Design and analysis of Axial Flux Permanent Magnet Generator for Direct-Driven Wind Turbines

Similar documents
DESIGN AND ANALYSIS OF AXIAL-FLUX CORELESS PERMANENT MAGNET DISK GENERATOR

AXIAL FLUX INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SINUSOIDALLY SHAPED MAGNETS

STAR-CCM+ and SPEED for electric machine cooling analysis

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines

Optimal Design of PM Axial Field Motor Based on PM Radial Field Motor Data

Development of axial flux HTS induction motors

Generators for wind power conversion

Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars

Design of the Forced Water Cooling System for a Claw Pole Transverse Flux Permanent Magnet Synchronous Motor

Keywords: Electric Machines, Rotating Machinery, Stator faults, Fault tolerant control, Field Weakening, Anisotropy, Dual rotor, 3D modeling

Third harmonic current injection into highly saturated multi-phase machines

Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy

Permanent Magnet Wind Generator Technology for Battery Charging Wind Energy Systems

Water-Cooled Direct Drive Permanent Magnet Motor Design in Consideration of its Efficiency and Structural Strength

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008]

Research of double claw-pole structure generator

Accurate Joule Loss Estimation for Rotating Machines: An Engineering Approach

Loss Minimization Design Using Magnetic Equivalent Circuit for a Permanent Magnet Synchronous Motor

Optimisation of Inner Diameter to Outer Diameter Ratio of Axial Flux Permanent Magnet Generator

Experimental Assessment of Unbalanced Magnetic Force according to Rotor Eccentricity in Permanent Magnet Machine

MODELING surface-mounted permanent-magnet (PM)

Analytical Calculation of Air Gap Magnetic Field Distribution in Vernier Motor

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

Power density improvement of three phase flux reversal machine with distributed winding

Outer rotor eddy current heater for wind turbines

Power Density Comparison for Three Phase Non-Slotted Double-Sided AFPM Motors

Analytical Solution of Magnetic Field in Permanent-Magnet Eddy-Current Couplings by Considering the Effects of Slots and Iron-Core Protrusions

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle

Regular paper. Design and FE Analysis of BLDC Motor for Electro- Mechanical Actuator

Design and Characteristic Analysis of LSM for High Speed Train System using Magnetic Equivalent Circuit

Static Analysis of 18-Slot/16-Pole Permanent Magnet Synchronous Motor Using FEA

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy

Computational Fluid Dynamics Thermal Prediction of Fault-Tolerant Permanent-Magnet Motor Using a Simplified Equivalent Model

Analysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System

SHAPE DESIGN OPTIMIZATION OF INTERIOR PERMANENT MAGNET MOTOR FOR VIBRATION MITIGATION USING LEVEL SET METHOD

A Novel Pseudo-Direct-Drive Permanent-Magnet Machine with Less Magnet

1205. Optimal design of quadratic electromagnetic exciter

Prof. N. V. Sali 1, Pooja Kulkarni 2 1, 2

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics & Communication Engineering

Thermal Analysis & Design Improvement of an Internal Air-Cooled Electric Machine Dr. James R. Dorris Application Specialist, CD-adapco

Unified Torque Expressions of AC Machines. Qian Wu

MSBCCL Series Asynchronous Three-Phase Brake Motors With Squirrel Cage Rotor Direct Current Brake

Cogging Torque Reduction in Permanent-Magnet Brushless Generators for Small Wind Turbines

Proposal of short armature core double-sided transverse flux type linear synchronous motor

Designing an Efficient Permanent Magnet Generator for Outdoor Utilities İlhan Tarımer

ELECTROMAGNETIC ANALYSIS OF A HYBRID PERMANENT MAGNET GENERATOR

4 Finite Element Analysis of a three-phase PM synchronous machine

UJET VOL. 2, NO. 2, DEC Page 8

Transient thermal modelling of an Axial Flux Permanent Magnet (AFPM) machine with model parameter optimisation using a Monte Carlo method

IEEE Transactions on Applied Superconductivity. Copyright IEEE.

