Radiometric assessment of natural radioactivity levels around Mrima Hill, Kenya

Similar documents
Radioactivity measurements and risk assessments in soil samples at south and middle of Qatar

Natural Radiation Map of the Sudan

Estimating the natural and artificial radioactivity in soil samples from some oil sites in Kirkuk-Iraq using high resolution gamma rays spectrometry

Terrestrial gamma dose rates along one of the coastal highways in Sri Lanka

Journal of American Science 2013;9(12)

Analysis of natural radioactivity and artificial radionuclides in soil samples in the Najran region of Saudi Arabia

The Pharmaceutical and Chemical Journal, 2017, 4(6): Research Article

THE ANNUAL EFFECTIVE DOSE FROM NATURAL RADIONUCLIDES SOIL SURFACES OF UZHGOROD AREA

ACADEMIC STAFF PROFESSIONAL PROFILE FORM. Nadir Omar Hashim

Measurement of Radioactivity in Soil Samples for Selected Regions in Thi-Qar Governorate-Iraq

Radiological significance of Egyptian limestone and alabaster used for construction of dwellings

Nserdin A. Ragab 4. 2 Physics Department, Faculty of Sciences, Sudan University of Sciences and Technology, Sudan

Canadian Journal of Physics. Determination of Radioactivity Levels of Salt Minerals on the Market

Earth & Environmental Science Research & Reviews

Aligarh Muslim University, Aligarh , India. INTRODUCTION

ASSESSMENT OF RADIOACTIVITY CONCENTRATION IN SOIL OF SOME MINING AREAS IN CENTRAL NASARAWA STATE, NIGERIA

J. Rad. Nucl. Appl. 2, No. 1, (2017) 17 Journal of Radiation and Nuclear Applications An International Journal

EVALUATION OF Ra, Th, K AND RADIUM EQUIVALENT ACTIVITY IN SAND SAMPLES FROM CAMBURI BEACH, VITÓRIA, ESPÍRITO SANTO, BRAZIL.

Gamma Ray Spectrometric Analysis of Naturally Occurring Radioactive Materials (NORMS) in Gold Bearing Soil using NaI (Tl) Technique

Natural Radioactivity in Soil Samples For Selected Regions in Baghdad Governorate

The Concentration Of Natural Radionuclides In Soil Samples From The Practical Year Agricultural Farmland, University Of Ibadan

Natural radioactivity in soil at regions around the uranium mine in Abu-Skhair Najaf Province, Iraq

Natural radioactivity levels in phosphate fertilizer and its environmental implications in Assuit governorate, Upper Egypt

RADIOACTIVITY IN CHEMICAL FERTILIZERS

Measurement of 226 Ra, 232 Th and 40 K in Arum Grown on the Bank of Rupsha River, Khulna, Bangladesh Using HPGe Detector

Occupational Exposures during the U-Exploration Activities at Seila Area, South Eastern Desert, Egypt

An Analysis for Distribution of Natural Radionuclides in Soil, Sand and Sediment of Potenga Sea Beach Area of Chittagong, Bangladesh

Evaluation of natural radioactivity in Selected Soil Samples from the Archaeological of Ur City by using HPGe detector

Natural environmental radioactivity and estimation of radiation exposure from saline soils

Evaluation and analysis of 226 Ra, 232 Th, 40 K and radon exhalation rate in various grey cements

Assessment of dose due to natural radio-nuclides in vegetables of high background radiation area in south-eastern part of Bangladesh

Measurement of Radioactivity Levels and Assessment of Radiation Hazards for Plants Species Grown at Scrap Yard (B) at Al-Tuwaitha Nuclear Site (Iraq)

XA TERRESTRIAL GAMMA DOSE RATE MAPS, THEIR COMPILATION AND VERIFICATION RADIOMETRIC MAP OF THE CZECH REPUBLIC

Investigation the Natural Radioactivity in Local and Imported Chemical Fertilizers

Natural Radioactivity in Dust Storm Samples from Al-Najaf, Iraq

Journal of American Science 2014;10(2) Evaluation of Natural Radioactivity in Different Regions in Sudan

Measurement of Gamma Emitting Radionuclides in Environmental Samples of Talagang Tehsil-District Chakwal

Radioactivity And Dose Assessment Of Rock And Soil Samples From Homa Mountain, Homa Bay County, Kenya

