MA 323 Geometric Modelling Course Notes: Day 11 Barycentric Coordinates and de Casteljau s algorithm

Similar documents
MA 323 Geometric Modelling Course Notes: Day 12 de Casteljau s Algorithm and Subdivision

MA 323 Geometric Modelling Course Notes: Day 07 Parabolic Arcs

MA 323 Geometric Modelling Course Notes: Day 20 Curvature and G 2 Bezier splines

Berkeley Math Circle, May

Example 1: Finding angle measures: I ll do one: We ll do one together: You try one: ML and MN are tangent to circle O. Find the value of x

Introduction. Chapter Points, Vectors and Coordinate Systems

The Essentials of CAGD

Homework Assignments Math /02 Fall 2017

Mathematics Revision Guides Vectors Page 1 of 19 Author: Mark Kudlowski M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier VECTORS

Neutral Geometry. October 25, c 2009 Charles Delman

MATH 243 Winter 2008 Geometry II: Transformation Geometry Solutions to Problem Set 1 Completion Date: Monday January 21, 2008

SMT Power Round Solutions : Poles and Polars

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true?

Trans Web Educational Services Pvt. Ltd B 147,1st Floor, Sec-6, NOIDA, UP

Homework Assignments Math /02 Fall 2014

Arcs and Inscribed Angles of Circles

Chapter 10. Properties of Circles

Readings for Unit I from Ryan (Topics from linear algebra)

Secondary 1 - Secondary 3 CCSS Vocabulary Word List Revised Vocabulary Word Sec 1 Sec 2 Sec 3 absolute value equation

GALOIS THEORY : LECTURE 11

The sum x 1 + x 2 + x 3 is (A): 4 (B): 6 (C): 8 (D): 14 (E): None of the above. How many pairs of positive integers (x, y) are there, those satisfy

1.1. The analytical denition. Denition. The Bernstein polynomials of degree n are dened analytically:

Curves. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Taku Komura

1 Hanoi Open Mathematical Competition 2017

Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths

Lecture 4: Affine Transformations. for Satan himself is transformed into an angel of light. 2 Corinthians 11:14

(D) (A) Q.3 To which of the following circles, the line y x + 3 = 0 is normal at the point ? 2 (A) 2

Maharashtra State Board Class X Mathematics - Geometry Board Paper 2016 Solution

hmhco.com Adaptive. Intuitive. Transformative. AGA Scope and Sequence

From the SelectedWorks of David Fraivert. David Fraivert. Spring May 8, Available at:

Geometry JWR. Monday September 29, 2003

4 Arithmetic of Segments Hilbert s Road from Geometry

Lecture 4: Affine Transformations. for Satan himself is transformed into an angel of light. 2 Corinthians 11:14

1 2n. i=1. 2m+1 i = m, while. 2m + 1 = 1. is the best possible for any odd n.

0811ge. Geometry Regents Exam

The Great Wall of David Shin

CONTINUED FRACTIONS AND THE SECOND KEPLER LAW

INVERSION IN THE PLANE BERKELEY MATH CIRCLE

Integrated Math 3 Math 3 Course Description:

Integrated Mathematics I, II, III 2016 Scope and Sequence

0110ge. Geometry Regents Exam Which expression best describes the transformation shown in the diagram below?

CO-ORDINATE GEOMETRY. 1. Find the points on the y axis whose distances from the points (6, 7) and (4,-3) are in the. ratio 1:2.

Definition: A vector is a directed line segment which represents a displacement from one point P to another point Q.

Theorem 1.2 (Converse of Pythagoras theorem). If the lengths of the sides of ABC satisfy a 2 + b 2 = c 2, then the triangle has a right angle at C.

MAT1035 Analytic Geometry

1966 IMO Shortlist. IMO Shortlist 1966

This pre-publication material is for review purposes only. Any typographical or technical errors will be corrected prior to publication.

