Research Article On Simultaneous Approximation of Modified Baskakov-Durrmeyer Operators

Similar documents
Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA

Strong Result for Level Crossings of Random Polynomials

Generalization of Horadam s Sequence

Some Integral Mean Estimates for Polynomials

Modular Spaces Topology

On Some Fractional Integral Operators Involving Generalized Gauss Hypergeometric Functions

Generalized Fibonacci-Lucas Sequence

International Journal of Mathematics Trends and Technology (IJMTT) Volume 47 Number 1 July 2017

Sums of Involving the Harmonic Numbers and the Binomial Coefficients

Some Properties of the K-Jacobsthal Lucas Sequence

Conditional Convergence of Infinite Products

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS

International Journal of Mathematical Archive-3(5), 2012, Available online through ISSN

Research Article The Peak of Noncentral Stirling Numbers of the First Kind

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD

Structure and Some Geometric Properties of Nakano Difference Sequence Space

Using Difference Equations to Generalize Results for Periodic Nested Radicals

A note on random minimum length spanning trees

Asymptotic Expansions of Legendre Wavelet

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

Multivector Functions

Approximation by complex Durrmeyer-Stancu type operators in compact disks

Recurrence Relations for the Product, Ratio and Single Moments of Order Statistics from Truncated Inverse Weibull (IW) Distribution

Global asymptotic stability in a rational dynamic equation on discrete time scales

A New Type of q-szász-mirakjan Operators

Combinatorial Interpretation of Raney Numbers and Tree Enumerations

A New Result On A,p n,δ k -Summabilty

Some Topics on Weighted Generalized Inverse and Kronecker Product of Matrices

A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS

Lacunary Almost Summability in Certain Linear Topological Spaces

FRACTIONAL CALCULUS OF GENERALIZED K-MITTAG-LEFFLER FUNCTION

Research Article Approximation of Signals (Functions) by Trigonometric Polynomials in L p -Norm

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES

On the Explicit Determinants and Singularities of r-circulant and Left r-circulant Matrices with Some Famous Numbers

EVALUATION OF SUMS INVOLVING GAUSSIAN q-binomial COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS

p-adic Invariant Integral on Z p Associated with the Changhee s q-bernoulli Polynomials

REVIEW ARTICLE ABSTRACT. Interpolation of generalized Biaxisymmetric potentials. D. Kumar* G.L. `Reddy**

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

Applications of the Dirac Sequences in Electrodynamics

MATH Midterm Solutions

International Journal of Mathematical Archive-5(3), 2014, Available online through ISSN

On composite conformal mapping of an annulus to a plane with two holes

On ARMA(1,q) models with bounded and periodically correlated solutions

Advanced Physical Geodesy

Generalized golden ratios and associated Pell sequences

INVERSE CAUCHY PROBLEMS FOR NONLINEAR FRACTIONAL PARABOLIC EQUATIONS IN HILBERT SPACE

Dynamic Programming for Estimating Acceptance Probability of Credit Card Products

On the Circulant Matrices with. Arithmetic Sequence

A Statistical Integral of Bohner Type. on Banach Space

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to

On Some Generalizations via Multinomial Coefficients

THE ANALYTIC LARGE SIEVE

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

Lecture 6: October 16, 2017

Range Symmetric Matrices in Minkowski Space

Generalized Near Rough Probability. in Topological Spaces

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 16, Number 2/2015, pp

KEY. Math 334 Midterm II Fall 2007 section 004 Instructor: Scott Glasgow

A smoothing Newton method for the minimum norm solution of linear program

A New Criterion for Stability of Delayed Takagi-Sugeno Fuzzy Cohen-Grossberg Neural Networks

On a Problem of Littlewood

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia.

Bernstein Polynomials

THE ANALYSIS OF SOME MODELS FOR CLAIM PROCESSING IN INSURANCE COMPANIES

SOME NEW SEQUENCE SPACES AND ALMOST CONVERGENCE

Lower Bounds for Cover-Free Families

A two-sided Iterative Method for Solving

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

Lecture 3 : Concentration and Correlation

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS

Taylor Transformations into G 2

Technical Report: Bessel Filter Analysis

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P.

A Note on k-gamma Function and Pochhammer k-symbol

The Application of a Maximum Likelihood Approach to an Accelerated Life Testing with an Underlying Three- Parameter Weibull Model

Counting Functions and Subsets

Green Functions. January 12, and the Dirac delta function. 1 x x

On Size-Biased Logarithmic Series Distribution and Its Applications

Relation (12.1) states that if two points belong to the convex subset Ω then all the points on the connecting line also belong to Ω.

