cor 2 Cr 2, Cor, gras 1, oil 2, 221 11 2. 9 2, 9, 1, 2,2 222 12 2 9. 9 1 1,1, 11, 1, 2, 22 1 2 9. 9 1,1,1 12, 1,1 1, 22 1 2 11. 1 9 1,1 1, 119, 19, 9 1, 2 2

Tapr Rollr Baring sris 2 Sa Sb r 1a Da db da Db r a Equivalnt radial load dynamic Pr = XFr+YFa Fa Fr Fa Fr X Y X Y 1. Y2 Static Pr =.Fr+YoFa Whn Por Fr us Por= Fr For valus of Y2, and Yo s th tabla blow. Abutmnt and fillt dimnsions da db Da Db Sa Sb ras rlas min max max min min min min max max 12 12 211 1 29 1. Load cntr a. Constant. Axial load factors Y2 1. Y.9 Mass kg (approx.) 1. 12 1 22 19 222 19... 1..9 1. 1 1 2 21 29 2. 1..9 22. 1 1 22 2 2 1 2... 1..9. 1 1 2 2 299 12 2... 1..9.

Tapr Rollr Baring sris 29 r1 C T r B D d a Boundary dimnsions Basic load ratings dynamic static dynamic static kn kgf Limiting spds min -1 Baring numbrs d D T B C rs min 1) rls min 1) 1 2. 2. 1 1. 1. Cr 9. Cor 11. Cr,1 Cor 11, gras,2 oil, 291 11 1 2. 2. 2 12. 22. 1, 2,1 2,2 2,9 2922 1 1. 2 1 2 1, 2, 1, 2, 292 1 19 2 2.. 2,, 1, 2,2 292 1 2.. 2.. 29,2, 1, 1, 29 1 2...., 1, 1, 1, 29 19 2. 2. 2. 2,, 1,2 1, 29 2 2 1. 1. 9. 9. 9, 91, 1,1 1, 29 2 2 1. 1. 9 9. 1., 12, 9 1,2 29 2.. 2. 12., 1, 9 1,1 29 2... 11. 29. 1, 21, 2 9 29

Tapr Rollr Baring sris 29 Sa Sb r 1a Da db da Db r a Equivalnt radial load dynamic Pr = XFr+YFa Fa Fr Fa Fr X Y X Y 1. Y2 Static Pr =.Fr+YoFa Whn Por Fr us Por= Fr For valus of Y2, and Yo s th tabla blow. Abutmnt and fillt dimnsions da db Da Db Sa Sb ras rlas min max max min min min min max max.. 99. 9. 1 1. 1. Load cntr a 19. Constant. Axial load factors Y2 1. Y.99 Mass kg (approx.).11 11. 11. 1 1. 1. 2.. 1.9.9 1.2 1. 19. 1. 1. 1... 1.. 2.22 1. 1. 1 1. 1... 1..92 1 1 1 22. 21 22... 19 19 2. 22. 21. 11.. 1.2.9. 2 2. 2. 2. 21. 9.. 1... 21. 21. 2. 2. 21. 9 12..9 2.. 2. 2.. 29. 11. 1 12.. 1.1.2 1.9 29. 29.... 11 1.. 1.9. 2. 1. 2.. 9.. 1 19..9 2. 1.

Basic load ratings Boundary dimnsions Cr Cor Limiting spds min -1 Baring numbrs d D B kn gras oil rs min 1) NIKOR dynamic static dynamic static Cr Cor T C rls min 1) kgf Tapr Rollr Baring sris 9 9 1 1 11 12 1 1 11 12 1 1 1 1 1 1 19 2 21 22 2 9 9 1 11 11 12 1 1 1 1 1 1 1 22 2 2 2 2 1 1 9 9 9 9 2 2 2 2 1 1 9 9 9 9 19. 21. 21. 21. 2. 2. 29. 29..... 1. 9. 9 9. 9. 12. 111. 1 1. 21. 219. 22. 2. 2. 29. 1 1. 1. 1. 2. 1. 2. 29... 9. 2.... 1.,1 9, 9, 9,9 12,9 11, 1, 1, 21,9 22, 22, 2, 29, 29,9, 1, 1,1 1, 1, 2, 19, 29,,,, 9,, 1,,12,2,,,,,2, 2, 2, 2, 2, 2,2 2,1 2, 1, 1,,,,9,,2,,,,,1, 2, 2, 2, 2, D C T B a r d r1