Study on permanent magnet transverse flux machine

Loss analysis of a 1 MW class HTS synchronous motor

PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION

Simplified Analysis Technique for Double Layer Non-overlap Multiphase Slip Permanent Magnet Couplings in Wind Energy Applications

Analysis and Performance Evaluation of an Axial-Field Brushless PM Machine Utilising Soft Magnetic Composites

Measurements of a 37 kw induction motor. Rated values Voltage 400 V Current 72 A Frequency 50 Hz Power 37 kw Connection Star

This is an author-deposited version published in: Handle ID:.

DESIGN AND COMPARISON OF FIVE TOPOLOGIES ROTOR PERMANENT MAGNET SYNCHRONOUS MOTOR FOR HIGH- SPEED SPINDLE APPLICATIONS

Design and Analysis of Interior Permanent Magnet Synchronous Motor Considering Saturated Rotor Bridge using Equivalent Magnetic Circuit

Design and analysis of a HTS vernier PM machine. IEEE Transactions on Applied Superconductivity. Copyright IEEE.

Torque Ripple Reduction Using Torque Compensation Effect of an Asymmetric Rotor Design in IPM Motor

A Linear Motor Driver with HTS Levitation Techniques

Development of a new linear actuator for Androids

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18,

Robust optimal design of a magnetizer to reduce the harmonic components of cogging torque in a HDD spindle motor

Sensorless Field Oriented Control of Permanent Magnet Synchronous Motor

1. Introduction. (Received 21 December 2012; accepted 28 February 2013)

Optimization Design of a Segmented Halbach Permanent-Magnet Motor Using an Analytical Model

Publication P National Centre for Scientific Research (NCSR) "Demokritos"

This is a repository copy of Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines.

RESEARCH ON REDUCING COGGING TORQUE IN PERMANENT MAGNET SYNCHRONOUS GENERATORS

Eddy Current Heating in Large Salient Pole Generators

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application

Influence of different rotor magnetic circuit structure on the performance. permanent magnet synchronous motor

2002 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

Inductance Testing According to the New IEEE Std 1812 Application and Possible Extensions for IPM Machines

THERMAL MODELLING OF A LOW SPEED AIR-COOLED AXIAL FLUX PERMANENT MAGNET GENERATOR

Analytical Model for Permanent Magnet Motors With Surface Mounted Magnets

Electromagnetic Vibration Analysis of High Speed Motorized Spindle Considering Length Reduction of Air Gap

COGGING torque is one of the major sources of vibration

Finite Element Analysis of Cogging Torque in Low Speed Permanent Magnets Wind Generators

Accurate Determination of the Thermal Model Time Constant for the Electrical Servomotors

DESIGN AND ANALYSIS OF LIGHT WEIGHT MOTOR VEHICLE FLYWHEEL M.LAVAKUMAR #1, R.PRASANNA SRINIVAS* 2

Cogging torque reduction of Interior Permanent Magnet Synchronous Motor (IPMSM)

Experimental Tests and Efficiency Improvement of Surface Permanent Magnet Magnetic Gear

Basics of Permanent Magnet - Machines

CPPM Mahine: A Synchronous Permanent Magnet Machine with Field Weakening

EE 410/510: Electromechanical Systems Chapter 4

Performance analysis of variable speed multiphase induction motor with pole phase modulation

ON THE PARAMETERS COMPUTATION OF A SINGLE SIDED TRANSVERSE FLUX MOTOR

3 Chapter 3 Machine design

338 Applied Electromagnetic Engineering for Magnetic, Superconducting, Multifunctional and Nano Materials

TRACING OF MAXIMUM POWER DENSITY POINT FOR AXIAL FLUX TORUS TYPE MACHINES USING GENERAL PURPOSE SIZING EQUATIONS

Analysis of Idle Power and Iron Loss Reduction in an Interior PM Automotive Alternator

THE INFLUENCE OF THE ROTOR POLE SHAPE ON THE STATIC EFICIENCY OF THE SWITCHED RELUCTANCE MOTOR

Development of a Compressor for a Miniature Pulse Tube Cryocooler of 2.5 W at 65 K

Analysis of Anti-Notch Method to the Reduction of the Cogging Torque in Permanent Magnet Synchronous Generator

Equal Pitch and Unequal Pitch:

Transcription:

Design and analysis of Axial Flux Permanent Magnet Generator for Direct-Driven Wind Turbines Sung-An Kim, Jian Li, Da-Woon Choi, Yun-Hyun Cho Dep. of Electrical Engineering 37, Nakdongdae-ro, 55beon-gil, Saha-gu, Busan KOREA yhcho@dau.ac.kr Abstract: - Axial flux permanent magnet generator (AFPMG) is can have one or two sided stator windings, meaning that the rotor disc of which the permanent magnet (PM) are mounted may be sandwiched in between two parallel stator discs. This paper deals with the development of AFPMG for a gearless wind energy system. This gives the axial air gap PM generator the potential for very high torque generator applications. The design, construction and test results of 3kW, 4rpm AFPMG are presented. The electromagnetic analysis was carried by three dimensional finite element analysis (3D FEM) method and the thermal field analysis was computed by the computational fluid dynamic (CFD) method. Based on the analytical design approach, a 3kW prototype generator is constructed. The predicted performance values from the analytical model are then compared with experimentally measured quantities to evaluate the effectiveness of the analytical design approach. Key-Words: - Axial flux permanent magnet generator (AFPMG), direct-driven wind turbine, 3D FEM, computational fluid dynamics (CFD), electromagnetic analysis, thermal analysis 1 Introduction Direct-drive wind energy systems with the gear are an attractive proposition for wind energy system. Axial flux permanent magnet generator (AFPMG) is an attractive alternative to radial flux machine in wind turbine applications. The axial flux type machine is applicable to the low-speed, high-power operation of a direct drive wind energy system [1]. Especially, AFPMG for Direct drive wind energy conversion is required to decrease the volume size, weight, and noise, while increasing its efficiency and reliability. When designing the AFPMG with the compactness and high power density, a 3 dimension electromagnetic finite element method (3D FEM) and a thermal analysis are generally required [][3][5]. In this paper, the design procedure and the electromagnetic and thermal analytical model of AFPMG with double side stator slotted core and internal rotor for wind turbine system are studied. Design of AFPMG is a procedure involving iterative computations based on performance requirements rand trade off. To estimate the designed electrical performances of AFPMG, the electromagnetic analysis was carried by 3D FEM and the thermal field analysis is performed via a coupled thermal and fluid-dynamic model, where heat source was obtained from electromagnetic analysis results. The results of experimental tests carried on a 3kW prototype AFPMG are given and evaluated, in comparison with analyzed performance values. Design Model of AFPMG The topology of the designed AFPMG is a two stator and internal one rotor with 18 stator slots and 16 rotor poles. Fig.1 shows the 3D modeling of prototype AFPMG. Upper flange Housing Rotor disk Shaft Bottom flange Coil Tooth Stator yoke Brake flang ISSN: 367-8976 1 Volume, 17

Fig.1 3D model of proposed structure for AFPMG. Parts of prototype are illustrated in the cross section figure. The upper and bottom flanges are caved for weight reduction purpose, the stator yoke is then fixed to flange by bolting. The prototype was designed using a segmented stator core with constant tooth width. To predict machine performance with similar precision, techniques such as FEM provide accurate solutions for three dimensional field distribution in complex geometrics. However these method require a detailed definition of the geometry and boundary conditions to be solved, which assumes that an initial design already exits. Assuming sinusoidal waveform for the airgap flux density and phase current, the sizing equation can be obtained from the electromagnetic torque of a double side AFPMG as follows [4]. The diameter ratio of AFPMG is given by k = D / D (1) d in The peak line current density at the average radius per one stator is expressed by A m 4 mi 1 a N1 = π D (1 + k ) d () Where m 1 is number of phases, N 1 is number of turns per phase per one stator, I a is rms phase current, D is the er diameter, D in is the inner diameter of the stator core. The magnetic flux excited by PMs per pole is π Φ f = αibmg ( D Din ) (3) 8p Where B mg is the peak value of the magnetic flux density in the air gap, p is the number of pole pairs. The EMF induced in the stator winding by the rotor excitation system is given by, ( ) E = π n pn k B D 1 k (4) f s 1 w1 mg d The apparent electromagnetic power in two stators is Selm cos 1 P = η φ π kdkw 1nB s mg AD m ηcosφ ε = ε (6) Where ε=e f /V 1 is the phase EMF-to-phase voltage ratio, for motors ε <1and for generators ε >1, cosϕ is power factor and η is machine efficiency. The er diameter is the most important dimensions of AFPMs. Since D 3 P, the er diameter increases rather slowly with the increase of the put power. This is why small power disc motors have relatively large diameters. The disc-type construction is preferred for medium and large power machines. The electromagnetic torque is proportional to D 3, i.e. P S cos T = = ψ = π k k D B A cosψ elm elm 3 d D w1 mg m πns πns (7) The design specifications and the main dimensions are summarized in Table 1. Table 1 Design specification and dimensions Specifications Rotor dimensions Rated put power 3kW Poles 16 ted voltage 5V PM thickness 8.4mm Frequency 3Hz Outer diameter 334.4 Speed 4rpm Inner diameter 7mm Stator dimensions Outer diameter 31mm Pole arc ratio.7 Overhang length 5mm Inner diameter 11mm Permanent magnet specification Slots 18 Material Nd-Fe-B S = π k k nb AD 3 elm D w1 s mg m (5) Coil turns 11turns Coercively 89kA/m 1 = 1 + 1. 8 Where, kd ( kd)( kd ) Coil diameter 1.1mm Remnant flux density 1.T The put power is thus ISSN: 367-8976 Volume, 17

