CHARACTERISTICS OF SITE-SPECIFIC AMPLIFIACTION FUNCTIONS MEASURED IN MONTENEGRO

Similar documents
SCALING LAWS FOR FOURIER ACCELERATION SPECTRA IN FORMER YUGOSLAVIA

SOIL-STRUCTURE INTERACTION, WAVE PASSAGE EFFECTS AND ASSYMETRY IN NONLINEAR SOIL RESPONSE

Synthetic Earthquake Ground Motions for the Design of Long Structures

THE NATURE OF SITE RESPONSE DURING EARTHQUAKES. Mihailo D. Trifunac

EMPIRICAL SCALING OF STRONG EARTHQUAKE GROUND MOTION - PART II: DURATION OF STRONG MOTION

Stochastic Simulation of Strong-Motion Records from the 15 April 1979 (M 7.1) Montenegro Earthquake

ATTENUATION OF PEAK HORIZONTAL AND VERTICAL ACCELERATION IN THE DINARIDES AREA

Department of Civil Engineering, Serbia

EMPIRICAL EVIDENCE FROM THE NORTHRIDGE EARTHQUAKE FOR SITE- SPECIFIC AMPLIFICATION FACTORS USED IN US BUILDING CODES

Shaking Hazard Compatible Methodology for Probabilistic Assessment of Fault Displacement Hazard

NEAR FIELD EXPERIMENTAL SEISMIC RESPONSE SPECTRUM ANALYSIS AND COMPARISON WITH ALGERIAN REGULATORY DESIGN SPECTRUM

Frequency-Dependent Amplification of Unsaturated Surface Soil Layer

ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT

Geotechnical Earthquake Engineering

SURFACE WAVES AND SEISMIC RESPONSE OF LONG-PERIOD STRUCTURES

STUDYING THE IMPORTANT PARAMETERS IN EARTHQUAKE SIMULATION BASED ON STOCHASTIC FINITE FAULT MODELING

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

ATTENUATION RELATIONSHIP FOR ESTIMATION OF PEAK GROUND VERTICAL ACCELERATION USING DATA FROM STRONG MOTION ARRAYS IN INDIA

IDENTIFICATION OF FIXED-BASE AND RIGID BODY FREQUENCIES OF VIBRATION OF SOIL-STRUCTURE SYSTEMS FROM RECORDED RESPONSE WITH MINIMUM INSTRUMENTATION

Effects of Surface Geology on Seismic Motion

2C09 Design for seismic and climate changes

CHARACTERIZATION OF DIRECTIVITY EFFECTS OBSERVED DURING 1999 CHI-CHI, TAIWAN EARTHQUAKE

Liquefaction: Additional issues. This presentation consists of two parts: Section 1

PREDICTION OF AVERAGE SHEAR-WAVE VELOCITY FOR GROUND SHAKING MAPPING USING THE DIGITAL NATIONAL LAND INFORMATION OF JAPAN

THE RESPONSE SPECTRUM

A study on nonlinear dynamic properties of soils

EQ Ground Motions. Strong Ground Motion and Concept of Response Spectrum. March Sudhir K Jain, IIT Gandhinagar. Low Amplitude Vibrations

Y. Shioi 1, Y. Hashizume 2 and H. Fukada 3

Updated Graizer-Kalkan GMPEs (GK13) Southwestern U.S. Ground Motion Characterization SSHAC Level 3 Workshop 2 Berkeley, CA October 23, 2013

Estimation of Deep Shear-Wave Velocity Profiles in Lima, Peru, Using Seismometers Arrays

Earthquakes. Forces Within Eartth. Faults form when the forces acting on rock exceed the rock s strength.

SEISMIC RESPONSE OF SINGLE DEGREE OF FREEDOM STRUCTURAL FUSE SYSTEMS

Wave Dispersion in High-Rise Buildings due to Soil-Structure Interaction ABSTRACT

Analytical and Numerical Investigations on the Vertical Seismic Site Response

EMPIRICAL SCALING OF STRONG EARTHQUAKE GROUND MOTION - PART I: ATTENUATION AND SCALING OF RESPONSE SPECTRA

Analysis Of Earthquake Records of Istanbul Earthquake Rapid Response System Stations Related to the Determination of Site Fundamental Frequency

APPENDIX J. Dynamic Response Analysis

Seismic Evaluation of Tailing Storage Facility

On the Estimation of Earthquake Induced Ground Strains from Velocity Recordings: Application to Centrifuge Dynamic Tests

