Lab 4: Stoichiometry and Green Chemistry

Similar documents
Bellevue College CHEM& 121 Experiment: Stoichiometric Analysis of an Antacid 1

STOICHIOMETRY. STOICHIOMETRY Chemists use balanced chemical equations to calculate how much reactant is needed or how much product is formed.

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances.

Stoichiometry. Cartoon courtesy of NearingZero.net

Basic Concepts of Chemistry Notes for Students [Chapter 7, page 1] D J Weinkauff - Nerinx Hall High School

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations

Slide 1 / 25. Slide 2 / 25. Applying Green Chemistry to Purification. The goals of this lab are to: Background Slide 3 / 25

Quantity Relationships in Chemical Reactions

CONSIDER THE FOLLOWING REACTIONS

Solutions to the Extra Problems for Chapter 8

4.3 Quantitative chemistry

Notes: Stoichiometry (text Ch. 9)

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

Green Chemistry. Approaches. Barriers. Educational Resources for Green Chemistry: An Overview. ACS National Meeting San Diego 15 March 2005

Reacting Masses and Volumes Thursday 09/24/15

DETERMINING AND USING H

Chapter 3. Stoichiometry:

Unit 6: Stoichiometry. How do manufacturers know how to make enough of their desired product?

Chapter 10. How to do Calculations for Chemical Reactions I Background What Chemical Equations Tell Us

4.3.1 Chemical measurements, conservation of mass and the quantitative interpretation of chemical equations

Chemical Reactions and Stoichiometry. Ms. Grobsky

Experiment 4: COMPOSITION OF A HYDRATE

9.1.1 CHEMICAL EQUATIONS AND STOICHIOMETRY

Solutions and Solubility

HIGH SCHOOL CHEMICAL REACTIONS

Theoretical Yield and Percent Yield: The Synthesis of tris(2,4-pentanedionato)iron(iii)

PERCENT POTASSIUM CHLORATE IN A MIXTURE - Worksheet

STOICHIOMETRY HONORS CHEMISTRY

**continued on next page**

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12.

The Mole. Relative Atomic Mass Ar

Chemistry I Notes Unit 7: Stoichiometry Notes

Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Lesson Plans. Year 9 Science Chapter 5. Chemical Reactions I. Assessment. Content Description (5 weeks)

Chapter 2 Stoichiometry

Nine tips for scaffolding multi-step calculations

Chem 1075 Chapter 10 Stoichiometry Lecture Notes

Determining Chemical Formulas

Study Guide. Chemistry 2102A. Science. Stoichiometry. Adult Basic Education. Prerequisite: Chemistry Credit Value: 1

TECHNICAL SCIENCE DAS12703 ROZAINITA BT. ROSLEY PUSAT PENGAJIAN DIPLOMA UNVERSITI TUN HUSSEIN ONN MALAYSIA

EXPERIMENT 15. USING CONDUCTIVITY TO LOOK AT SOLUTIONS: DO WE HAVE CHARGED IONS OR NEUTRAL MOLECULES? rev 7/09

Chemical Quantities: Stoichiometry and the Mole

Chemistry I Chapter 9 Stoichiometry Objective Sheet. Equation 1. Objectives: 1. Define stoichiometry

TUNNELWORKS A2 CHEMISTRY TEACHERS NOTES

AP Chemistry A Review of Analytical Chemistry

Reading Balanced Chemical Equations (see MHR Text p )

Introduction to Chemical Reactions. Chapter 6

11 Stoichiometry. Section 11.1 What is stoichiometry?

Unit 4: The Mole Concept and Stoichiometry

Experiment 20-Acid-Base Titration: Standardization of KOH and Determination of the Molarity and/or Percent Composition of an Acid Solution

Chapter 3 Stoichiometry. Ratios of combination

Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Mole Lab Introduction to The Mole Concept

Chapter 3 C 2 H 4 O2. Mass Relationships, Stoichiometry and Chemical Formulas. Announcements. Learning Objectives. C x H y Oz

Now weigh out the mass of beans that you think would contain 100 beans. NO COUNTING!!! Set this sample aside.

Lesson 22: Theoretical Yield Actual Yield Percent Yield

Chemistry, Grade 11 University SCH 3U Course Outline

Standardization of a Primary Standard & Determination of Concentration by Acid-Base Titration

Molar Calculations - Lecture Notes for Chapter 6. Lecture Notes Chapter Introduction

UW Department of Chemistry Lab Lectures Online

3 Stoichiometry: Calculations with Chemical Formulas and Equations

Section A-Gases 1A. Circle the correct answer (18 pts total) (2 points each)

Website information: Summer Learning -

A. Correct! You successfully completed the stoichiometry problem.

Limiting Reactants and Percent Yield

Lecture Notes Chapter 6

1.3: Mole Ratio, Limiting & Excess Reactants, Percent Yield. Ms. Kiely Coral Gables Senior High IB Chemistry SL

KITCHEN CHEMISTRY Identifying acids and bases with red cabbage indicator

Chem 115 POGIL Worksheet - Week #6 Oxidation Numbers, Redox Reactions, Solution Concentration, and Titrations

Form Code A. 1. Which of the following is a properly-written chemical formula or name?