Mathematics 3210 Spring Semester, 2005 Homework notes, part 8 April 15, 2005

Extra Problems for Math 2050 Linear Algebra I

CBSE Class IX Syllabus. Mathematics Class 9 Syllabus

9.1 Circles and Parabolas. Copyright Cengage Learning. All rights reserved.

0811ge. Geometry Regents Exam BC, AT = 5, TB = 7, and AV = 10.

PRACTICE TEST 1 Math Level IC

Some Results Concerning Uniqueness of Triangle Sequences

Chapter (Circle) * Circle - circle is locus of such points which are at equidistant from a fixed point in

UNIT NUMBER 8.2. VECTORS 2 (Vectors in component form) A.J.Hobson

COURSE STRUCTURE CLASS IX Maths

Ordinary Differential Equation Introduction and Preliminaries

QUESTION BANK ON STRAIGHT LINE AND CIRCLE

22 SAMPLE PROBLEMS WITH SOLUTIONS FROM 555 GEOMETRY PROBLEMS

2005 Palm Harbor February Invitational Geometry Answer Key

of a circle Q that can be inscribed in a corner of the square tangent to two sides of the square and to the circle inscribed in the square?

Algebra II Learning Targets

Regent College. Maths Department. Core Mathematics 4. Vectors

Curves, Surfaces and Segments, Patches

ELEMENTARY LINEAR ALGEBRA

Calgary Math Circles: Triangles, Concurrency and Quadrilaterals 1

SMT China 2014 Team Test Solutions August 23, 2014

1 Solution of Final. Dr. Franz Rothe December 25, Figure 1: Dissection proof of the Pythagorean theorem in a special case

High School Math. Grades Scope and Sequence

Spring, 2006 CIS 610. Advanced Geometric Methods in Computer Science Jean Gallier Homework 1

Geometric meanings of the parameters on rational conic segments

16 circles. what goes around...

Classical Theorems in Plane Geometry 1

An O(h 2n ) Hermite approximation for conic sections

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4

Correlation of 2012 Texas Essential Knowledge and Skills (TEKS) for Algebra I and Geometry to Moving with Math SUMS Moving with Math SUMS Algebra 1

( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear.

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Fall 2016 Solutions to the Quizzes

STAAR STANDARDS ALGEBRA I ALGEBRA II GEOMETRY

NC Math 3 Draft Standards

Exhaustion: From Eudoxus to Archimedes

COURSE STRUCTURE CLASS -IX

1 Euclidean geometry. 1.1 The metric on R n

CSC 470 Introduction to Computer Graphics. Mathematical Foundations Part 2

1 / 23

Class X Delhi Math Set-3 Section A

STEP Support Programme. STEP II Vectors Questions: Solutions

VAISHALI EDUCATION POINT (QUALITY EDUCATION PROVIDER)

7. m JHI = ( ) and m GHI = ( ) and m JHG = 65. Find m JHI and m GHI.

Free Sample set of investigative questions

CBSE OSWAAL BOOKS LEARNING MADE SIMPLE. Published by : 1/11, Sahitya Kunj, M.G. Road, Agra , UP (India) Ph.: ,

Two applications of the theorem of Carnot

A4 Linear Equations & Inequalities in Two Variables 15 days. A5 Quadratic Functions. 5 days A-CED 2 A-CED 3 A-CED 4 A-REI 5 A-REI 6 A-REI 10 A-REI 12

Quiz 2 Practice Problems

BUILT YOU. ACT Pathway. for

37th United States of America Mathematical Olympiad

MA 460 Supplement on Analytic Geometry

Mathematics AKS

Correctness of depiction in planar diagrams of spatial figures

Transcription:

MA 323 Geometric Modelling Course Notes: Day 11 Barycentric Coordinates and de Casteljau s algorithm David L. Finn December 16th, 2004 Today, we introduce barycentric coordinates as an alternate to using a rigid coordinate system, and immediately use barycentric coordinates to define de Casteljau s algorithm in a pure geometric manner without recourse to analytic geometry. Barycentric coordinates will be one of the main tools that we will use in the remainder of the course, as they provide a geometric manner to construct coordinate system and avoid the explicit use of coordinate systems. The constructions that we use are the basis for affine geometry which is the geometry of vector spaces, and is the natural generalization of the geometry of the Euclidean plane without the use of angles and distances. 11.1 Oblique Coordinate Systems We start with the abstract description of a coordinate system in a plane, and develop our description of a point in the plane from the vector description of a coordinate system. Recall a coordinate system (an oblique coordinate system) is given by choosing two intersecting lines l and m. Let O be the point of intersection, A be a different point on line l than O and B be a different point on line m than O. The coordinates of a point P in the plane described by O, A and B are given by letting X be the intersection of a line parallel to m through P with the line l and Y be the intersection of a line parallel to l through P with the line m. See diagram below. We then let x be number representing the proportion OX/OA if X and A are on the same side of O, and we let x = OX/OA if X and A are on opposite sides of O (a negative number represents the other side of O than A). Likewise, we define y through the proportion OY/OB. In terms of vectors (where a vector is defined as the difference of two points and the ray from one point to another point, and multiples of a vector are obtained by considering the line through the two points and constructing a line segment that is a multiple of the original line segment), we thus have OX = x OA and OY = y OB. Recalling that two vectors P Q and RS are equal if a line through P to QS intersects the extended line RS at the point R (the pair of line segments P Q, RS are opposite sides of a parallelogram and the pair of line segments P R, QS are opposite sides of a parallelogram), we can write OP = x OA + y OB

11-2 Figure 1: Construction of an Oblique Coordinate System because x OA = OX, y OB = OY = XP ). OB = B O, we have P = O + x OA + y OB Writing OP = P O, OA = A O, and = O + x (A 0) + y (B 0) = (1 x y) O + x A + y B. The second description gives us a unique description of every point in the plane defined by three non-collinear points O, A, B directly in terms of the points rather than through defining vectors. We can extend this description of a point in a plane to a point in space by using four non planar points to define three (linearly independent) vectors with a common base point. Thus, we can write a point P in space in terms of four non-planar points O, A, B, C as P = O + x OA + y OB + z OC P = (1 x y z) O + x A + y B + z C. Notice that both the description of a point in a plane or a point in space can be written in the form P = α 0 P 0 + α 1 P 1 + + α n P n where {α i } is a sequence of numbers with i α i = 1 and {P i } is a sequence of points and n = 2 or n = 3. This generalizes further to the space of n-dimensional points E n, where E n consists of the space of points that can be represented as n-tuples of real numbers. We are reserving the notation R n for the n-dimensional vector space of real numbers. This is a notational convenience to distinguish between points and vectors. To state this generalization in full detail, we define an affine frame as a point O and a set of n linearly independent vectors {v 1, v 2,, v n } in R n. Since every vector u in R n can be written uniquely as setting OP = u we get u = x 1 v 1 + x 2 v 2 + + x n v n, P = O + x 1 v 1 + x 2 v 2 + + x n v n.