Reconstituted Earthquake Ground Motion at Anchorage

EA (kn/m) EI (knm 2 /m) W (knm 3 /m) v Elastic Plate Sheet Pile

Soil Dynamics and Earthquake Engineering, 2001, 21(6),

By D.H. Lang 1 and J. Schwarz 1. This paper is an extract from

Embedded Foundation with Different Parameters under Dynamic Excitations

A NEW DEFINITION OF STRONG MOTION DURATION AND RELATED PARAMETERS AFFECTING THE RESPONSE OF MEDIUM-LONG PERIOD STRUCTURES

Seismic Analysis of Soil-pile Interaction under Various Soil Conditions

RESPONSE SPECTRA RECOMMENDED FOR AUSTRALIA

Seismic Microzonation via PSHA Methodology and Illustrative Examples

Liquefaction Potential Variations Influenced by Building Constructions

ESTIMATION OF INPUT SEISMIC ENERGY BY MEANS OF A NEW DEFINITION OF STRONG MOTION DURATION

STRUCTURAL HEALTH MONITORING OF TORRE CENTRAL BY THE WAVE METHOD

Some Problems Related to Empirical Predictions of Strong Motion

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating.

Simulation of Strong Ground Motions for a Shallow Crustal Earthquake in Japan Based on the Pseudo Point-Source Model

INELASTIC RESPONSES OF LONG BRIDGES TO ASYNCHRONOUS SEISMIC INPUTS

Micro Seismic Hazard Analysis

EFFECTIVE STRESS ANALYSES OF TWO SITES WITH DIFFERENT EXTENT OF LIQUEFACTION DURING EAST JAPAN EARTHQUAKE

QUAKE/W ProShake Comparison

Effect of Liquefaction on Displacement Spectra

REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE

EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE MECHANISMS SHOW MOTION

Seismic site response analysis for Australia

REAL-TIME ASSESSMENT OF EARTHQUAKE DISASTER IN YOKOHAMA BASED ON DENSE STRONG-MOTION NETWORK

Earthquakes and Earth s Interior

AVERAGE AND VARIATION OF FOCAL MECHANISM AROUND TOHOKU SUBDUCTION ZONE

RE-EVALUATION OF NONLINEAR SITE RESPONSE DURING THE 1964 NIIGATA EARTHQUAKE USING THE STRONG MOTION RECORDS AT KAWAGISHI-CHO, NIIGATA CITY

Preliminary Analysis for Characteristics of Strong Ground Motion from Gigantic Earthquakes

2C09 Design for seismic and climate changes

DEVELOPMENT OF EMPIRICAL CORRELATION BETWEEN SHEAR WAVE VELOCITY AND STANDARD PENETRATION RESISTANCE IN SOILS OF CHENNAI CITY

Figure Locations of the CWB free-field strong motion stations, the epicenter, and the surface fault of the 1999 Chi-Chi, Taiwan earthquake.

THE USE OF INPUT ENERGY FOR SEISMIC HAZARD ASSESSMENT WITH DIFFERENT DUCTILITY LEVEL

GROUND MOTION CHARACTERISTIC IN THE KAOHSIUNG & PINGTUNG AREA, TAIWAN

Effects of Surface Geology on Seismic Motion

Southern California ground motion envelopes over ranges of magnitudes, distances, and site conditions

Frequency-dependent Strong Motion Duration Using Total Threshold Intervals of Velocity Response Envelope

Effects of Surface Geology on Seismic Motion

POWER DESIGN METHOD. Mihailo D. Trifunac

SITE EFFECTS AND ARMENIAN SEISMIC CODE

K. Tokimatsu 1 and H. Arai 2. Professor, Dept. of Architecture and Building Engineering, Tokyo Institute of Technology, Japan 2

Long-period Ground Motion Characteristics of the Osaka Sedimentary Basin during the 2011 Great Tohoku Earthquake

Role of hysteretic damping in the earthquake response of ground

New Prediction Formula of Fourier Spectra Based on Separation Method of Source, Path, and Site Effects Applied to the Observed Data in Japan

2C09 Design for seismic and climate changes

AN ANALYTICAL MODEL FOR DEFLECTION OF LATERALLY LOADED PILES

Some notes on processing: causal vs. acausal low-cut filters version 1.0. David M. Boore. Introduction

