On the shadows of black holes and of other compact objects

Similar documents
Shadows of black holes

The Shadow of a Black Hole from Heterotic String Theory at the Center of the Milky Way

Accelerating Kerr-Newman black holes in (anti-) de Sitter space-time

arxiv: v1 [gr-qc] 22 Jul 2017

Kerr black hole and rotating wormhole

Holography Duality (8.821/8.871) Fall 2014 Assignment 2

Analytic Kerr Solution for Puncture Evolution

Physics 139: Problem Set 9 solutions

Frame Dragging Anomalies for Rotating Bodies

Centrifugal force in Kerr geometry

Physics 311 General Relativity. Lecture 18: Black holes. The Universe.

arxiv: v2 [gr-qc] 29 Sep 2015

Solutions of Einstein s Equations & Black Holes 2

A Summary of the Black Hole Perturbation Theory. Steven Hochman

Study of Center of Mass Energy by Particles Collision in Some Black Holes

arxiv:gr-qc/ v1 11 May 2000

arxiv: v2 [gr-qc] 25 Jan 2012

Astronomy 421. Lecture 24: Black Holes

Lense Thirring precession in Plebański Demiański Spacetimes

Hawking radiation via tunnelling from general stationary axisymmetric black holes

Charge, geometry, and effective mass in the Kerr- Newman solution to the Einstein field equations

Electromagnetic Energy for a Charged Kerr Black Hole. in a Uniform Magnetic Field. Abstract

arxiv: v4 [gr-qc] 29 Jan 2014

High-velocity collision of particles around a rapidly rotating black hole

TO GET SCHWARZSCHILD BLACKHOLE SOLUTION USING MATHEMATICA FOR COMPULSORY COURSE WORK PAPER PHY 601

Escape velocity and Schwarzschild s Solution for Black Holes

A Derivation of the Kerr Metric by Ellipsoid Coordinate Transformation. Abstract

Exact Solutions of the Einstein Equations

Martin Petrásek and Petr Slaný

arxiv: v3 [gr-qc] 4 Feb 2014

Strong gravity and relativistic accretion disks around supermassive black holes

PHZ 6607 Fall 2004 Homework #4, Due Friday, October 22, 2004

Reissner Nordström Expansion

arxiv: v2 [gr-qc] 27 Apr 2013

arxiv: v2 [gr-qc] 5 Aug 2015

Classical Models of Subatomic Particles

Repulsive Effect for Unbound High Energy Particles Along Rotation Axis in Kerr-Taub-NUT Spacetime

Schwarschild Metric From Kepler s Law

On the parameters of the Kerr-NUT-(anti-)de Sitter space-time

arxiv: v2 [gr-qc] 24 Jun 2015

Wavefronts and Light Cones for Kerr Spacetimes

TO GET SCHWARZSCHILD BLACKHOLE SOLUTION USING MATHEMATICA PROJECT REPORT FOR COMPULSORY COURSE WORK PAPER PHY 601 PRESENTED BY: DEOBRAT SINGH

BLACK HOLES: THEIR LARGE INTERIORS. Ingemar Bengtsson

Pinhole Cam Visualisations of Accretion Disks around Kerr BH

arxiv:gr-qc/ v1 18 Nov 2004

General Birkhoff s Theorem

Spin and mass of the nearest supermassive black hole

Dirac s Electron via General Relativity

Gravitational Lensing by Reissner-Nordstrom Extremal Black Hole

The Motion of A Test Particle in the Gravitational Field of A Collapsing Shell

Hawking Radiation of Photons in a Vaidya-de Sitter Black Hole arxiv:gr-qc/ v1 15 Nov 2001

Particle and photon orbits in McVittie spacetimes. Brien Nolan Dublin City University Britgrav 2015, Birmingham

arxiv: v2 [gr-qc] 4 May 2018

Particle Dynamics Around a Charged Black Hole

Ask class: what is the Minkowski spacetime in spherical coordinates? ds 2 = dt 2 +dr 2 +r 2 (dθ 2 +sin 2 θdφ 2 ). (1)

Solutions of Einstein s Equations & Black Holes 1

arxiv: v1 [astro-ph.he] 4 Dec 2017

Hideyoshi Arakida, JGRG 22(2012) the cosmological lens equation RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

arxiv:gr-qc/ v1 7 Feb 2001

arxiv: v2 [gr-qc] 16 Jun 2014

Research Article Remarks on Null Geodesics of Born-Infeld Black Holes

arxiv: v2 [gr-qc] 3 Mar 2015

arxiv: v3 [gr-qc] 22 Mar 2016

Time Delay in Swiss Cheese Gravitational Lensing

Black Hole Astrophysics Chapters 7.5. All figures extracted from online sources of from the textbook.

arxiv: v4 [hep-th] 1 Apr 2017

Dynamics of spinning particles in Schwarzschild spacetime

arxiv: v1 [gr-qc] 16 Aug 2018

arxiv: v2 [gr-qc] 8 Nov 2017

Black Holes and Wave Mechanics

Physics 523, General Relativity Homework 7 Due Wednesday, 6 th December 2006

2 General Relativity. 2.1 Curved 2D and 3D space

Black holes as particle accelerators: a brief review

arxiv: v1 [gr-qc] 19 Jun 2009

Black Holes. Theory & Astrophysics. Kostas Glampedakis

Kerr-Taub-NUT Spacetime with Maxwell and Dilaton Fields. Alikram N. Aliev. Hakan Cebeci. Tekin Dereli. Abstract