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Integral Problems of Trigonometric Functions

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

A 2nTH ORDER LINEAR DIFFERENCE EQUATION

THE GRAVITATIONAL POTENTIAL OF A MULTIDIMENSIONAL SHELL

IDENTITIES FOR THE NUMBER OF STANDARD YOUNG TABLEAUX IN SOME (k, l)-hooks

Complementary Dual Subfield Linear Codes Over Finite Fields

ELEMENTARY AND COMPOUND EVENTS PROBABILITY

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

Research Article On Alzer and Qiu s Conjecture for Complete Elliptic Integral and Inverse Hyperbolic Tangent Function

Sequences and Series of Functions

Solving Fuzzy Differential Equations Using Runge-Kutta Third Order Method for Three Stages Contra-Harmonic Mean

SHIFTED HARMONIC SUMS OF ORDER TWO

On the Zeros of Daubechies Orthogonal and Biorthogonal Wavelets *

Weighted Hardy-Sobolev Type Inequality for Generalized Baouendi-Grushin Vector Fields and Its Application

A Study on the Rate of Convergence of Chlodovsky-Durrmeyer Operator and Their Bézier Variant

On randomly generated non-trivially intersecting hypergraphs

Some Remarks on the Boundary Behaviors of the Hardy Spaces

MATH /19: problems for supervision in week 08 SOLUTIONS

OVERVIEW OF THE COMBINATORICS FUNCTION TECHNIQUE

Transcription:

Iteatioal Joual of Aalysis Volue 215, Aticle ID 85395, 1 pages http://dx.doi.og/1.1155/215/85395 Reseach Aticle O Siultaeous Appoxiatio of Modified Baskakov-Dueye Opeatos Pashatkua G. Patel 1,2 ad Vishu Naaya Misha 1,3 1 Depatet of Applied Matheatics ad Huaities, Sada Vallabhbhai Natioal Istitute of Techology, Ichchhaath Mahadev Duas Road, Suat, Gujaat 395 7, Idia 2 Depatet of Matheatics, St. Xavie College, Ahedabad, Gujaat 38 9, Idia 3 L. 1627 Awadh Pui Coloy Beigaj, Phase-III, Opposite-Idustial Taiig Istitute I.T.I.), Ayodhya Mai Road, Faizabad, Utta Padesh 224 1, Idia Coespodece should be addessed to Pashatkua G. Patel; pashat225@gail.co Received 22 July 215; Accepted 1 Septebe 215 Acadeic Edito: Yig Hu Copyight 215 P. G. Patel ad V. N. Misha. This is a ope access aticle distibuted ude the Ceative Coos Attibutio Licese, which peits uesticted use, distibutio, ad epoductio i ay ediu, povided the oigial wok is popely cited. We discuss popeties of odified Baskakov-Dueye-Stacu BDS) opeatos with paaete γ>. We copute the oets of these odified opeatos. Also, we establish poitwise covegece, Vooovskaja type asyptotic foula, ad a eo estiatio i tes of secod ode odificatio of cotiuity of the fuctio fo the opeatos B,β,γ f, x). 1. Itoductio Fo x [,), γ >, β,adf C[,), we coside a cetai itegal type geealized Baskakov opeatos as B,β,γ f t),x) whee p,k,γ x) +p,,γ x) f +β ) b,k,γ t) f +β )dt W,γ x, t) f +β )dt, k Γ/γ+k) Γ k+1) Γ/γ) γx) 1 + γx), /γ)+k 1) b,k,γ t) γγ/γ+k+1) k 1 Γ k) Γ/γ+1) γt) 1 + γt), /γ)+k+1 W,γ x, t) p,k,γ x) b,k,γ t) +1+γx) /γ δ t), δt) beig the Diac delta fuctio. The opeatos defied by 1) ae the geealizatio of the itegal odificatio of well-kow Baskakov opeatos havig weight fuctio of soe beta basis fuctio. As a special case, that is, γ 1,theopeatos1)educetothe opeatos vey ecetly studied i [1, 2]. Ivese esults of sae type of opeatos wee established i [3]. Also, if β, the opeatos 1) educe to the opeatos ecetly studied i [4] ad if βad γ1,theopeatos1)educetothe opeatos studied i [5]. The q-aalog of the opeatos 1) is discussed i [6]. We efe to soe of the ipotat papes o theecetdevelopetosiilatypeoftheopeatos[7 9]. 2)