Tapr Rollr Baring sris Sa Sb r 1a Da db da Db r a Equivalnt radial load dynamic Pr = XFr+YFa Fa Fr Fa Fr X Y X Y 1. Y2 Static Pr =.Fr+YoFa Whn Por Fr us Por= Fr For valus of Y2, and Yo s th tabla blow. Abutmnt and fillt dimnsions da db Da Db Sa Sb ras rlas min max max min min min min max max.. 2.. 1. 1. Load cntr a 1. Constant.2 Axial load factors Y2 1.9 Y 1. Mass kg (approx.).. 1.. 19..1 1.92 1.... 9.. 2.. 1. 1.1.. 2 9 9 9.. 2. 1.2.9.2. 9 1 99 1.. 2.2 2.11 1.1 1.. 1. 11 11.. 2. 1 1.11 1.11. 9 11. 112 119.. 2..2 2.1 1.19 1. 9. 9 12 11 12.. 2..29 1.1 1. 1. 1 1 12 1.. 2..2 2.2 1.2 2.1 1. 1 1. 11 19.. 2..2 2.1 1.19 2.2 11. 1 1 1 1. 29..29 9 1.1 2. 11. 11 1. 1 1 9. 1..2 2.12 1.1 12 121 1. 12 11. 1...29 9 1.1. 1 1 1. 1 11. 1... 1.1.2 1. 12 21 2 21. 1.. 1..9.1

Tapr Rollr Baring sris 1 r1 C T r B D d a Boundary dimnsions Basic load ratings dynamic static dynamic static kn kgf Limiting spds min -1 Baring numbrs d D T B C rs min 1) rls min 1) 2 2 2. Cr 9. Cor 1 Cr,1 Cor 1, gras,2 oil,9 1 2 2 2.. 11, 11,,,2 19 2 2 2.. 121, 12,,2, 11 9 2 111. 1 11, 1,,9,2 111 1 2 11 1 11, 1,,, 112 11 2. 1. 211 1, 21,,, 11 12 29. 1 2 1,1 2,1,, 11 12 29. 1. 2 1,99 2,1 2,, 11 1 29. 19. 2 1,2 2,1 2,, 11 1 1 1 22. 22,9,9 2,, 11 9 1. 21. 9 2,12 9,9 2,, 11 11 1 9.,,2 1, 2, 122

Tapr Rollr Baring sris 1 Sa Sb r 1a Da db da Db r a Equivalnt radial load dynamic Pr = XFr+YFa Fa Fr Fa Fr X Y X Y 1. Y2 Static Pr =.Fr+YoFa Whn Por Fr us Por= Fr For valus of Y2, and Yo s th tabla blow. Abutmnt and fillt dimnsions da db Da Db Sa Sb ras rlas min max max min min min min max max.. 1. Load cntr a 1. Constant. Axial load factors Y2 1.9 Y.9 Mass kg (approx.).9. 2 9. 19....2.. 2. 2..1 1.... 2. 91. 2. 1.... 9 9. 2.. 1..912. 1 9 1. 2..9. 1.2. 9 111. 1 11. 2.. 1..9 1.. 11. 19 12. 29... 1. 9. 9 121. 11 12... 1.. 1.9 9. 9 1. 122 1 9... 2. 11. 1 1. 1 1 1.....1 121. 12 1. 1 1 9 1.. 1... 9

Basic load ratings Boundary dimnsions Cr Cor Limiting spds min -1 Baring numbrs d D B kn gras oil rs min 1) NIKOR dynamic static dynamic static Cr Cor T C rls min 1) kgf Tapr Rollr Baring sris 2 2 9 2 2 2 9 1 11 12 12 1 1 1 1 22 2 2 2 2 2 1 1 1 9 22 2 2 2 2 2 1 1 1 9 1. 19. 2 2. 2. 2. 2. 29. 1.... 1. 1.... 1 1. 11. 1. 11. 19. 21. 2. 2. 2. 29... 19. 1 11. 1. 1. 22 2. 2 29.. 2.. 1. 1.,,,9 1, 1,9 11, 1,1 1, 19,9 2, 21,2 2, 29,,,, 11,2 1, 1, 1,1 19,1 22, 2,1 2,,,,,,,,,9,,,,,1 2,9 2, 2, 2, 1, 9,,,,,9,,9,,2,9,,,2 2, 2 2 2 2 29 21 211 212 21 21 21 21 21 22 D C T B a r d r1

Tapr Rollr Baring sris 2 Sa Sb r 1a Da db da Db r a Equivalnt radial load dynamic Pr = XFr+YFa Fa Fr Fa Fr X Y X Y 1. Y2 Static Pr =.Fr+YoFa Whn Por Fr us Por= Fr For valus of Y2, and Yo s th tabla blow. Abutmnt and fillt dimnsions da db Da Db Sa Sb ras rlas min max max min min min min max max.. 9. 1. 1. Load cntr a 1. Constant. Axial load factors Y2 1.1 Y.9 Mass kg (approx.).21.. 9. 1. 1. 1.. 1..9.. 2. 1. 1.. 1..9.1.. 21.. 1..92.2. 2. 2 1. 2.9.... 2..1 1...2. 2 9 9. 2... 1.1. 9 1 9 1 9. 2.. 1..2. 11 12 11 9. 29..9. 1.9. 9 11. 1 12 9. 1..1 1..1 2.1. 12 111 12 1.. 1.. 2.2 9 9 1. 119 1 11... 1.1. 2.92 9. 9 1. 12 1 1..2 1..9. 11 112 1. 11 12 1 1....9 1

NOTE