11-3 Alternatively, an affine frame for E n can be described as collection of n + 1 points in general position {P 0, P 1,, P n }. The term in general position means that the vectors v 1 = P 1 P 0, v 2 = P 2 P 0,, v n = P n P 0 are linearly independent. The term general position is meant to reflect that if you choose n + 1 at random you should have an affine frame. Rewriting this description, we have the point P in the affine frame {P i } to be P = n α i P i i=0 where n i=0 α i = 1. The way to view an affine frame is as the point P 0 as the origin of a coordinate system and the vectors v i = P i P 0 = P 0 P i as describing the coordinate axes. 11.2 Barycentric Coordinates We have just shown that every point in a plane can be described as the addition of three points provided the sum of the coefficients of the points add up to 1. This is an important fact that we will be using throughout the course. This generalizes to higher dimensions, but for now we concentrate on constructions in the plane. Every point P in the plane can be written as a combination of three given non-collinear points P 0, P 1 and P 2 as follows P = α 0 P 0 + α 1 P 1 + α 2 P 2 with α 0 + α 1 + α 2 = 1. The triple (α 0, α 1, α 2 ) is called the barycentric coordinates of the point P with respect to the points P 0, P 1, and P 2. The coefficients α 0, α 1, and α 2 of the points P 0, P 1, P 2 represent the weight or influence of the point P 0, P 1 and P 2 in determining the position of the point P. The notion of barycentric coordinates of a point can be extended to an arbitrary number of points (irrevelant of the dimension of the space). In particular, given points {P i } and coefficients {α i } with α i = 1 we can describe a point P as P = α 0 P 0 + α 1 P 1 + + α n P n. This means that given four points in a plane, we can describe a point as α 0 P 0 +α 1 P 1 +α 2 P 2 + α 3 P 3. The description in this manner is not unique, but it is possible. The uniqueness of the description is a property of the dimension of the space, and whether or not the points {P i } form an affine frame. It is worth noting that in affine geometry, the following basic result specifies the manner in which points {P 0, P 1, P 2,, P n } can be combined. An affine combination is defined to be a sum αi P i for numbers α i and points P i. Affine combinations make sense in two situations either αi = 0 or α i = 1. In the case α i = 0, the combination α i P i is a vector and in the case α i = 1, the combination is a point. To examine in detail the meaning of the coefficients α i, let s consider the barycentric coordinates of a point P on a line AB. Any point on the line AB can be written as P = (1 t) A + t B.

11-4 Figure 2: Barycentric Coordinates of a Line When t = 0, we get the point A and when t = 1 we get the point B. A third special point on the line AB is the midpoint and this is obtained when t = 1/2. Using barycentric coordinates, any point on the line AB can be written as α A + β B with α + β = 1. When α and β are both greater than zero, the point P = α A + β B is between the points A and B. When coefficients α is close to one, the point P is close to the point A. Similarly when the coefficient β is close to one, then the point P is close to B. When one of the coefficients is greater than one then the other must be less than zero, which will imply that the point is outside the segment AB, and closer to the point with a positive coefficient. This may be seen by the example P = 5 3 A 2 3 B. Write P = A + 2 3 (A B) and then P must be on other side of A than B. In general, the points on the line segment are obtained by comparing the line AB with a number line, and associating the point A with the number 0, the point B with the number 1. Let t be an arbitrary number on the number line. If the point P on the line AB is described by P = (1 t)a + tb, this means that proportion of the lengths of the segments AP :: BP is given by the fraction t/(1 t). The number t/(1 t) is called the ratio of the points A, P, B and denoted by ratio(a, P, B). In the diagram below, the line OL represents the number line with the segment OL being of unit length and the point T on the line OL represents the length t (i.e. OT has length t). The proportion AP :: BP representing the fraction t/(1 t) means that the proportions AP :: BP equals the proportion OT :: LT. An alternative method for interpreting the coefficients α and β in representing the point P on the line AB is to let α = P B :: AB where the ratio is positive if P is on the same side of B as A and β = AP :: AB where the ratio is positive if P is on the same side of A as B. β α Figure 3: Alternate view of barycentric coordinates For a point P in the plane, the coefficients α 0, α 1 and α 2 represent the contribution of the points P 0, P 1 and P 2 in representing the point P, and again if α i is close to 1 the point