A coincidence method of thorium measurement

ARTICLE IN PRESS. Available online at ScienceDirect. Journal of Taibah University for Science xxx (2015) xxx xxx

Radioactive Waste Management

GAMMA DOSE RATE, ANNUAL EFFECTIVE DOSE AND COLLECTIVE EFFECTIVE DOSE OF FOOD CROP PRODUCING REGION OF ONDO STATE, NIGERIA

Activity Concentrations and Associated Gamma Doses of 238 U and 235 U in Jordan

Jordan Journal of Physics

Study of Natural and Artificial Radioactivity in some Food Grains

Investigation of Uncertainty Sources in the Determination of Gamma Emitting Radionuclides in the WBC

The Influence of Mount Sinabung Volcanic Ash and Phoshate Fertilizers on Natural Radionuclide Content in Agricultural Soils

Assessment of Natural Radioactivity Levels and Radiological Significance of Bottled Drinking Water in Bangladesh

Investigation of Radioactivity Levels and Radiation Hazards for Plants Species Grown at Scrap Yard (A) at Al-Tuwaitha Nuclear Site (Iraq)

GAMMA RAY SPECTROMETRIC ANALYSIS OF THE NATURALLY OCCURRING RADIONUCLIDES IN SOILS COLLECTED ALONG THE SHORES OF LAKE VICTORIA, MIGORI COUNTY, KENYA

Determination of natural radiation contamination for some types of legumes available in the Iraqi markets

Investigation of Radiation Levels in Soil Samples Collected from Selected Locations in Ogun State, Nigeria

Journal of Natural Sciences Research ISSN (Paper) ISSN (Online) Vol.4, No.12, 2014

Radioactivity measurements and radiation dose assessments in soil of Al-Qassim region, Saudi Arabia

IOSR Journal of Applied Physics (IOSR-JAP) e-issn: Volume 8, Issue 5 Ver. III (Sep - Oct. 2016), PP

Natural Radioactivity and Associated Dose Rates in Soil Samples of Malnichera Tea Garden in Sylhet District of Bangladesh

Norm in soil and sludge samples in Dukhan oil Field, Qatar state

(São Paulo, Brazil) Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP, Caixa Postal 11049, Pinheiros, São Paulo, Brasil 2

Available online at ScienceDirect. Physics Procedia 80 (2015 )

The Role of Reference Materials in the Measurement of Terrestrial Radionuclides

*

Evaluation of Natural Radioactivity and its Radiation Hazards in Some Building and Decorative Materials in Iraq

Assessment of the natural radioactivity and its radiological hazards in some Egyptian rock phosphates

THE USE OF GAMMA RAY DATA TO DEFINE THE NATURAL RADIATION ENVIRONMENT

Ministry of Science and Technology, Baghdad, IRAQ

Absorbed Gamma Ray Doses due to Natural Radionuclides in Building Materials

Key words: Gamma ray, Radioactivity, NOR, Abeokuta

PHYSICAL CHARACTERIZATION BY GAMMA (Γ) ENERGY SPECTROMETRY OF DRESSED ILMENITE ORE SAND FROM SOUTHEAST MADAGASCAR (FORT DAUPHIN)

Natural Radioactivity Measurements of Basalt Rocks in Sidakan District Northeastern of Kurdistan Region-Iraq

Radiological Risk Analysis of Soil inside the Ship Breaking Area, Chittagong, Bangladesh

Radionuclides Distribution and Radon Activity Concentrations and their Impact for Different Samples Collected from Sinai-Egypt.

Measurement of Specific Activities of Some Biological Samples for Some Iraq Governorates

Measurement of Natural Radioactivity in Soil Samples From Ladoke Akintola University of Technology, Ogbomoso South-West, Nigeria.