Winding Slot insulation 1.5mm connection 3 Simulation results of AFPMG -Y 3.1 Electromagnetics Analysis Electromagnetic analysis of AFPMG is computed by time-stepped 3D FEM at full load operation using commercial software JMAG to calculated flux density distribution in each regions as shown in Fig.. Fig.3 shows the airgap flux density curves at average radius. Eddy current in rotor were calculated and compared when PMs were insulated or not. Fig. 4 shows the plot of eddy current density at full load with rotor. Fig. 5 shows eddy current density curve at average radius of rotor at full load with rotor. Fig.4 Plot of Eddy current density at full load with rotor. Current density (A/m ) 8 x 15 7 6 5 4 3 PM holder PMs 1 4 6 8 1 1 14 16 18 Mechanical angle(degree) Fig.5 Eddy current density curve at average radius of rotor at full load with rotor. Fig. Flux density distribution from 3D FEM. Flux density (T) 1..8.6.4.. -. -.4 -.6 -.8-1. 4 8 1 Mechanical position (degree) Analytical method FEA Fig.3 Air-gap flux density curve at average radius. 16 3. Deflection analysis of rotor The rotor disk of an axial-flux machine is exposed to electromagnetic forces acting in the axial direction of the machine. This phenomenon especially concerns the assembly of the machine since the attractive force FF between the stator and rotor is significant due to the flux density created by the permanent magnets, weak rotor structure would deform during assembly and fault condition. The attractive force caused by a single stator is, psagapbagap F α (8) Where, αα pp is the pole arc ratio. Considering the machine assembly or repair work, the rotor disk should be rigid enough to resist the force needed to detach the rotor core from the stator if it occurs that the rotor and stator get attached together. In such case, a reasonable sizing constraint is defined for the rotor thickness to be such that the maximum deflection of the rotor is a small fraction of the mechanical air gap length. For the analysis, it is assumed that the permanent magnets are fixed on the surface of the rotor disk ISSN: 367-8976 3 Volume, 17

and they do not support the rotor structure itself. The analysis objective is to calculate the structural performance of the rotor yoke considering the deformation and stress distribution. The maximum static force FF is applied to magnet in Fig. 6, 4N is applied to magnet, angular velocity 4 rpm and equivalent bearing support are given. As shown in Fig. 7, the maximum deflection of rotor disk is.163mm, which is 1% of air-gap length. The maximum stress is 47.61 MPa at inner radius, giving a high safety factor for this design. The thermal analysis simulation for a prototype AFPMG is carried using commercial code FLUENT on a 64 bit workstation. Due to its periodicity, simulation model studied in CFD is simplified from the full model to 1/18 partial model as shown in Fig. 8. Since the magnets are inserted to the ring holder, the surface of rotor disk is smooth and no magnet groove exists. In order to get effective ventilation, blades are intended to be installed to rotor at inner radius from a fluid flow perspective. The machine is designed for a direct-driven wind generator and speed relative low, thus effect of blades is unknown at design stage. Fig.6 Electromagnetic force applied to rotor disk during deformation analysis. Fig.8 Computational model in CFD with blades at inner radius. Fig.9 Velocity of air around the machine. Fig.7 Maximum deflection of the rotor under study 3.3 Thermal Analysis ISSN: 367-8976 4 Volume, 17