2 Iteatioal Joual of Aalysis The peset a pape that deals with the study of siultaeous appoxiatio fo the opeatos B,β,γ. 2. Moets ad Recuece Relatios Lea 1. If oe defies the cetal oets, fo evey N, as μ,,γ x) B,β,γ t x),x) +p,,γ x) +β x), b,k,γ t) +β x) dt the μ,,γ x) 1, μ,1,γ x) βx)/+β),adfo>γ; oe has the followig ecuece elatio: γ) + β) μ,+1,γ x) x1+γx) {μ 1),,γ x) +μ, 1,γ x)} +{+ 2 x 2γ ) +β)x)} μ,,γ x) + {γ + β) +β x) 2 μ, 1,γ x). +β x)} Fo the ecuece elatio, it ca be easily veified that, fo all x [,),oehasμ,,γ x) O [+1)/2] ),whee[] deotes the itegal pat of. Poof. Takig deivative of the above,,,γ x) p,k,γ x) μ 1) 1 b,k,γ t) +β x) dt p,,γ x) +β x) 1 + p 1),k,γ x) b,k,γ t) +β x) dt + p 1),,γ x) +β x) μ, 1,γ x) + p 1),k,γ x) b,k,γ t) +β x) dt + p 1),,γ x) +β x), 3) 4) x1+γx){μ 1),,γ x) +μ, 1,γ x)} x1+γx)p 1),k,γ x) b,k,γ t) +β x) dt+x1+γx),,γ x) +β x). p 1) Usig x1 + γx)p 1),k,γ x) k x)p,k,γx),weget x1+γx){μ 1),,γ x) +μ, 1,γ x)} k x) p,k,γ x) b,k,γ t) +β x) dt + x) p,,γ x) +β x) kp,k,γ x) b,k,γ t) +β x) dt xμ,,γ x) : I xμ,,γ x). We ca wite I as I{ +β x) +β x) {k 1) +2γ)t}b,k,γ t) dt + dt} + { + 2γ) tb,k,γ t) +β x) dt} : I 1 +I 2 say). b,k,γ t) p,k,γ x) To estiate I 2 usig t + β)/){)/ + β) x) / + β) x)},wehave I 2 + 2γ) + β) { p,k,γ x) +1 b,k,γ t) +β x) x) dt +β b,k,γ t) +β x) dt} 5) 6) 7)

Iteatioal Joual of Aalysis 3 + 2γ) + β) { p,k,γ x) +1 b,k,γ t) +β x) dt + p,,γ x) +β x) +1 +β x) { +p,,γ x) +β x) }} + 2γ) + β) μ,,γ x)}. b,k,γ t) +β x) dt {μ,+1,γ x) +β x) Next, to estiate I 1 usig the equality, {k 1) + 2γ)t}b,k,γ t) t1 + γt)b 1),k,γ t),wehave I 1 { + +γ : J 1 +J 2 say). tb 1) +,k,γ t) t +β x) dt b,k,γ t) +β x) dt} t 2 b 1) +,k,γ t) t +β x) dt Agai puttig t + β)/){)/ + β) x) / + β) x)},weget J 1 +β { p,k,γ x) b 1) +1 +,k,γ t) t +β x) + dt + +β x) b 1) +,k,γ t) t +β x) dt} b,k,γ t) +β x) dt. 8) 9) 1) Now, itegatig by pats, we get J 1 +1) p,k,γ x) b,k,γ t) +β x) + +1) { dt + +β x) 1 b,k,γ t) +β x) dt b,k,γ t) +β x) dt b,k,γ t) +β x) dt +p,,γ x) +β x) }+ +β x) { +p,,γ x) 1 +β x) }+ 1 b,k,γ t) +β x) dt p,k,γ x) b,k,γ t) +β x) dt + p,,γ x) +β x), J 1 μ,,γ x) + +β x)μ, 1,γ x). 11) Poceedig i the siila ae, we obtai the estiate J 2 as J 2 γ+β)+2) μ,+1,γ x) + β) +1) +2γ +β x)μ,,γ x) γ + β) Cobiig 6) 12), we get +β x) 2 μ, 1,γ x). x1+γx){μ 1),,γ x) +μ, 1,γ x)} μ,,γ x) + +β x)μ, 1,γ x) γ+β)+2) + β) +1) μ,+1,γ x) +2γ +β x) 12)