Assessment of Natural Radioactivity Levels and Radiological Hazards of Cement in Iraq

Measurement of Natural Radioactivity In Beach Sediments From North East Coast of Tamilnadu, India

A Study on the Radioactivity Level in Raw Materials, Final Products and Wastes of the Phosphate Fertilizer Industries in Bangladesh

NATURAL RADIOACTIVITY AND ASSOCIATED RADIATION HAZARDS IN LOCAL PORTLAND AND POZZOLANIC CEMENTS USED IN JORDAN

NATURAL RADIOACTIVITY DISTRIBUTION AND GAMMA RADIATION EXPOSURE OF BEACH SANDS CLOSE TO THE GRANITOIDS OF NORTHERN GREECE

ENVIRONMENTAL RADIOACTIVITY MEASUREMENTS OF SOME EGYPTIAN SAND SAMPLES

Determination of natural radionuclides 40K, eu and eth in environmental samples from the vicinity of Aramar Experimental Center, Brazil

Pelagia Research Library. Advances in Applied Science Research, 2017, 8(1):36-41

Radiological safety assessment of some mine sites at Gusau and environs, Nigeria

WM2018 Conference, March 18-22, 2018, Phoenix, Arizona, USA. PVT and LaBr3(Ce)-based Radon Express Analyzers 18164

Radionuclides in hot mineral spring waters in Jordan

Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry

N.N. Jibiri * and P.E. Biere

A Method to Determine Doublet Photopeak Area

ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION

Study of Natural Radioactivity and Radiological Hazard of Sand, Sediment, and Soil Samples from Inani Beach, Cox s Bazar, Bangladesh

Radon escape from mine tailings dams. Robbie Lindsay + Joash Ongori (PhD student) Co-authors Prof Richard Newman/Dr Peane Maleka

Te-Norm in Phosphogypsum; Characterization and Treatment

Full length Research Article Natural Radioactivity and Hazard Assessment of Imported Ceramic Tiles in Nigeria Ademola J. A.

Characterising NORM hazards within subsea oil and gas facilities. Daniel Emes SA Radiation

Assessment of Rn and U Concentrations in the Soil of Qadafery, Kalar and Zarayan Located in Sulaimani Governorate of Kurdistan Region- Iraq

RADIOACTIVITY AND RADIOLOGICAL IMPACT ASSESSMENT IN OTA-DUMPING SITE, OGUN STATE, NIGERIA M.

Natural Radioactivity Study in The Coastal Villages of Northern Chennai

The Determination of Radioactivity Levels in the Environment using High Resolution Gamma-ray Spectrometry

Natural Radiation K 40

Abstract The concentrations of the natural radionuclides: 226 Ra, 232 Th, 40 K, have been determined in

Sensitivity of the IRD whole-body counter for in vivo measurements in the case of accidental intakes

Transcription:

International Journal of the Physical Sciences Vol. 6(13), pp. 3105 3110, 4 July, 2011 Available online at http://www.academicjournals.org/ijps DOI: 10.5897/IJPS11.052 ISSN 1992-1950 2011 Academic Journals Full Length Research Paper Radiometric assessment of natural radioactivity levels around Mrima Hill, Kenya J. M. Kebwaro 1 *, I. V. S. Rathore 1, N. O. Hashim 1, A. O. Mustapha 2 1 Department of Physics, Kenyatta University, P. O. Box 43844, Nairobi, Kenya. 2 Physics Department, University of Agriculture, P. M. B. 2240, Abeokuta, Nigeria. Accepted 10 March, 2011 Mrima Hill, located in the South coast of Kenya is known for high natural background radiation, due to the presence of radiogenic heavy minerals such as monazites and carbonatites. The activity concentration of 238 U, 232 Th and 40 K in soil samples from the hill have been determined by gamma ray spectrometry using NaI(Tl) detector and decomposition of measured gamma-spectra. As a measure of radiation hazard to the public, gamma radiation dose rates were also estimated. The average activity concentrations of 238 U, 232 Th and 40 K were 207.0±11.3, 500.7±20.0 and 805.4±20.0 Bqkg -1, respectively. The mean absorbed dose rate in air is 440.7±16.8 ngyh -1 while the estimated annual average effective dose rate is 1.11±0.01 msvy -1. The absorbed dose rate due to gamma radiation from naturally occurring radioactive materials is above the global average value of 60 ngyh -1 (UNSCEAR, 2000). Key words: High natural background radiation, gamma ray spectrometry, NaI(Tl) detector, Mrima Hill. INTRODUCTION Naturally occurring radionuclides of terrestrial origin are present on the earth s crust since its origin. They are believed to have been produced when the matter of which the universe is formed first came into existence. The young earth probably contained a large number of elements than they are today. The short-lived radioactive elements decayed leaving those with half-lifes comparable to the estimated age of the earth. The distribution of these radionuclides on the Earth depends on the distribution of rocks from which they originate and the processes which concentrate them (Mohanty et al., 2004). Human exposure to natural sources of ionizing radiation is a continuous and inescapable feature of life on the earth. The major sources responsible for exposure are naturally occurring radionuclides in the earth s crust such as 238 U, 232 Th and 40 K which occur in radiogenic minerals such as monazites and carbonatites. Several studies (UNSCEAR, 2000; Malanca et al., 1993; Ramli et al., 2005; Mohanty et al., 2004) have shown that there are few regions in the world, which are known for high background radiation due to the local *Corresponding author. E-mail: jeremonari@yahoo.co.uk Tel: +254726290445. geology and geochemical effects that cause enhanced levels of terrestrial radiation. Mrima Hill is located in the South coast of Kenya at 4 0 0 29 10 S ; 39 15 10 E. Patel (1991) measured radiation doses in the hill and reported high dose rates up to a maximum value of 106 msvy -1. However, no studies have been conducted in the villages around the hill to determine natural radionuclide levels and the associated dose rates. The objective of this work was to measure the levels of naturally occurring radionuclides ( 238 U, 232 Th and 40 K) in soil samples from the five villages surrounding the hill (Dzuni, Mchanongo, Mrima TM, Mwavobo and Bumbuni) and the associated radiation dose rates in air. MATERIALS AND METHODS Sampling and sample preparation A total of 50 soil samples were randomly collected within a radius of 5 km from Mrima Hill at a depth of 10 to 15 cm. Figure 1 shows the sampling area. The samples were dried at 110 C overnight and ground to ensure homogeneity. The dried samples were sealed in plastic containers and kept for four weeks to achieve radioactive 226 232 equilibrium between Ra and Th and their daughter radionuclides (Mustapha et al., 1999).