D scattering of obliquely incident Rayleigh waves by a saturated alluvial valley in a layered half-space

Nonlinear site response from the 2003 and 2005 Miyagi-Oki earthquakes

DYNAMIC RESPONSE OF EARTHQUAKE EXCITED INELASTIC PRIMARY- SECONDARY SYSTEMS

The quarter-wavelength average velocity: a review of some past and recent application developments

ACCOUTING FOR DEMAND VARIABILITY OF BRACED FRAMES WITH A COMBINED INTENSITY MEASURE

Shake Table Tests of Reinforced Concrete Bridge Columns Under Long Duration Ground Motions

4 Associate Professor, DPRI, Kyoto University, Uji, Japan

Effects of Surface Geology on Seismic Motion

Evaluating the effects of near-field earthquakes on the behavior of moment resisting frames

EARTHQUAKE-INDUCED SETTLEMENTS IN SATURATED SANDY SOILS

SURFACE WAVE MODELLING USING SEISMIC GROUND RESPONSE ANALYSIS

Damping Scaling of Response Spectra for Shallow CCCCCCCCCrustalstallPaper Crustal Earthquakes in Active Tectonic Title Line Regions 1 e 2

EARTHQUAKE HAZARDS AT SLAC. This note summarizes some recently published information relevant

Comparative Seismic Analysis of EL Centro and Japan Earthquakes using Response Spectra Method

EARTHQUAKE-INDUCED SETTLEMENT AS A RESULT OF DENSIFICATION, MEASURED IN LABORATORY TESTS

Transcription:

3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August - 6, 2004 Paper No. 2386 CHARACTERISTICS OF SITE-SPECIFIC AMPLIFIACTION FUNCTIONS MEASURED IN MONTENEGRO Sanja S. IVANOVIC SUMMARY The paper describes the period and amplitude variations, and re-occurrence of the local peaks, in the Fourier amplitude spectra of strong ground motion, during different earthquakes, recorded at seven stations along the Adriatic Coast in Montenegro. The data show that some local peaks re-occur during shaking by small local earthquakes (peak ground velocities v max < 0 20 cm/s). During large strongmotion amplitudes, vmax > 20 cm/s, these peaks are shifted toward longer periods (by non-linear soil response) or disappear. INTRODUCTION Before reaching the foundation of the structure, seismic waves traverse a volume that is loosely termed local site conditions. Perusal of literature shows considerable variation and lack of precision in what is meant by local site conditions [,2,3]. In all cases, what would be desirable attributes of local site conditions is limited by the lack of available data on site properties. Once the local site properties have been defined, one can select the model and compute its response to incident waves. It is at this stage that the computation of amplification of incident waves and nonlinear site response, for example, are formulated and evaluated. Agreement between measured and computed site frequencies and amplification, then, represents a basis for accepting or rejecting the assumptions theory, and models adopted for analysis. Such verification is usually performed for one or several recordings, and it is assumed that measured site amplification characteristics do not change. It has been proposed that the site amplification characteristics can also be measured by extrapolating observed amplification of microtremors [4,5] or using recordings of distant earthquakes and aftershocks [6]. For earthquake engineering application it is thus important to verify the repeatability of the computed and measured site amplification. This is a difficult task because for only a small subset of strong motion Assistant Professor, University of Montenegro, Civil Eng. Dept. Cetinjski put bb, 8000 Podgorica, Montenegro, Serbia and Montenegro, e-mail: sanjai@cg.yu