CHEM 220L Fundamentals of Analytical Chemistry Lab - Fall 2017

Stoichiometry Decomposition of Baking Soda For our soul is humbled down to the dust. Psalms 43:25

Limiting Reactants. In other words once the reactant that is present in the smallest amount is completely consumed the reaction will stop.

Principle of Chemical Process I

Chemical Reactions and Stoichiometry. Ms. Grobsky

Molar Mass. The total of the atomic masses of all the atoms in a molecule:

Stoichiometry Ratios of Combination

Quantities in Chemical Reactions

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets

15.2 Oxidation-Reduction (Redox) Reactions

A Green Oxidant for In-Situ Chemical Oxidation. Jack Peabody Regenesis

SCIENCE DEPARTMENT CHEMISTRY (AE): COURSE

Chapter 5. Mole Concept. Table of Contents

OXFORD CAMBRIDGE AND RSA EXAMINATIONS GCSE TWENTY FIRST CENTURY SCIENCE A173/02. CHEMISTRY A / FURTHER ADDITIONAL SCIENCE A Module C7 (Higher Tier)

Chapter 4 Chemical Quantities and Aqueous Reactions

GENERAL INSTRUCTIONS

Chapter 6 Chemical Composition

Name Date Class THE ARITHMETIC OF EQUATIONS

Unit VI Stoichiometry. Applying Mole Town to Reactions

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles

General Chemistry 201 Section ABC Harry S. Truman College Spring Semester 2014

Quantitative Chemistry. AQA Chemistry topic 3

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

6/28/11. Avogadro s Number and the Mole. The Mole. The Mole. The Mole (mol)

COEFFICIENTS. - Experimentally, we can usually determine the reactants and products of a reaction

Reaction Stoichiometry

Environmental Efficiency of Chemical Processes. Dr. Anuj Kumar Mittal, Head-R&D PI Industries Ltd. IGCW Convention - December 2013

A Cubic Regression Group Activity 4 STEM Project Week #7

Percentage of Acetic Acid in Vinegar

Transcription:

Lab 4: Stoichiometry and Green Chemistry Goals: Learn about the philosophy of green chemistry Determine the composition of a mixture using stoichiometry Learn what is important in a good laboratory report Introduction Green chemistry seeks to reduce the use and generation of hazardous material through control of the design and processes of chemical synthesis. Green chemistry, the use of chemistry for pollution preventions, is distinct from environmental chemistry which focuses on pollution mitigation. Green chemistry has the power to transform all areas of chemistry into a far safer enterprise, while simultaneously challenging widely held perceptions that chemistry on the large scale is a polluting, dirty industry and a drain on limited natural resources. Many experiments used in student laboratory courses are not green. Some use toxic materials, others create excess waste, and still others use unnecessary amounts of natural resources. Some might do all three or may violate other tenets of green chemistry. A green chemistry approach to teaching laboratory chemistry meets the same goals as a more traditional approach. Students still do experiments that teach the same concepts, techniques, and skills, but the experiments use green materials and processes. In this experiment, you will learn about the mass and mole relationships of reactants and products in a chemical reaction, and you will practice communicating with other students in the laboratory both orally and in writing in the way that scientists do. The experiment has been designed in accordance with green chemistry principles. All solid wastes produced in this experiment will be collected and used again next semester for the same experiment. The only gaseous wastes generated by the reaction in the experiment are carbon dioxide and water, which are not harmful. Green chemistry is based on twelve overarching principles. Three of these principles are addressed in this experiment. Prevention is an extremely important part of the green chemistry philosophy. One of the main things that distinguishes green chemistry from the environmental chemistry of the past is the latter s focus on treatment and cleanup of waste after it is created. Very often, current (non-green) cleanup efforts involve merely placing hazardous waste in containers for indefinite storage or simply diluting them with water or other safe substances and then releasing them into the environment. Frequently these policies of containment and dilution fail because of spills, long-term build-up of toxic materials in the environment, and other problems. By contrast, green chemistry emphasizes the crucial role of prevention as an easier, cheaper and ultimately safer way of avoiding harm from chemical waste. After all, if hazardous waste is never created, then it never has to be stored, treated, or otherwise dealt with. There are often many different ways of creating a chemical 4-1