4 Iteatioal Joual of Aalysis μ,,γ x) γ + β) μ, 1,γ x) xμ,,γ x) +β x) 2 Lea 4 see [1]). The polyoials Q i,j,,γ x) exist idepedet of ad k such that {x 1 + γx) }D [p,k,γ x)] + +2γ)+β) {μ,+1,γ x) i k x) j Q i,j,,γ x) p,k,γ x), i,j 17) Hece, +β x)μ,,γ x)}. 13) whee D d dx. Lea 5. If f is ties diffeetiable o [, ), suchthat f 1) Ot υ ), υ>as t,thefo 1, 2, 3,... ad >υ+γoe has γ)+β)μ,+1,γ x) x1+γx){μ 1),,γ x) +μ, 1,γ x)}+{+ 2 x 2γ ) +β)x)}μ,,γ x) +{γ+β) 2 +β x) +β x)}μ, 1,γ x). 14) B,β,γ )) f, x) Γ/γ+)Γ/γ +1) + β) Γ/γ+1)Γ/γ) k Poof. Fist p +γ,k,γ x) b γ,k+,γ t) f ) +β )dt. B,β,γ )1) f, x) 18) This copletes the poof of Lea 1. Reak 2 see [1]). Fo N {},if theth ode oet is defied as U,,γ x) k p,k,γ x) k x), 15) p 1),k,γ x) Now, usig the idetities b,k,γ t) f +β )dt 1+γx) /γ 1 f +β ). 19) the U,,γ x) 1, U,1,γ x), adu,+1,γ x) x1 + γx)u 1),,γ x) + U, 1,γx)). Cosequetly, fo all x [,),wehaveu,,γ x) O [+1)/2] ). Reak 3. It is easily veified fo Lea 1 that fo each x [, ) B,β,γ t,x) Γ/γ+)Γ/γ +1) + β) Γ/γ+1)Γ/γ) x + 1 Γ/γ+ 1)Γ/γ +1) + β) Γ/γ+1)Γ/γ) + γ +1)}x 1 { 1) + 1) 2 Γ/γ+ 2)Γ/γ +2) + β) Γ/γ+1)Γ/γ) 2) + /γ +2) }x 2 +O 2 ). 2 { 16) p 1),k,γ x) {p +γ,k 1,γ x) p +γ,k,γ x)}, b 1),k,γ x) +γ){b +γ,k 1,γ x) b +γ,k,γ x)}, fo k 1,wehave B,β,γ )1) f, x) {p +γ,k 1,γ x) p +γ,k,γ x)} b,k,γ t) f +β )dt 1+γx) /γ 1 f +β )p +γ,,γ x) b +γ,1,γ t) f +β )dt 1+γx) /γ 1 f +β )+ p +γ,k,γ x) {b,k+1,γ t) b,k,γ t)}f +β )dt, 2)

Iteatioal Joual of Aalysis 5 B,β,γ )1) f, x) 1 + γx) /γ 1 + γ) 1 + γt) /γ 2 f +β )dt + p +γ,k,γ x) 1 + b1) γ,k+1,γ t))ft +β )dt 1+γx) /γ 1 f +β ). 21) Itegatig by pats, we get,γ )1) f, x) 1 + γx) /γ 1 f +β ) B,β + 2 1 + γx) /γ 1 +β 1 + γt) /γ 1 f 1) +β )dt+ +β p +γ,k,γ x) b γ,k+1,γ t) f 1) +β )dt 1+γx) /γ 1 f +β ), B,β,γ )1) f, x) +β k p +γ,k,γ x) b γ,k+1,γ t) f 1) +β )dt. 22) Thus the esult is tue fo 1.Wepovetheesultby iductio ethod. Suppose that the esult is tue fo i; the B,β,γ )i) f, x) i Γ/γ+i)Γ/γ i+1) + β) i Γ/γ+1)Γ/γ) k p +γi,k,γ x) Thus, usig the idetities 2), we have B,β,γ )i+1) f, x) b γi,k+i,γ t) f i) +β )dt. i Γ/γ+i)Γ/γ i+1) + β) i Γ/γ+1)Γ/γ) { γ +i) {p +γi+1),k 1,γ x) p +γi+1),k,γ x)} b γi,k+i,γ t) 23) f i) +β )dt γ +i)1+γx) /γ i 1 b γi,i,γ t) f i) +β )} i Γ /γ + i + 1) Γ /γ i + 1) + β) i p +γi+1),,γ x) Γ/γ+1)Γ/γ) b γi,1+i,γ t) f i) +β )dt i Γ/γ+i+1)Γ/γ i+1) + β) i p +γi+1),,γ x) Γ/γ+1)Γ/γ) b γi,i,γ t) f i) +β )dt + i Γ/γ+i+1)Γ/γ i+1) + β) i Γ/γ+1)Γ/γ) {b γi,k+i+1,γ t) b γi,k+i,γ t)} f i) +β )dt} { p +γi+1),k,γ x) i Γ /γ + i + 1) Γ /γ i + 1) + β) i p +γi+1),,γ x) Γ/γ+1)Γ/γ) 1 /γ i b1) γi 1),1+i,γ t))fi) + i Γ/γ+i+1)Γ/γ i+1) + β) i Γ/γ+1)Γ/γ) 1 /γ i b1) γi 1),k+i+1,γ t))fi) Itegatig by pats, we obtai +β )dt p +γi+1),k,γ x) +β )dt. 24) B,β,γ )i+1) f, x) i+1 Γ/γ+i+1)Γ/γ i+1) + β) i+1 Γ/γ+1)Γ/γ) k p +γi+1),k,γ x) b γi 1),k+i+1,γ t) f i+1) +β )dt. This copletes the poof of Lea 5. 3. Diect Theoes 25) This sectio deals with the diect esults; we establish hee poitwise appoxiatio, asyptotic foula, ad eo estiatio i siultaeous appoxiatio.