stations are there sufficient digitized data to perform such comparisons [7,8]. Trifunac et. al. [9] presented such results for aftershocks of 994 Northridge earthquake in California. At the five stations studied, they found that for weak motions (peak ground velocities smaller than 5 0 cm/s), local peaks in Fourier amplitude spectra of strong motion reappeared at most 55 percent of time. Occurrence of these peaks could not be associated with any specific direction of wave arrival. They found that for intermediate and strong-motion amplitudes, identified site peaks shifted toward longer periods, indicating non-linear soil response. The largest peak velocities in analyzed data were 50 and 0 cm/s, there was no visible evidence of site liquefaction or lateral spreading, and the identified peaks at all five stations returned to their pre-earthquake frequencies corresponding to low strain, with no indication of permanent deformations. Trifunac and Ivanovic [0] presented results of a similar study in Montenegro, Yugoslavia for strongmotion aftershock sequence following the M s = 6. 7 earthquake of April 5, 979. The companion paper, Trifunac and Ivanovic [], presents the data and results of the remaining three active areas in Former Yugoslavia: Friuli, Banja Luka and Kopaonik. It is hoped that with accumulation of such rare case studies and the systematic recording of required strong motion data in different geological settings, a picture may eventually emerge on usefulness and reliability of site specific studies of amplification. This paper presents highlights of analysis and the results for the area of Montenegro, studied by Trifunac and Ivanovic [0]. THE DATA The data studied were recorded by the strong motion accelerograph network that started to operate in former Yugoslavia in 973. The data were digitized at University of Southern California in the Department of Civil Engineering, using digitization and software methods described by Trifunac and Lee [2]. For the periods between 975 and 983 the data come mainly from four areas of earthquake activity [3]: Friuli, Banja Luka, Kopaonik and Montenegro (Fig.a). This work analyzes records from Montenegro. Montenegro Earthquakes The Montenegro, Yugoslavia, earthquake of April 5, 979 (Main event 6:9 GMT) had magnitude 26 M L = 6.8, seismic moment M 0 = 4.6 0 dyne cm, and epicenter at o ' 42 2 24 " N latitude and o ' 0 03 00 " E longitude (Fig. b). It occurred on a fault plane with NW SE strike, dipping steeply, o 85, to the northeast [4]. It was followed by many aftershocks and a second main shock on May 24, o ' " o ' " 979, with magnitude 6. 4, at 42 4 24 N latitude and 8 45 00 E longitude, at 7:23 GMT (Fig. b). Between March 3 and July 30, 979, the European seismic network [5] recorded 229 events with M 3.5. During the same period, seven strong motion stations, distributed along the Adriatic coast (Fig. b) recorded 79 events with M 3. 2. Strong motion accelerographs in the Yugoslav network did not have self-contained absolute time, and therefore identification of all recorded accelerograms was not possible. All accelerograms selected for this study were recorded at seven stations: Ulcinj Hotel Olimpic, Ulcinj Hotel Albatros, Bar - Skupstina Opstine, Petrovac Hotel Oliva, Budva P.T.T., Kotor Naselje Rakite, and Herceg Novi - Osnovna Skola Pavicic. All records are listed in Table, in Trifunac and Ivanovic [0]. Total number of accelerograms used in that analysis was 222. Number of recorded events per station was as follows: Ulcinj (Hotel Olimpic) - 23, Ulcinj (Hotel Albatros) 22,

(a) A U S T R I A H U N G A R Y 46 0 Friuli R O M A N I A Banja Luka Belgrade F O R M E R Y U G O S L A V I A 42 0 A D R I A T I C S E A I T A L Y Montenegro Kopaonik B U L G A R I A 0 00 200 300 km A L B A N I A G R E E C E (b) 43 0 N 5 0 20 0 Accelerograph Sites Aftershocks Main Events Berane Trebinje Niksic Dubrovnik M O N T E N E G R O Herceg Novi Kotor Cetinje PODGORICA Second Main Event 5/24/79 M L =6.4 Budva Petrovac A L B A N I A Bar SHKODER 42 0 N First Main Event Montenegro Earthquake 4/5/79 M L =6.8 Ulcinj A D R I A T I C S E A 8 0 E 20 0 E Fig.. (a) Map of Former Yugoslavia showing the location of the area studied in this paper Montenegro. The other active areas with multiple earthquake recordings are Friuli, Banja Luka and Kopaonik. (b) Area of Montenegro showing two main events (April 5, 979 M L = 6. 8 and 5/24/79 with M L = 6. 4 ) and their aftershocks. Seven strong-motion recording stations are shown by solid triangles. Dashed square outlines the area shown in Fig. 3a.