Black Holes from A to Z

arxiv:gr-qc/ v1 18 Oct 2000

Shadow of a Charged Rotating Non-Commutative Black Hole

arxiv: v3 [gr-qc] 18 Oct 2017

A rotating charged black hole solution in f (R) gravity

The Effect of Sources on the Inner Horizon of Black Holes

arxiv:astro-ph/ v2 11 Jan 2007

GEODESICS ON A KERR-NEWMAN-(ANTI-)DE SITTER INSTANTON AIDAN LINDBERG AND STEVEN RAYAN

arxiv: v1 [gr-qc] 7 Mar 2008

Absorption cross section of RN black hole

arxiv: v4 [gr-qc] 10 Mar 2018

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY)

Approaching the Event Horizon of a Black Hole

Physics 480/581. Homework No. 10 Solutions: due Friday, 19 October, 2018

Analytic solutions of the geodesic equation in static spherically symmetric spacetimes in higher dimensions

Scott A. Hughes, MIT SSI, 28 July The basic concepts and properties of black holes in general relativity

Mathematical Relativity, Spring 2017/18 Instituto Superior Técnico

Lecture 9: Schwarzschild solution

A Panoramic Tour in Black Holes Physics

An introduction to General Relativity and the positive mass theorem

arxiv:gr-qc/ v1 25 Nov 2005

Cosmology PHYS3170 The angular-diameter-redshift relation

Hawking radiation via tunneling from the spacetime of a spinning cosmic string black holes arxiv: v1 [gr-qc] 26 Oct 2015

Transcription:

On the shadows of black holes and of other compact objects Volker Perlick ( ZARM, Univ. Bremen, Germany) 1. Schwarzschild spacetime mass m photon sphere at r = 3m shadow ( escape cones ): J. Synge, 1966 2. Kerr spacetime mass m, spin a photon region of spherical geodesics shadow: J. Bardeen, 1973 3. Plebański-Demiański spacetime mass m, spin a, electric charge q e, magnetic charge q m, NUT parameter l, cosmological constant Λ photon region of spherical geodesics shadow: A. Grenzebach, 2013

1. Schwarzschild spacetime ( g = 1 r ) S c 2 dt 2 + r ( 1 r S r ) 1 dr 2 + r 2( dϑ 2 + sin 2 ϑdϕ 2), r S = 2m 00000 11111 000000 111111 0000000 1111111 0000000 1111111 0000000 1111111 0000000 1111111 00000000 11111111 0000000 1111111 0000000 1111111 0000000 1111111 0000000 1111111 000000 111111 00000 11111 000 111 Unstable photon sphere at r = 3m = 1.5r s

δ r O Angular radius δ of the shadow : sin 2 δ = 27r2 S (r O r S ) 4r 3 O Escape cones : J. Synge, Mon. Not. R. Astron. Soc. 131, 463 (1966) r O = 1.05r S r O = 1.3r S r O = 3r S /2 r O = 2.5r S r O = 6r S S. Virbhadra and G. Ellis, Phys. Rev. D, 65, 103004 (2002) A naked singularity is called weakly naked if surrounded by an unstable photon sphere, and strongly naked if not.

2. Kerr spacetime What happens to the photon sphere at r = 3m and with the shadow if the spin a is switched on? Shadow of a Kerr black hole: J. Bardeen in C. DeWitt and B. DeWitt (eds.): Black Holes Gordon and Breach (1973), p. 215 Shadow of a Kerr(-Newman) naked singularity: A. devries, Class. Quantum Grav. 17, 123 (2000) C. Bambi and K. Freese, Phys. Rev. D 79, 043002 (2009) If a is switched on, the photon sphere at r = 3m turns into a photon region filled with spherical null geodesics.

Kerr metric in Boyer Lindquist coordinates (r, ϑ, ϕ, t): g = (r,ϑ) 2 ( dr 2 (r) + dϑ2 ) + sin2 ϑ ( ) 2 adt (r 2 + a 2 (r) ( ) 2 )dϕ dt asin 2 ϑdϕ (r,ϑ) 2 (r,ϑ) 2 (r,ϑ) 2 = r 2 + a 2 cos 2 ϑ, (r) = r 2 2mr + a 2. Lightlike geodesics: (r,ϑ) 2 ṫ = a ( L Ea sin 2 ϑ ) + (r2 + a 2 ) ( (r 2 + a 2 )E al ) (r), (r,ϑ) 2 ϕ = L Ea sin2 ϑ sin 2 ϑ + (r2 + a 2 )ae a 2 L, (r) (r,ϑ) 4 ϑ2 = K (L Ea sin2 ϑ) 2 sin 2 ϑ =: Θ(ϑ), (r,ϑ) 4 ṙ 2 = K (r) + ( (r 2 + a 2 )E al ) 2 =: R(r).