6 Iteatioal Joual of Aalysis We deote C μ [, ) {f C[, ) : ft) Mt μ fo soe M>,μ>},adtheo μ o the class C μ [, ) is defied as f μ sup t< ft) t μ. It ca be easily veified that the opeatos B,β,γ f, x) ae well defied fo f C μ [, ). Theoe 6. Let f C μ [, ) ad let f ) existatapoit x, ).Theoehas li B,β,γ )) f, x) f ) x). 26) Poof. By Taylo s expasio of f,we have f t) i f i) x) whee εt, x) as t x.hece, B,β,γ )) f, x) i t x) i +εt, x)t x), 27) f i) x) B,β,γ )) t x) i,x) +B,β,γ )) ε t, x)t x),x) : R 1 +R 2. 28) Fist, to estiate R 1, usig bioial expasio of t + )/ + β) x) i ad Reak 3, we have R 1 i f i) x) f) x)! i j i j ) x)i j B,β,γ )) t j,x) { Γ /γ + ) Γ /γ + 1) + β) Γ/γ+1)Γ/γ)!} f ) x) { Γ/γ+)Γ/γ +1) + β) Γ/γ+1)Γ/γ) } 29) The secod te i the above expessio teds to zeo as. Siceεt, x) as t x fo give ε>, thee exists a δ, 1) such that εt, x) < ε wheeve < t x <δ. If τ>ax{μ, }, wheeτ is ay itege, the we ca fid a costat M 3 >,suchthat εt, x))/ + β) x) M 3 )/ + β) x τ fo t x δ. Theefoe, R 2 M 3 i,j i k k x j p,k,γ x) {ε b,k,γ x) t x <δ +β x dt τ + b,k,γ t) t x δ +β x dt} : R 3 +R 4. 31) Applyig the Cauchy-Schwaz iequality fo itegatio ad suatio, espectively, we obtai R 3 εm 3 i,j { i { k x) 2j p,k,γ x)} 2 b,k,γ t) +β x) dt}. 32) Usig Reak 2 ad Lea 1, we get R 3 εo /2 )O /2 ) ε O1). Agai usig the Cauchy-Schwaz iequality ad Lea 1, we get R 4 M 4 i k x j p,k,γ x) i,j τ b,k,γ t) t x δ +β x dt M 4 i i,j f ) x) as. Next, applyig Lea 4, we obtai R 2 R 2 i,j W ) +,γ t, x) ε t, x) t +β x) dt, i Q i,j,,γ x) {x 1 + γx)} k x j p,k,γ x) b,k,γ t) ε t, x) +β x dt + Γ/γ++2) Γ/γ) +β x. 1 + γx) /γ ε, x) 3) k x j p,k,γ x) { b,k,γ t) dt} t x δ 2τ { b,k,γ t) t x δ +β x) dt} M 4 { i,j i { k x) 2j p,k,γ x)} 2τ b,k,γ t) +β x) dt} i O j/2 )O τ/2 )O τ)/2 )o1). i,j 33) Collectig the estiatio of R 1 R 4,wegettheequiedesult.