(Hotel Albatros) 22, Bar (Skupstina Opstine) - 24, Petrovac (Hotel Oliva) - 4, Budva (P.T.T.) 23, Kotor (Naselje Rakite) 5, and Herceg Novi (Osnovna Skola Pavicic) -. METHOD OF ANALYSIS For each of the seven stations, the method of analysis outlined in Trifunac et al. [9] and Trifunac and Ivanovic [0] was used.. For each record, Fourier amplitude spectra of acceleration and the pseudo relative velocity spectra (PSV), were plotted for both recorded horizontal components of motion. Using subjective visual analysis of these spectra, peaks for each spectra, that could have been cased by some local amplification were identified. Obvious local peaks, that appear on both spectra (Fourier and PSV) were marked with a solid circle, and the not-so-obvious smaller or multiple (broad) peaks were marked with an open circle, as shown in Fig.2. Other oscillations of Fourier and PSV spectra were treated as a noise and ignored. Finally, periods of identified peaks were read and stored. 2. Part (a) of Fig. 3 shows epicenters of all identified earthquakes recorded at the station shown by solid triangle. All epicenters are identified by the corresponding reference number. Fourier amplitude spectra are plotted for both horizontal components of motion, normalized to unit peak spectral amplitude, as shown on the top of part (b) of Fig. 3. The number of occurrences of the peaks that appear to correspond to some characteristic site response, and histograms of occurrences of these peaks versus period were constructed. Those are shown in the bottom of the part (b) in Fig 3. 3. The records were ordered by the larger of two horizontal PSV spectrum amplitudes. Periods of identified peaks were plotted (using open or full circles) on horizontal axis separately for each record, with these axes shifted vertically and with the largest amplitude record on the top, as it is shown in part (c) of Fig 3. Similarly, peak horizontal PSV amplitudes were plotted for each record. We were looking for a trend of changing periods for a repeated peak with increasing amplitude of motion as an indication of nonlinear response of the local soils. When a group of identified peaks fell closely along a vertical line, those were connected by wide gray lines. 4. As in part (a) in Fig. 3, a map was plotted, containing stations and epicenters of the events that contributed to the records analyzed at that station. Station is shown by a triangle and epicenters by open circles. Map was plotted for each group of identified peaks that were connected by wide gray lines (shown in part (c)). Events that contributed to identified re-occurring peaks were emphasized by solid points. We were looking for an azimuthal trend of epicenters, relative to the recorded station, for the repeatedly recorded peaks with period T. Those maps are shown in part (d) of Fig. 3. 5. Part (e) of Fig. 3 shows Fourier amplitude spectra for the 0 largest horizontal motions in each group. All selected peaks are identified by solid points. 6. For the peaks identified as corresponding to a particular mode of the site response, / T (from part (c) in Fig. 3, proportional to the square root of the modulus µ ) was plotted versus ν / max Vs, 30 (proportional to the near surface strain) in Fig. 4. In these plots, we were looking for the evidence of site softening, i.e. decrease of site stiffness with increase of strain in the soil.

Normalized Fourier and PSV Spectra RESULTS In this paper, as an illustration, only results for one station, Bar Skupstina Opstine, are presented. Results for the remaining six stations, Ulcinj Hotel Olimpic, Ulcinj Hotel Albatros, Petrovac Hotel Oliva, Budva P.T.T. Kotor Naselje Rakite, and Herceg Novi - Osnovna Skola Pavicic are presented and discussed in reference [0]. 0 - FS 0-2 PSV 0-3 0 - Period (seconds) Fig. 2. Typical Fourier (FS) and pseudo relative velocity PSV spectra of recorded aftershocks at a strongmotion station. Solid circles show the peaks that may have been caused by some local amplification mechanisms. The open circles show the less obvious choices. Station: Bar Skupstina Opstine At this station, the largest horizontal peak velocity, equal to 57.2 cm/s, was recorded during the main event on April 5, 979. Of the seven identified periods at which peaks tend to re-occur a this site, only three, at () 0.8-.2 s, (2) 0.5-0.8 s, and (3) 0.3-0.5 s showed clear and large changes with respect to the excitation amplitudes. The first shift of the peaks, near 0.3 s, begins for vmax ~ cm/s for events ZE332 down to ZE33. For vmax > 0 cm/s, three periods (labeled, 2 and 3 in Fig. 3c) shift from 0.32, 052 and 0.8 s to 0.55, 0.85 and.4 s. Those were interpreted to be the largest possible shifts at this site. It is also possible that those shifts are smaller or insignificant. That is shown by several short branches adjacent to and to the left from the gray lines labeled, 2 and 3 in Fig. 3c. Fig. 3d shows that there were no preferred directions of wave arrival that could be associated with the re-occurrence of the spectral peaks at this site. The peak (3) at T ~ 0.3 0. 5 s re-occurs 67 percent of time.