Fig.1 Temperature along the axis (Z). The moving mesh method is used to simulate the rotation of shaft and blade. Two models are derived, one model has blades equipped at inner radius of rotor and the other one has blades at er radius in order to compare the fluid characteristic and temperature distribution. The velocity around rotor disk is fast comparing with other areas as shown Fig. 9. The initial temperature of computational models are set to be 3. The temperatures of original model and other model with blade at inner radius are compared in Fig. 1. The surface temperatures from both sides of housing in radial direction are compared in Fig. 1 and the temperature reduces ab when blades are installed. It is concluded that the effect of blade is not as obvious as expected. Since rotating speed of this machine is low and the frame is almost enclosed, there is little air exchange with environment. The temperature rise of housing, stator yoke and coils at full load are ab 61, 63 and 7, respectively. 4 Experimental results A prototype AFPMG was built and the experiment apparatus was set up as shown in Fig. 11 to test the prototype as a generator using an induction motor as driven machine. The generator is directly connected to a resistance 137mm 37mm Phase voltage (V) 1-1 - 3D FEA Measured (a) (b) Fig.11 Prototype AFPMG and experimental apparatus. (a) Prototype AFPMG. (b) Experimental Apparatus..1..3.4.5.6 Time (S) Fig.1 Voltage curves at 4rpm, full load. Output power (W) 4 35 3 5 15 1 5 6 rpm 1 rpm 18 rpm 4 rpm 3 rpm 4 6 8 1 1 14 Load current phase rms(a) Fig13 Output power according to speed. ISSN: 367-8976 5 Volume, 17

Phase current (A) 1.4 9.8 7.1 4.4 54 57 63 63 1.4 6 1 18 4 3 Speed (rpm) Fig.14 Efficiency curve map according to speed. load, thus load condition is controlled by the produced torque of induction motor driven with PWM inverter. Experimental results and analysis one are compared as shown Fig. 1, Fig. 13 and Fig. 14, where full-load voltage and current curves are given in steady state. The comparison shows that the amplitude and curvatures are in good agreement, except at some peak values. The map of efficiency of machine at the whole operation range is above 8%. At rated load, the efficiency is 88.% and total loss is 3 W. 9 9 6 9 85 8 7 65 6 55 5 [1] Hosseini, Seyed Mohsen, Mojtaba Agha- Mirsalim, and Mehran Mirzaei, Design, Prototyping, and Analysis of Low Cost Axial- Flux Coreless Permanent Magnet Generator, IEEE transactions on Magnetics, vol. 44, pp.77-8, 8. [] Boglietti, Aldo, Andrea Cavagnino, and David A. Staton, TEFC induction motors thermal models: a parameter sensitivity analysis, IEEE Transactions on Industry Applications, vol. 41, pp.6-763, 5. [3] F. Marignetti and V. D. Colli, Thermal Analysis of an Axial Flux Permanent Magnet Synchronous Machine, IEEE Transactions on Magnetics, vol. 45, pp.97-9, 9. [4] Gieras, Jacek F., Rong-Jie Wang, and Maarten J. Kamper, Axial flux permanent magnet brushless machines, nd ed. New York: Springer, 8. [5] Wang, Rong-Jie, Maarten J. Kamper, and Robert T. Dobson, Development of thermal fluid model for Axial field permanent magnet Machines, IEEE Transactions on Energy Conversion, vol., pp.8-, 5. 5 Conclusion This paper deals with the development of AFPMG for a direct drive wind energy system. The design dimension, construction and experimental results of 3kW, 4rpm AFPMG are presented. In the design process of AFPMG, characteristics was carried by 3D FEM and the thermal field analysis was computed by the CFD method. Based on the analytical design approach, a 3kW prototype generator is constructed. The electrical performance values for the proposed model are then compared with experimentally measured quantities to evaluate the effectiveness of the analytical design approach. Acknowledgements: This work is supported by the Korea Agency for Infrastructure Technology Advancement(KALA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 16RTRP-B9144-3) and by Basic Science Research Program through the National Research Foundation of Korea grant funded by the Korea Government No: NRF- 14R1AAA13368. References: ISSN: 367-8976 6 Volume, 17