Iteatioal Joual of Aalysis 7 Theoe 7. Let f C μ [, ). Iff +2) exists at a poit x, ),the li {B,β,γ )) f, x) f ) x)} γ 1) β) f ) x) +{γ1+2x) + βx}f +1) x) +x1+γx)f +2) x). Poof. Usig Taylo s expasio of f,we have f t) +2 i f i) x) 34) t x) i +εt, x)t x) +2, 35) whee εt, x) as t xad εt, x) Ot x) μ ), t fo μ>. Applyig Lea 1, we have + +1) Γ /γ + ) Γ /γ ) + β) +1 Γ/γ+1)Γ/γ) { + γ )}!} + f+2) x) +2)! +1)+2) 2 x 2 Γ /γ + ) Γ /γ + 1) + β)! x +2) Γ/γ+1)Γ/γ) { +1 Γ/γ++1)Γ/γ ) + β) +1 Γ/γ+1)Γ/γ) +1)!x + +1) Γ /γ + ) Γ /γ ) + β) +1 Γ/γ+1)Γ/γ) { + )}!} γ {B,β,γ )) f, x) f ) x)} +2 f i) x) { B,β,γ i )) t x) i,x) f ) x)} +{B,β,γ )) ε t, x)t x) +2,x)} : E 1 +E 2. Fist, we have E 1 +2 i f i) x) i j i j ) x)i j B,β,γ )) t j,x) f ) x) f) x) {B,β,γ! )) t,x)!} + f+1) x) {+1) x) B,β,γ +1)! )) t,x) +B,β,γ )) t +1,x)}+ f+2) x) +2)! { +2)+1) x 2 B,β,γ 2 )) t,x)++2) x) B,β,γ )) t +1,x)+B,β,γ )) t +2,x)} f ) x) { Γ /γ + ) Γ /γ + 1) + β) Γ/γ+1)Γ/γ) 1} + f+1) x) +1)! {+1) x) Γ/γ+)Γ/γ +1) + β) Γ/γ+1)Γ/γ)! + +1 Γ/γ++1)Γ/γ ) + β) +1 Γ/γ+1)Γ/γ) +1)!x 36) + +2 Γ/γ++2)Γ/γ 1) + β) +2 Γ/γ+1)Γ/γ) +2)! x 2 2 + +2) +1 Γ/γ++1)Γ/γ 1) + β) +2 Γ/γ+1)Γ/γ) +1) + γ 1)}+1)!x + +1)+2) Γ/γ+)Γ/γ ) + β) Γ/γ+1)Γ/γ) + /γ ) }!). 2 { { 37) Now, the coefficiets of f ) x), f +1) x),adf +2) x) i the above expessio ted to γ 1) β), γ1+2x)+ βx, ad x1 + γx), espectively, which follows by usig iductio hypothesis o ad takig the liit as.hece,i ode to pove 34), it is sufficiet to show that E 2 as, which follows alog the lies of the poof of Theoe 6 ad by usig Reak 2 ad Leas 1 ad 4. Reak 8. Paticula case β was discussed i Theoe 4.1 i [4], which says that the coefficiet of f +1) x) coveges to 1 + 2γx) but it coveges to γ1 + 2x) ad we get this by puttig βi the above theoe. Defiitio 9. The th ode odulus of cotiuity ω f, δ, [a, b]) fo a fuctio cotiuous o [a, b] is defied by ω f, δ, [a, b]) 38) sup { Δ h f x) : h δ; x,x+h [a, b]}. Fo 1, ω f, δ) is usual odulus of cotiuity.

8 Iteatioal Joual of Aalysis Theoe 1. Let f C μ [, ) fo soe μ>ad <a< a 1 <b 1 <b<.the,fo sufficietly lage, oe has B,β,γ )) f, ) f ) C[a 1,b 1 ] M 1 ω 2 f ),,[a 1,b 1 ]) + M 2 1 f μ, 39) whee M 1 M 1 ) ad M 2 M 2, f). Poof. Let us assue that < a < a 1 < b 1 < b <. Fo sufficietly sall η >, we defie the fuctio f η,2 coespodig to f C μ [a, b] ad t [a 1,b 1 ] as follows: η/2 f η,2 t) η 2 f t) Δ 2 h f t)) dt 1dt 2, 4) η/2 whee h t 1 +t 2 )/2 ad Δ 2 h isthesecododefowad diffeece opeato with step legth h. Fo f C[a, b], the fuctios f η,2 aekowasthestekloveaofode2, which satisfy the followig popeties [11]: a) f η,2 has cotiuous deivatives up to ode 2 ove [a 1,b 1 ]. b) f ) η,2 C[a 1,b 1 ] M 1 η ω 2 f, η, [a, b]), 1, 2. c) f f η,2 C[a1,b 1 ] M 2 ω 2 f, η, [a, b]). d) f η,2 C[a1,b 1 ] M 3 f μ, whee M i, i1,2,3, ae cetai costats which ae diffeet i each occuece ad ae idepedet of f ad η. We ca wite by lieaity popeties of B,β,γ, B,β,γ )) f, ) f ) C[a 1,b 1 ] Theefoe, by applyig popeties c) ad d) of the fuctio f η,2,weobtai P 2 M 7 1 { f μ +δ 2 ω 2 f ),μ,[a, b])}. 45) Fially we will estiate P 1,choosiga, b satisfyig the coditios <a<a <a 1 <b 1 <b <b<.supposeħt) deotes the chaacteistic fuctio of the iteval [a,b ]. The P 1 B,β,γ )) ħ t) f t) f η,2 t)),) C[a1,b 1 ] + B,β,γ )) 1 ħt)) f t) f η,2 t)),) C[a1,b 1 ] : P 4 +P 5. By Lea 5, we have Hece, B,β,γ )) ħ t) f t) f η,2 t)),x) Γ/γ+)Γ/γ +1) + β) Γ/γ+1)Γ/γ) b γ,k+,γ t) ħ t) f ) +β ) f) η,2 k + t )) dt. +β p +γ,k,γ x) 46) 47) B,β,γ ) ħ t) f t) f η,2 t)),) C[a1,b 1 ] 48) M 8 f) f ) η,2 C[a.,b ] B,β,γ )) f f η,2,) C[a1,b 1 ] + B,β,γ )) f η,2,) f ) η,2 C[a 1,b 1 ] + f) f ) η,2 C[a 1,b 1 ] : P 1 +P 2 +P 3. 41) Now, fo x [a 1,b 1 ] ad t [, ) \ [a,b ],wechoosea δ>satisfyig )/ + β) x δ. Theefoe, by Lea 4 ad the Cauchy-Schwaz iequality, we have I B,β,γ )) 1 ħt)) f t) f η,2 t)),x), Sice f ) η,2 f) ) η,2 t), bypopetyc)ofthefuctiof η,2, we get P 3 M 4 ω 2 f ),η,[a, b]). 42) Next, o a applicatio of Theoe 7, it follows that P 2 M 5 1+2 i fi) η,2 C[a,b]. 43) Usig the itepolatio popety due to Goldbeg ad Mei [12], fo each j,+1,+2,itfollowsthat fi) η,2 C[a,b] M 6 { f η,2 C[a,b] + f+2) η,2 }. 44) C[a,b] I i i,j Q i,j,,γ x) {x 1 + γx)} p,k,γ x) k x j b,k,γ t)1 ħt)) + ft +β ) f η,2 +β ) dt + Γ/γ+) Γ/γ) 1 + γx) /γ 1 ħ)) f +β ) f η,2 +β ). 49)