Number of Occurences Normalized FS (cm/s) (a) (b) 0 0. 0 CG 338 0 - CG 473 CG 332 ZE 450 0-2 CG 42 XX 335 CG 46 CG 423 CG 33 CG 233 CG 424 CG 48 Bar CG 339 CG 426 CG 340 CG 333 40 CG 49 ZE 337 CG 420 CG 425 CG 334 CG 47 ZE 336 20 (c) CG 425 7 6 4 3 2 0 0. 0 T (seconds) REF. # CG 233 CG 473 CG 423 CG 42 CG 424 CG 338 CG 340 XX 335 CG 426 CG 48 CG 422 CG 47 CG 332 CG 333 CG 46 CG 33 ZE 337 CG 339 CG 49 CG 425 CG 420 ZE 336 CG 334 ZE 450 0. 0 5 T (seconds) 0. 0 00 PSV max (in/s) Fig.3. (a) Map of epicenters of identified events that were recorded at Bar Skupstina Opstine (shown by solid triangle). Events are identified by their record reference numbers [0]. (b) Superposition of normalized Fourier amplitude spectra (top) and a histogram of the number of occurrences of the identified peaks in (c) (bottom), for station Bar - Skupstina Opstine. (c) Periods of identified (solid points) and potential (open circles) peaks of Fourier amplitude spectra (left) and the peak pseudo relative velocity (PSV) spectrum (right) for records of the Montenegro earthquake and its aftershocks (in decreasing order of PSV spectrum amplitudes). The gray lines labeled (), (2), show the amplitude dependence of the frequently re-occurring peaks near 0.8-.2 s, 0.5-0.8 s, at strong motion station at Bar Skupstina Opstine. (d) Map of epicenters of all identified events (open circle) at station Bar Skupstina Opstine. All events for which both horizontal components of recorded motion do have the peak, at the selected period, are emphasized by black points. (e) Fourier amplitude spectra of the 0 largest recorded horizontal motions at station Bar - Skupstina Opstine (the vertical coordinate has been shifted to avoid clutter, but the overall spectral amplitudes decrease from top to bottom).

FS (cm/s) (d) T = 0.8 -.2 s T = 0.5-0.8 T=0.3-0.5 s 2 3 T = 0.3 s T = 0.8 s T = 0.2 s 4 5 6 T = 0. s 7 (e) Comp N90W Comp N00W 00 0 CG 233 CG 473 CG 233 CG 473 CG 423 CG 423 CG 42 CG 424 CG 42 CG 424 CG 338 CG 338 CG 340 CG 340 CG 335 CG 335 CG 426 CG 48 CG 426 CG 48 0. 0 Period (seconds) 0. 0 Period (seconds)

DISCUSSIONS AND CONCLUSIONS The analysis shows that there are site periods for which Fourier amplitude spectra of ground motion have re-occurring local peaks. These peaks are not excited by all events. In this study the frequency of reoccurrence is in the range from to 83 percent [0]. It is found that periods of selected peaks depend upon the amplitude of excitation. Examples show that these periods lengthen for increasing strains in the soil. Generally, such trends are consistent with several previous studies [9,6] and with a model with equivalent softening spring representation of the medium. After the shacking, when the large strains are over, the equivalent soil stiffness (for this data set) appears to return to its pre-earthquake values. In general it is also possible that repeated shacking may cause dynamic compaction to such a degree that the effective soil stiffness may increase enough to be noticeable in the period shift of selected peaks of Fourier amplitude spectra, during and after a sequence of earthquakes and/or aftershocks [9]. Recent research has shown that the modulus reduction curves for soils are influenced more by the plasticity index (PI) than by the void ratio and that the linear cyclic shear strain is greater for highly plastic soils than for soils with low plasticity. Fig.4 shows a shaded zone for the over-consolidation ratio (OCR) in the range from to 5, bounded by PI = 0 and PI = 50. Fig. 4 also shows (the gray shaded zone) the dependence of the modulus reduction curves for non-plastic (PI = 0) soils upon mean effective ' confining pressure σ m in the range from - 200 KN/m [7]. ( µ ( ε ) µ ) 2 o was plotted instead of the customary ( µ ( ε ) µ o ), to enable direct comparison with the shifting periods of the peaks in the site response Fourier spectra. A frequency of vibration, of a soil layer f = T ~ ( µ ( ε ) ρ ) 2, where µ ( ε ) is the Lame shear modulus at certain strain amplitude ε and ρ is the material density. Approximating T ( ε ) by T0 T( ε min ), where ε min corresponds to the smallest observed strain factor ε = Vmax Vs, 30, [9,8] and approximating µ ( ε ~ 0) by µ 0 = ρ T0, it follows that ( µ ( ε ) µ ) 2 o ~ T 0 T ( ε ). Estimates of ( µ ( ε ) µ ) 2 o were plotted versus v max Vs, 30 for all identified periods T. Then, for each station, an average curve through all T ( ε ) V v V and V s,30 T 0 versus vmax s, 30 was plotted. Strain factors max s, 30 (average shear wave velocity in the top 30 m of soil, Fig. 5) are both only rough first- order approximations. Yet, the qualitative trends seen in Fig. 4 suggest that the observed changes of the periods of the selected peaks have realistic trends and reasonable ranges of variation and that they agree with the trends of modulus reduction expected for typical soils. Trifunac and Todorovska [6] reviewed several site amplification studies following the 994 Northridge earthquake and argued that he peaks at the periods of site-specific amplification functions determined for small amplitude measurements at the site (e.g. using aftershocks) will cease to re-occur during strong motion that is accompanied by the non-linear soil response. The trends found in references [0, ] and illustrated here in Fig. 3, confirm that interpretation. Perusal of the largest recorded motion, as in Fig. 3, shows that many identified peaks will not only shift to different periods but will also disappear. For the seven stations studied [0,], there are three to seven periods (per station) with re-occurring spectral peaks. For larger levels of shaking, many of those peaks disappear. Fig. 6 shows how the percentage of remaining peaks decreases with increasing peak recorded velocity. The shaded zone suggests the overall trend. Of course, the peaks can appear and disappear from spectra of recorded motion for numerous other reasons [9], but at Fig. 6, the trends are interpreted to be driven mainly by the non-linear site response.