to serve a particular purpose. Green chemists consider all the alternatives available, and the long-term effects of each alternative, before selecting a chemical reaction to carry out. Atom economy is a very important measure used in assessing how green a chemical process is. Although the atom economy calculation is usually applied to organic synthesis processes, it can be calculated for any chemical reaction. All chemical reactions have the form Reactants Products The products of the reaction can either be desired products or undesirable waste. Green chemistry seeks to minimize undesirable waste (or not generate it in the first place, if possible). You can think of a reaction instead as Reactants (Desirable Products) + (Undesirable Waste) The atom economy calculation measures what part of the original input is converted to desirable products. In essence, atom economy measures how well the process conserves input. Mass of all desired products Atom economy = 100% Mass of all reactants Atom economy can be calculated from actual laboratory data or it can be a theoretical prediction. The theoretical atom economy for a reaction can be calculated using molar masses instead of actual masses measured in the laboratory. For example, for the reaction Fe 2 O 3 + 3 CO 2 Fe + 3CO 2 the desired product is iron metal, and the undesirable waste is carbon dioxide. The theoretical sum of the molar masses of the reactants is: The theoretical mass of the desired product is: Mass of all reactants = mass of 1mol of Fe2O3 + mass of 3 mol of CO 159.7 g 28.02 g = 1 mol Fe2O3 + 3 mol CO mol mol = 243.8 g Mass of desired product = mass of 2 mol of Fe 55.85 g = 2 mol Fe mol = 111.7 g 4-2

Therefore, the theoretical atom economy is: Mass of all desired products Atom economy = 100% Mass of all reactants 111.7 g = 100% = 45.82% 243.8 g In principle, a reaction with higher atom economy is preferable to one with lower atom economy, because higher atom economy means less waste produced for a given amount of product produced. However, it is important to realize that atom economy is only one measure of a reaction s greenness. Atom economy tells what fraction of the original materials ends up in the desired product, but says nothing about what the original materials or desired product are and whether they are green or not. A reaction that uses highly toxic materials can have high atom economy, and that reaction still would not be green. The use and production of non-toxic materials whenever possible is another vital principle in green chemistry. The toxicity of a material is a measure of both the potential harmful effects of that material on people or other organisms, and the amount of the material required to produce harm. A small amount of a highly toxic material can severely harm or kill a person, while a non-toxic material causes no harm to people even in fairly large doses. Different substances range over a continuum from extremely toxic to entirely nontoxic. The toxicity of many thousands of substances has been studied. Green chemists use this information to select the reactants and products that are lowest in toxicity while still allowing them to achieve their goals. In the past, chemists frequently considered many factors when developing a process, such as availability and cost of materials, but they often ignored toxicity. By contrast, green chemists are mindful of toxicity at each step of any process. Putting green chemistry into practice is more complex than just understanding these three principles, as well as the nine other fundamental principles not discussed here. Often, one of the alternative chemical reactants and pathways to a particular goal is not obviously preferable to other options in terms of greenness. For example, one choice may be better in terms of atom economy, while another is preferable regarding the toxicity of wastes. In such cases, green chemists carefully analyze the relative merits and drawbacks of each choice before making decisions. Lab Instructions You will be required to analyze a sample made up of sodium carbonate and sodium bicarbonate. You have been provided with the laboratory reports of students who have done this experiment. There are several versions of the laboratory report and in order to fully understand the report, you may need to consult with your laboratory mates. You are to conduct the experiment described in the laboratory report and write up the introduction, results, discussion and conclusion. The laboratory report will be turned in a week after the laboratory exercises are completed. Your results should address the following points: 1. The total mass of water and carbon dioxide lost in each trial 4-3

2. The moles of water lost in each trial 3. The mass of sodium bicarbonate originally present in the sample in each trial 4. The percent composition by mass of the original sample in each trial In addition to the accuracy of the experiment, the discussion should address how the experiment adheres to the principle of green chemistry (e.g. the atom economy of the experiment). Questions: 1) How could the student whose report you received have improved his or her lab report? 2) Why do scientists, and science students like you, write lab reports? 3) What did you learn from talking with other groups during the lab that you would not have been able to learn if you weren t able to talk with other groups? 4) How do scientist communicate with each other a) Formally? b) Informally? 5) What do you think makes a good lab report? The Report The report this week will be focused on the Introduction, Calculation and Experimental Error P re-lab Assignment A mixture of sodium carbonate and sodium bicarbonate is heated. Sodium carbonate does not undergo any chemical reaction, while sodium bicarbonate loses CO2 and H2O. 1. Write a balanced equation for the reaction. 2. What is the theoretical atom economy for the reaction? Sodium carbonate is the desired product and water and carbon dioxide are the waste products. 3. A student heats 0.682g of a mixture of sodium caronate and sodium bicarbonate to a constant mass of 0.467g. What is the mass of sodium bicarbonate in the mixture? What is the percentage mass of sodium bicarbonate in the mixture? 4-4

References Anastas, P.T. and Warner, J.C. (1998). Green Chemistry: Theory and Practice. New York: Oxford University Press. Flinn Scientific Publication #6451: Determining the Stoichiometry of Chemical Reactions (2003). Batavia, IL: Flinn Scientific Inc. Kirchhoff, M., and Ryan, M.A. (Eds). (2002) Greener Approaches to Undergraduate Chemistry Experiments. Washington DC: American Chemical Society. Lancaster, M. (2002). Green Chemistry: An Introductory Text. Cambridge, UK: Royal Society of Chemistry. Parent, K. and Kirchoff, M. (Eds). (2004) Going Green: Integrating Green Chemistry into the Curriculum. Washington DC: American Chemical Society. 4-5

4. 4-6