11-5 P is close to P i. An important fact about barycentric coordinates is that the point P is inside the triangle P 0 P 1 P 2 if all the barycentric coordinates are positive. One important point inside a triangle is the center or centroid of the triangle. This point is described by the barycentric coordinates (α 0, α 1, α 2 ) = (1/3, 1/3, 1/3). This point makes the area of the triangles P 0 P 1 P, P 1 P 2 P and P 0 P 2 P all equal, and thus the triangle is balanced at the point P assuming the triangle is made out of a homogeneous material; a material with constant density. To calculate the barycentric coordinates of a point P in a plane with respect to an affine frame P 0, P 1, P 2, one can proceed as follows. First, determine the intersection of the lines P P 0 and P 1 P 2. Call this point Q. The point Q has barycentric coordinates Q = β 1 P 1 + β 2 P 2. With respect to P 0 and Q the point P has barycentric coordinates γ 0 P 0 +γ 1 Q, which yields the coordinates P = γ 0 P 0 + γ 1 (β 1 P 1 + β 2 P 2 ) = γ 0 P 0 + (γ 1 β 1 ) P 1 + (γ 1 β 2 ) P 2. An illustration of this calculation is in the diagram below. β β α α α α α Figure 4: Barycentric coordinates in a plane Determining a point with barycentric coordinates (α 0, α 1, α 2 ) for an affine frame {P 0, P 1, P 2 } may be done by reversing the above procedure. Define β 1 = α 1 /(1 α 0 ) and β 2 = α 2 /(1 α 0 ), then determine the point Q = β 1 P 1 +β 2 P 2 on the line P 1 P 2. The point P is determined by finding the point P = α 0 P 0 + (1 α 0 ) Q. Notice that in this construction, one does not need to know the coordinates of the points {P 0, P 1, P 2 } and we have only used repeated linear interpolation. The above procedure is just decomposing barycentric coordinates into repeated linear interpolation. This is a useful way of viewing barycentric coordinates. In fact, the following quote provides a fundamental viewpoint of linear interpolation. Most of the computations that we use in CAGD may be broken down into seemingly trivial steps - sequences of linear interpolation. It is therefore important to understand the properties of these basic building blocks. (Opening of Chapter Three: Linear Interpolation in CAGD: Curves and Surfaces in Geometric Design by G. Farin ) This viewpoint will be justified shortly when we start building curves from barycentric coordinates.

11-6 β β α α α α α Figure 5: Barycentric coordinates by repeated linear interpolation There is an alternate view of barycentric coordinates of a point in a plane P with respect to the non-collinear points P 0, P 1, P 2 can be interpreted as a ratio of areas. The coefficient α 0 = P P 1 P 2 / P 0 P 1 P 2, the coefficient α 1 = P P 0 P 2 / P 0 P 1 P 2, and the coefficient α 2 = P P 0 P 1 / P 0 P 1 P 2, where ABC stands for the area of the triangle with vertices A, B, C. This interpretation makes sense when P is inside the triangle formed by P 0 P 1 P 2, and outside the triangle once one defines a signed area. [Area is a signed quantity, in the right mathematical notation.] Generalizing this viewpoint, in space, one can interpret the coefficients with respect to four non-planar points as a ratio of volumes. 11.3 Affine Construction of a Parabola The geometric construction of a parabola where a parabolic arc from the two endpoints of the parabolic arc and the intersection of the tangent lines at the endpoints (see diagram below) is actually an affine construction Figure 6: Affine construction of a parabola Rather than just recall the formula, we will derive it here in another way. A parabolic arc passing through p 0 at time t = 0 and through p 1 at t = 1 can be given by c(t) = (1 t) 2 p 0 + a(t) p 1 + t 2 p 2 where a(t) is the basis function for the other given point p 1. This basis function must satisfy a(0) = 0 and a(1) = 0 so a(t) = b t(1 t). We want c (0) = λ (p 1 p 0 ) and c (1) = µ (p 2 p 1 ) so that p 1 is the intersection of the tangent lines. Differentiating, we have c (t) = 2(1 t) p 0 + b(1 t) p 1 bt p 1 + 2t p 2