It is concluded that the characteristics of site-specific amplification functions can be measured, but the success rate of prediction of prominent peaks during future severe shaking is difficult to quantify. The successful predictions may be possible for small amplitudes of motion only, for example for ν max 5cm/s. The destructive strong motion is associated with ν max > 0 20cm/s and is accompanied by a non-linear response of the soil near the ground surface [9-24]. Site-specific amplification characteristics of such large motion cannot be predicted by the linear transfer functions theory, based on the theory or experimental measurements..0 0.9 PI=0 σ' m = kn/m 2 Ulcinj - H. Olimpik = 399 m/s Petrovac - H. Oliva = 464 m/s 0.8 Ulcinj - H. Albatros = 083 m/s Budva - P.T.T = 464 m/s ( ) /2 Kotor - µ(ε) µ Ο Naselje Rakite = 688 m/s PI = 0 σ' m = 200 kn/m 2 0.7 Herceg Novi - O.S. Pavicic = 875 m/s 0.6 Bar - Skupstna opstine = 408 m/s PI = 50 PI = 0 OCR = -5 0.5 0-6 0-5 0-4 0-3 0-2 ε = v max Fig. 4. Estimated modulus reduction curves ( µ ( ε ) µ ) 2 0 for strong-motion recorded at seven stations versus strain factor ε = vmax Vs, 30. The range of modulus reduction values for soils with overconsolidation ratio OCE = -5 and for 0 < PI <50 is shown by shaded zone. The range of modulus reduction values for non-plastic soils (PI = 0) for mean effective confining pressure σ m between and 200 KN/m 2 is shown by gray zone.

Fraction of Remaining Peaks (%) Depth (m) v s (m/s) 00 000 Ulcinj - H. Albatros Herceg Novi 0 Kotor 0 2 Petrovac Budva Bar Ulcinj - H. Olimpik Fig. 5 Shear wave velocity profiles at seven stations studied in reference [0]. 00 Kotor - N. Rakite H. Novi - O.S. Pavicic Petrovac - H. Oliva 50 Budva - P.T.T. Bar - S. Opstine Ulcinj - H. Albatros Ulcinj - H. Olimpik 0 0 20 30 40 50 60 v max (cm/s) Fig. 6. Fraction of identified site-specific peaks that remain in the data set, studied in reference [0], as ground velocity v m increases from 0 to 60 cm/s. At 60 cm/s and above, 60-90 percent of all site-specific peaks disappear due to non-linear response of the soil.