Lightlike geodesics: (r,ϑ) 2 ṫ = a ( L Ea sin 2 ϑ ) + (r2 + a 2 ) ( (r 2 + a 2 )E al ) (r), (r,ϑ) 2 ϕ = L Ea sin2 ϑ sin 2 ϑ + (r2 + a 2 )ae a 2 L, (r) (r,ϑ) 4 ϑ2 = K (L Ea sin2 ϑ) 2 sin 2 =: Θ(ϑ), ϑ (r,ϑ) 4 ṙ 2 = K (r) + ( (r 2 + a 2 )E al ) 2 =: R(r). Spherical lightlike geodesics exist in the region where R(r) = 0, R (r) = 0, Θ(ϑ) 0. a L E = r2 + a 2 2r (r) r m, K E 2 = 4r2 (r) (r m) 2. ( 2r (r) (r m) (r,ϑ) 2 ) 2 4a 2 r 2 (r) sin 2 ϑ (unstable if R (r) 0)

Pictures of spherical lightlike geodesics: E. Teo, Gen. Rel. Grav. 35, 1909 (2003) Pictures of the photon region: W. Hasse and VP, J. Math. Phys. 47, 042503 (2006) VP: Living Rev. Relativity 7, (2004), 9 For pictures of the photon region, use e r as the radial coordinate e r r red solid: singularity red dashed: throat

a = 0.15m blue: unstable spherical lightlike geodesics green: stable spherical lightlike geodesics orange: causality violation black: region between horizons red solid: singularity red dashed: throat

a = 0.75 m blue: unstable spherical lightlike geodesics green: stable spherical lightlike geodesics orange: causality violation black: region between horizons red solid: singularity red dashed: throat

a = 0.9999999m blue: unstable spherical lightlike geodesics green: stable spherical lightlike geodesics orange: causality violation black: region between horizons red solid: singularity red dashed: throat

a = 1.15m blue: unstable spherical lightlike geodesics green: stable spherical lightlike geodesics orange: causality violation black: region between horizons red solid: singularity red dashed: throat

a = 1.25m blue: unstable spherical lightlike geodesics green: stable spherical lightlike geodesics orange: causality violation black: region between horizons red solid: singularity red dashed: throat

The shadow is determined by light rays that approach an unstable spherical lightlike geodesic. Choose observer at r O and ϑ O. Introduce celestial coordinates (θ,φ) at the observer. Relation between celestial coordinates and constants of motion: sin 2 θ = g2 ϕt g ϕϕg tt ( L g ϕt E + g ϕϕ sin 2 φ = ) 2 L 2 E + 2 asin 2 ϑ L2 E 2 + g ϕϕ g ϕϕ r 2 + a 2 cos 2 ϑ asin 2 ϑ L2 E 2 K E 2 K E 2 ( asin 2 ϑ L E sin 2 ϑ ( asin 2 ϑ L E sin 2 ϑ ) 2 ro,ϑ O ) 2 ro,ϑ O Inserting L/E and K/E 2 as functions of r gives the boundary of the shadow parametrised with r.

a = 0.4m r O = 6m ϑ O = π/2

a = 0.9999999m r O = 6m ϑ O = π/2

a = 1.1m r O = 6m ϑ O = π/2

a = 2m r O = 8m ϑ O = π/2

3. Plebański-Demiański spacetime g = Σ ( dr 2 r + dϑ2 ϑ ) ( (Σ ) 2 ϑ + + aχ sin 2 ϑ r χ 2) dϕ 2 Σ + ( r χ a ( Σ + aχ ) ϑ sin 2 ϑ ) 2dtdϕ Σ ( r a 2 ϑ sin 2 ϑ ) dt2 Σ where Σ = r 2 + ( l + acosϑ ) 2 χ = asin 2 ϑ 2l ( cosϑ + C ) ϑ = 1 + Λ { 4 3 } a2 alcosϑ + 3 cos2 ϑ r = r 2 2mr + a 2 l 2 + q e 2 + q m 2 Λ{ (a 2 l 2) l 2 + ( a 2 3 + 2l2 ) } r 2 + r4 3 m: mass q e : electric charge l: NUT parameter a: spin q m : magnetic charge C : Manko-Ruiz parameter Λ: cosmological constant

Introduction of NUT metric: E. Newman, T. Unti, L. Tamburino, J. Math. Phys. 4, 915 (1963) Interpretation of NUT parameter l as gravitomagnetic charge of a spinning massless string: W. B. Bonnor, Proc. Camb. Philos. Soc. 66, 145 (1969) Introduction of the parameter C: V. Manko, E. Ruiz, Class. Quantum Grav. 22, 3555 (2005)

a = 0.99m, l = 0.75m blue: unstable spherical lightlike geodesics green: stable spherical lightlike geodesics orange: causality violation black: region between horizons red solid: singularity red dashed: throat

Dependence of the shadow on C

Colour: Increasing a

Colour: increasing a Left to right: increasing l Top to bottom: Increasing q 2 e + q2 m

H. Falcke, F. Melia, E. Agol, Astrophys J. 528, L13 (2000)