Iteatioal Joual of Aalysis 9 Fo sufficietly lage, the secod te teds to zeo. Thus, I M 9 f μ t x δ i,j i p,k,γ x) k x j b,k,γ t) dt M 9 f μ δ 2 p,k,γ x) k x j i i,j b,k,γ t) dt) 4 b,k,γ t) +β x) dt) M 9 f μ δ 2 i i,j p,k,γ x) k x 2j ) 4 b,k,γ t) +β x) dt). p,k,γ x) Hece, by usig Reak 2 ad Lea 1, we have 5) I M 1 f μ δ 2 O i+j/2) ) ) M 11 q f μ, 51) whee q /2). Nowchoosig>satisfyig q 1, we obtai I M 11 1 f μ. Theefoe, by popety c) of the fuctio f η,2 t),weget P 1 M 8 f) f ) η,2 C[a,b ] + M 11 1 f μ M 12 ω 2 f ),η,[a, b])+ M 11 1 f μ. 52) Choosig η, the theoe follows. Reak 11. I the last decade the applicatios of q-calculus i appoxiatio theoy ae oe of the ai aeas of eseach. I 28, Gupta [13] itoduced q-dueye opeatos whose appoxiatio popeties wee studied i [14]. Moe wok i this diectio ca be see i [15 17]. A Dueye type q-aalogue of the B,β,γ f, x) is itoduced as follows: B,β,γ,q f, x) p q,k,γ x) /A +p q,,γ x) f [] q +β ), q k b q,k,γ t) f[] q t+ [] q +β )d qt 53) whee /A p q,k,γ x) Γ /2 q /γ + k) qk2 Γ q k+1) Γ q /γ) qγx) k 1 + qγx) /γ)+k q b q,k,γ x) /2 Γ q /γ+k+1) γqk2 Γ q k) Γ q /γ + 1) f x) d q x1 q) γt) k 1 1 + γt) /γ)+k+1 q f q,, A ) q, A >. A 54) Notatiosusedi53)cabefoudi[18].Fotheopeatos 53), oe ca study thei appoxiatio popeties based o q-iteges. Coflict of Iteests The authos declae that thee is o coflict of iteests egadig the publicatio of this eseach aticle. Ackowledgets The authos would like to expess thei deep gatitude to the aoyous leaed efeees) ad the edito fo thei valuable suggestios ad costuctive coets, which esulted i the subsequet ipoveet of this eseach aticle. Refeeces [1] V. Gupta, D. K. Vea, ad P. N. Agawal, Siultaeous appoxiatio by cetai Baskakov-Dueye-Stacu opeatos, Joual of the Egyptia Matheatical Society, vol. 2, o. 3,pp.183 187,212. [2] D.K.Vea,V.Gupta,adP.N.Agawal, Soeappoxiatio popeties of Baskakov-Dueye-Stacu opeatos, Applied Matheatics ad Coputatio, vol.218,o.11,pp.6549 6556, 212. [3] V. N. Misha, K. Khati, L. N. Misha, ad Deepala, Ivese esult i siultaeous appoxiatio by Baskakov-Dueye- Stacu opeatos, Joual of Iequalities ad Applicatios, vol. 213, aticle 586, 11 pages, 213. [4] V. Gupta, Appoxiatio fo odified Baskakov Dueye type opeatos, Rocky Moutai Joual of Matheatics,vol.39, o.3,pp.825 841,29. [5]V.Gupta,M.A.Noo,M.S.Beiwal,adM.K.Gupta, O siultaeous appoxiatio fo cetai Baskakov Dueye type opeatos, Joual of Iequalities i Pue ad Applied Matheatics,vol.7,o.4,aticle125,26. [6] V. N. Misha ad P. Patel, Appoxiatio popeties of q-baskakov-dueye-stacu opeatos, Matheatical Scieces,vol.7,o.1,aticle38,12pages,213.