11-7 from which it follows that c (0) = 2 p 0 +b p 1 and c (1) = 2 p 2 b p 1. Taking b = µ = λ = 2. We thus have the parabolic arc c(t) = (1 t) 2 p 0 + 2t(1 t) p 1 + t 2 p 2. We note that this is an affine construction because the coefficients of the points (1 t) 2, 2t(1 t) and t 2 sum to one, (1 t) 2 + 2t(1 t) + t 2 = 1 2t + t 2 + 2t 2t + t 2 = 1. Using the viewpoint of barycentric coordinates as repeated linear interpolation, the parabolic arc may be viewed as c(t) = (1 t)((1 t)p 0 + tp 1 ) + t((1 t)p 1 + tp 2 ) where we find points on the line segment p 0 p 1 and p 1 p 2 and then interpolate between these two points. This construction geometrically can be done by noting that the tangent line of c at t = τ (with 0 τ 1), L = c(τ) + c (τ) s = (1 τ) 2 p 0 + 2τ(1 τ) p 1 + τ 2 p 2 + s (2(1 τ) (p 1 p 0 ) + 2τ(p 2 p 1 )), = (1 τ)(1 τ 2s) p 0 + 2(τ(1 τ) + s(1 2τ)) p 1 + τ(τ + 2s) p 2 intersects the segment p 0 p 1 at and the segment p 1 p 2 at q 0 = (1 τ) p 0 + τ p 1 q 1 = (1 τ) p 1 + τ p 2. This follows by noting that using barycentric coordinates the intersection of L with the line segment p 0 p 1 occurs when the coefficient of p 2 equals 0, which implies s = τ/2 and substituting this into L yields (1 τ) p 0 + τ p 1. Similarly the intersection of L with p 1 p 2 occurs when the coefficient of p 0 equals 0, which implies s = (1 τ)/2 and substituting this into L yields (1 τ) p 1 + τ p 2. Thus, the point c(τ) = (1 τ) q 0 + τ q 1. The parabola can then be obtained by repeated linear interpolation, see diagram below. Figure 7: Repeated linear interpolation construction of a parabola This idea of repeated linear interpolation to create a curve is the crux of de Casteljau s algorithm. This idea also motivates the majority of the the methods used in the remainder of this course, as most of them are extension and generalization of de Casteljau s algorithm. It is for this reason that the quote near the end of the previous subsection is pertinent and poignant.

11-8 11.4 de Casteljau s algorithm Given a sequence of points p 0, p 1,, p n, de Casteljau s algorithm provides a method for constructing a curve from these points. The curve will not necessarily pass through these points. [The algorithm will not construct an interpolant to these points, solve the interpolation problem given the points.] We thus call the points p 0, p 1,, p n control points, as they will control the shape of the curve, through the algorithm. The linear interpolant (piecewise linear curve) through the points p 0, p 1,, p n is called the control polyline of the points. The control polyline will be important in later section, when we want to deduce geometric properties about the curve. From the control points p 0, p 1,, p n, we define points on the line segments p i p i+1 by choosing a value t and defining p 1 i = (1 t) p i + t p i+1. Notice that we defined n points in this manner as i = 0, 1, 2,, n 1. From the n points p 1 i, we can repeat the process and define the n 1 points p 2 i = (1 t) p1 i + t p1 i+1 on the line segments p1 i p1 i+1. This process can be repeated defining p j+1 i = (1 t) p j i + t pj i+1 for i = 0, 1, 2,, n j 1 for j = 0, 1, 2,, n 1 where p 0 i = p i. The end of this process produces a point p n 0 on a polynomial curve of degree n. An example of this procedure is shown in the diagram below constructing a cubic curve. Figure 8: Construction of a cubic curve by repeated linear interpolation It is worth noting that in the diagram, we obtain two approximations to the curve from using linear interpolation. The first linear interpolant uses the control polyline the points p 0, p 1, p 2, p 3. The second linear interpolant uses the points p 0 0 = p 0, p 1 0, p 2 0, p 3 0, p 2 1, p 1 2, p 0 3 = p 3. The second interpolant is better, that is closer to the curve. In general, one can use de Casteljau s algorithm to produce points on the curve, and then approximate the curve by using interpolation on the points created. In the diagram below, the points q 0, q 1, q 2, q 3, q 4 are created by applying de Casteljau s algorithm with t = 1/4, t = 1/2, and t = 3/4.