3106 Int. J. Phys. Sci. Figure 1. Sampling map. NaI(Tl) gamma ray spectrometer Calibration of NaI(Tl) gamma-ray spectrometer and decomposition of measured spectrum into components were done using three standard materials (RGK-1, RGU-1 and RGTH-1 for potassium, uranium and thorium, respectively) which were obtained from International Atomic Energy Agency (IAEA, 1987). Energy calibration of the spectrometer was performed using the following gamma-lines: 214 Pb (352 kev), 40 K (1460 kev), 214 Bi (1765 kev), and 208 Tl (2615 kev). In order to determine the background components in the spectrum, an inert sample comprising of a plastic container filled with distilled water was counted in the same geometry as the samples. This background spectral data was always subtracted from the counts obtained for each sample before further analysis. The time of acquisition of data for each soil sample was 30000 s. Spectrum analysis The spectrum of a soil sample was reduced to spectral components of its constituent radionuclides ( 238 U, 232 Th and 40 K) using the

Kebwaro et al. 3107 0.2 Bi- 609 kev 214 s p e c tr u m o f s o il s a m p le Intensity (c/s) 0.1 214 208 K -1460 kev 40 Tl -2615 kev Bi -1765 kev 0.0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 E n e r g y (K e V ) Figure 2. A typical gamma rays spectrum of a soil sample. method of spectrum decomposition (Muminov et al., 2005). This was performed as follows: A spectrum Y of a natural sample was assumed to comprise of the spectra of the three natural radionuclides and the background spectrum as shown in Equation (1). ( U ) + Y ( Th) Y ( K ) Y = Yb + Y + where Y b is the background spectra and Y(U), Y(Th) and Y(K) are 238 232 40 U and Th decay series, and K the spectra of respectively. By subtracting the background, Equation (1) becomes ( U ) + Y ( Th) Y ( K ) Y net = Y + To obtain the 232 Th component in the soil sample, 2615keV gammaline of 208 Tl photo peak which weakly interferes with others was selected. The ratio of its peak intensity in a sample to the corresponding intensity in the thorium standard (RGTH-1) was computed by using Equation (3) Y Th ( sample ) = ae ( RGTh 1) (3) where a is a normalizing constant and E(RGTh-1) is the spectrum of the thorium standard. This procedure was repeated to obtain the uranium and thorium components in the sample. Net counts (area under photo peaks) were determined by Gaussian fitting of the gamma ray photo peaks in the spectrum using origin software. With this method, errors due to photopeak interference were highly minimised. Figure 2 shows a typical spectrum of a soil sample and Figure 3 shows a typical Gaussian fitted photopeak of a soil sample before and after spectrum decomposition. Measurement of radioactivity The activity concentrations of radionuclides ( 232 Th, 238 U and 40 K) (1) (2) were determined by using the gamma-lines: 2615 kev of 208 Tl, 1765 kev of 214 Bi and 1460 kev of 40 K respectively. The outdoor absorbed radiation dose rate in air at a height of 1 m above the ground surface was computed based on the guidelines provided by UNSEAR (2000). The absorbed dose rate was calculated in this study using the formula obtained from Abbady et al. (2005). D 0432 = 0.427AU + 0.622ATh + 0. AK (4) where A Th,A U and A K are average activity concentrations of 232 Th, 238 U and 40 K, respectively. To estimate the annual effective dose rates, the conversion factor of 0.7 SvGy -1 (UNSCEAR, 2000) and an outdoor occupancy of 0.4 were used. The following formula was used to determine the annual effective dose rates (Abbady et al., 2005). H E = DTF (5) where H, D,T and F are effective annual dose rate in msvy -1, absorbed dose rate in ngyh -1 is the outdoor occupancy time and conversion factor respectively. RESULTS AND DISCUSSION The values of activity concentrations of radionuclides 238 U, 232 Th and 40 K in soil samples from the region around Mrima Hill have been computed. The minimum activities of 238 U, 232 Th and 40 K observed are 67.04±11.3, 298.2±3.4 and 506.75±3.45 Bqkg -1 and the maximum values are 354.3±6.1, 869±.04 and 1108.15±8.6, respectively. The average concentrations of 238 U, 232 Th and 40 K in the samples are 207.03±11.3, 500.7±20.3 and 805.38±20.7 Bqkg -1 respectively. The correlation between thorium and uranium is shown in Figure 4. It is observed that the activity concentrations are above