REFERENCES. Trifunac MD. How to model amplification of strong earthquake motions by local soil and geological site conditions. Earthquake Engng. Struct. Dyn. 990; 9 (6); 833-46. 2. Novikova EI, Trifunac MD. Influence of geometry of sedimentary basins on the frequency dependant duration of string ground motion. Earthquake Engng. Engng. Vib. 994;4(2):7-4. 3. Tinsley JC, Fumal TE. Mapping quaternary sedimentary deposits for areal variations in shaking response. In: US geological survey professional paper 360, Evaluating Earthquake Hazards in Los Angeles Region earth science perspective, Washington, DC: US Government Printing Office; 985. 4. Kanai K. Engineering Seismology. Tokyo, Japan: University of Tokyo Press; 983. 5. Trifunac MD, Todorovska MI. Long-period microtremors, microseisms and earthquake damage: Northridge California earthquake of 994. Soil Dyn. Earthquke Engng 2000;9(4):253-67. 6. Trifunac MD, Todorovska MI. Can aftershock studies predict site amplification factors? Northridge California earthquake of January 7, 994. Soil Dyn. Earthquake Engng. 2000 9(4):233-5. 7. Trifunac MD, Udwadia FE. Variations of strong earthquake ground shaking in the Los Angeles area. Bull. Seis. Soc. Am. 973; 63(4); 227-53. 8. Udwadia FE, Trifunac MD. Comparison of earthquake and microtremor ground motions in El Centro, California. Bull. Seis. Soc. Am. 974; 64(5); 429-54. 9. Trifunac MD, Hao TY, Todorovska MI. On re-occurrence of site specific response. Soil Dyn. Earthquake Engng. 999 8(8):569-92. 0. Trifinac MD, Ivanovic SS. Re-occurrence of the site-specific response in Former Yugoslavia Part I: Montenegro. Soil Dyn Earthquake Engng 2003; 23:637-66. Trifinac MD, Ivanovic SS. Re-occurrence of the site-specific response in Former Yugoslavia Part II: Friuli, Banja Luka and Kopaonik. Soil Dyn Earthquake Engng 2003; 23:663-68. 2. Trifunac MD, Lee VW. Automatic digitization and processing of strong-motion accelerograms, Part I and II. Department of Civil Engineering Report No. 79-5. Los Angeles, CA: Univeristy of Southern California, 979. 3. Jordanovski LR, Lee VW, Manic M, Olumceva T, Sinadinovski C, Todorovska MI, Trifunac MD. Strong earthquake ground motion data in EQINFOS: Yugoslavia, Part I. Department of Civil Engineering, Report No. 87-5. Los Angeles California: University of Southern California; 987. 4. Boore DM, Sims JD, Kanamori H, Harding S. The Montenegro Yugoslavia earthquake of April 5, 979: source orientation and strength. Phys Earth Planet Interiors 98; 27:33-42. 5. Console R, Favali P. Study of the Montenegro earthquake sequence ( March -July, 979). Bull. Seis. Soc. Am. 98; 9(4); 233-48.

6. Beresnev IA, Wen KL. Nonlinar Soil Response a reality? Bull. Seis. Soc. Am. 996; 86(4); 964-78. 7. Kramer SL. Geotehnical earthquake engineering. Upper Saddle River. NJ: Prentice Hall:966. 8. Trifunac MD, Lee VW. Peak surface strains during the strong earthquake motion. Soil Dyn. Earthquake Engng. 996 5(5):3-29. 9. Trifunac MD, Trodorovslka MI. Nonlinear soil response 994 Northridge California earthquake. J Geotechnical Engng, ASCE 996;22(9):725-35. 20. Trifunac MD, Todorovska MI. Northridge California Earthquake of 994:density of pipe breaks and surface strains. Soil Dyn Earthquake Engng 997;6(3):93-207. 2.Trifunac MD, Todorovska MI. Amplification of strong ground motion and damage patterns during the 994 Northridge, California earthquake. Proceedings of the Third ASCE Specialty Conference on geotechnical earthquake engineering and soil dynamics, Aug 3-6, 998, Seattle, Washington, vol. I. Geotech Spec Public 75; 998. P. 74-25. 22. Trifunac MD, Todorovska MI. Nonlinear soil response as a natural passive isolation mechanism the 994 Northridge California earthquake. Soil Dyn Earthquake Engng 998;7():4-5. 23. Trifunac MD, Todorovska MI. Damage distribution during the 994 Northridge, California earthquake in relation to generalized categories of surface geology. Soil Dyn Earthquake Engng 998;7(4):239-53. 24. Trifunac MD, Todorovska MI. Reduction of structural damage by nonlinear soil response. J Struct Engng. ASCE; 999;25(): 89-97.