11-9 Illustrating de Casteljau s algorithm! Figure 9: Illustration of de Casteljau s algorithm

11-10 We can write the curve generated by de Casteljau s algorithm as an affine combination of the control points by expanding the iterative expressions. We thus obtain a basis function representation of the curve c(t) as the affine combination, c(t) = α 0 (t) p 0 + α 1 (t) p 1 + + α n (t) p n where α 0 (t)+α 1 (t)+ +α n (t) = 1. Determining the functions α i (t) is standardly done by induction (see the Section 4-4). Here, we compute coefficients for the case of cubic curves. We note from the parabolic case (p 2 i ), we have p 2 i = (1 t) p 1 i + t p 1 i+1 = (1 t) ((1 t) p i + t p i+1 ) + t ((1 t) p i+1 + t p i+2 ) = (1 t) 2 p i + 2t(1 t) p i+1 + t 2 p i+2, which is the case for quadratic curves on p i, p i+1, p i+2. For cubic curves, we thus have p 3 0 = (1 t) p 2 0 + t p 2 1 = (1 t) ((1 t) 2 p 0 + 2t(1 t) p 1 + t 2 p 2 ) + t ((1 t) 2 p 1 + 2t(1 t) p 2 + t 3 p 3 ) = (1 t) 3 p 0 + 3t(1 t) 2 p 1 + 3t 2 (1 t) p 2 + t 3 p 3 We note that (1 t) 3 + 3t(1 t) 2 + 3t 2 (1 t) + t 3 = (1 t + t) 3 = 1 3 = 1 by the binomial theorem. The functions (1 t) 3, 3t(1 t) 2, 3t 2 (1 t), t 3 are plotted below. 1 0 t 1 Figure 10: Basis functions for cubic functions from de Casteljau s algorithm

11-11 11.5 Exercises 1. (BARYCENTRIC COMPUTATIONS) Consider the triangle ABC below. Determine the position of the the points described by (a) P = 1 4 A + 1 2 B + 1 4 C (b) P = 1 3 A + 1 2 B + 1 6 C (c) P = 1 6 A + 2 3 B + 1 2 C (d) P = A + 3 2 B + 1 2 C Figure 11: Compute barycentric coordinates of points from triangle ABC 2. (BARYCENTRIC COMPUTATIONS) Determine the barycentric coordinates of the center of the circumscribed and inscribed circles of the points A = [1, 2], B = [2, 5], C = [6, 1]. [Circumscribed circle is the circle with each vertex of the triangle is on the circle and the inscribed circle is the circle with the sides of the triangle as tangents to the circle.] 3. (THOUGHT PROBLEM) Are the barycentric coordinates of the center of the circumscribed circle of a triangle the same for each triangle or do the coordinates vary with the triangle? What about the barycentric coordinates of the inscribed circle of a triangle?

11-12 4. Complete the interactive exercises for de Casteljau s algorithm. 5. Apply de Casteljau s algorithm on the control points below when t = 1/3 and t = 1/2. Figure 12: Apply de Casteljau s algorithm with these control points 6. COMPUTATIONAL PROBLEM: Show that the tangent line of the curve c(t) generated by de Casteljau s algorithm when t = 0 is given by the line through p 1 and p 0, and likewise the tangent line when t = 1 is given by the line through p n 1 and p n. 7. COMPUTATIONAL PROBLEM: Determine the derivative of P (t) generated by de Casteljau s algorithm in terms of the intermediary points P j i (t). The tangent line should be obvious from the interactive exercises. [Show analytically that this is the correct tangent line, by computing the derivative.] 8. THOUGHT PROBLEM: Can you define a polygon (from the control points) that necessarily contains the curve generated by de Casteljau s algorithm? Why or why not?