1 Iteatioal Joual of Aalysis [7] P. Patel ad V. N. Misha, Appoxiatio popeties of cetai suatio itegal type opeatos, Deostatio Matheatica,vol.48,o.1,pp.77 9,215. [8] V.N.Misha,H.H.Kha,K.Khati,adL.N.Misha, Hypegeoetic epesetatio fo Baskakov-Dueye-Stacu type opeatos, Bulleti of Matheatical Aalysis ad Applicatios, vol. 5, o. 3, pp. 18 26, 213. [9] V.N.Misha,K.Khati,adL.N.Misha, Osiultaeous appoxiatio fo Baskakov Dueye-Stacu type opeatos, JoualofUltaScietistofPhysicalScieces, vol. 24, o. 3, pp. 567 577, 212. [1] W. Li, The vooovskaja type expasio foula of the odified Baskakov-Beta opeatos, JoualofBaojiCollegeofAtsad Sciece Natual Sciece Editio),vol.2,aticle4,25. [11] G. Feud ad V. Popov, O appoxiatio by splie fuctios, i Poceedigs of the Cofeece o Costuctive Theoy Fuctio, Budapest, Hugay, 1969. [12] S. Goldbeg ad A. Mei, Miiu oduli of odiay diffeetial opeatos, Poceedigs of the Lodo Matheatical Society,vol.23,o.3,pp.1 15,1971. [13] V. Gupta, Soe appoxatio popeties of q-dueye opeatos, Applied Matheatics ad Coputatio, vol.197,o.1, pp.172 178,28. [14] A. Aal ad V. Gupta, O the Dueye type odificatio of the q-baskakov type opeatos, Noliea Aalysis: Theoy, Methods & Applicatios,vol.72,o.3-4,pp.1171 118,21. [15] G. M. Phillips, Bestei polyoials based o the q-iteges, Aals of Nueical Matheatics, vol.4,o.1 4,pp.511 518, 1997. [16] S. Ostovska, O the Lupaş q-aalogue of the Bestei opeato, The Rocky Moutai Joual of Matheatics,vol.36,o. 5, pp. 1615 1629, 26. [17] V. N. Misha ad P. Patel, O geealized itegal Bestei opeatos based o q-iteges, Applied Matheatics ad Coputatio,vol.242,pp.931 944,214. [18] V. Kac ad P. Cheug, Quatu Calculus, Uivesitext, Spige,NewYok,NY,USA,22.

Advaces i Opeatios Reseach http://www.hidawi.co Volue 214 Advaces i Decisio Scieces http://www.hidawi.co Volue 214 Joual of Applied Matheatics Algeba http://www.hidawi.co http://www.hidawi.co Volue 214 Joual of Pobability ad Statistics Volue 214 The Scietific Wold Joual http://www.hidawi.co http://www.hidawi.co Volue 214 Iteatioal Joual of Diffeetial Equatios http://www.hidawi.co Volue 214 Volue 214 Subit you auscipts at http://www.hidawi.co Iteatioal Joual of Advaces i Cobiatoics http://www.hidawi.co Matheatical Physics http://www.hidawi.co Volue 214 Joual of Coplex Aalysis http://www.hidawi.co Volue 214 Iteatioal Joual of Matheatics ad Matheatical Scieces Matheatical Pobles i Egieeig Joual of Matheatics http://www.hidawi.co Volue 214 http://www.hidawi.co Volue 214 Volue 214 http://www.hidawi.co Volue 214 Discete Matheatics Joual of Volue 214 http://www.hidawi.co Discete Dyaics i Natue ad Society Joual of Fuctio Spaces http://www.hidawi.co Abstact ad Applied Aalysis Volue 214 http://www.hidawi.co Volue 214 http://www.hidawi.co Volue 214 Iteatioal Joual of Joual of Stochastic Aalysis Optiizatio http://www.hidawi.co http://www.hidawi.co Volue 214 Volue 214