3108 Int. J. Phys. Sci. 0.009 0.008 intensity (c/s) 0.007 0.006 0.005 0.004 0.003 1700 1750 1800 1850 Energy (KeV) Figure 3a. Gaussian fitted photopeak of 1765 kev (214Bi) before decomposition. 0.0035 0.0030 Intensity (c/s) 0.0025 0.0020 0.0015 1700 1750 1800 1850 Energy (KeV) Figure 3b. Gaussian fitted photopeak of 1765 kev ( 214 Bi) after decomposition. the world population weighted average of 33 Bqkg -1 for 238 U, 45 Bqkg -1 for 232 Th Bqkg -1 and 420 Bqkg -1 for 40 K as reported in UNSCEAR (2000). The values are also higher than those recorded by other researchers from other parts of Kenya as shown in Table 1. The high concentration of radionuclides in the area around the hill can be attributed to the washing away of minerals from the hill. Weathering of underlying rocks and erosion are

Kebwaro et al. 3109 900 800 Regression line R 2 = 0.58276 Thorium 700 600 500 400 300 50 100 150 200 250 300 350 400 Uranium Figure 4. Regression plot showing correlation between activity concentrations of 232 Th and 238 U. Table 1. Average activity concentration of natural radionucludes. Place Activity concentrations (Bqkg -1 ) 238 U 232 Th 40 K Mrima Hill 207.03±11.3 500.7±20.3 805.38±20.7 Mombasa a 22.8±1.8 26.2± 1.7 479.8±24.2 Malindi a 21.3 ± 3 19.1 ± 3.5 519.2 ± 42.1 Gazi a 11.9 ± 1.4 10.8± 1.0 206.1± 26.4 Other places b 28.7± 3.6 73.3± 9.1 255.7 ± 38.5 a Hashim et al. (2004); b Mustapha et al. (1999). also attributed to these high levels. In fact, the high concentration of 232 Th is strongly attributed to the weathering and washing away of carbonatite rocks from the hill (Patel and Mangala, 1994). It is observed that the correlation between 232 Th and 238 U is not very strong (R 2 = 0.58276). This Indicates that the two radionuclides are from two different minerals. The absorbed dose rate in air at a height of 1 m above the ground level obtained from different sampling points ranged from 253.8±2.5 to 733.1±3.4 ngyh -1 with an average of 440.7±16.8 ngyh -1. This value is higher than the worldwide average of 60 ngyh -1 (UNSCEAR, 2000). The annual outdoor effective dose ranged from 0.64 to 1.849 msvy -1 with an average of 1.11 msvy -1. Conclusions The activity concentration of the three radionuclides 238 U, 232 Th and 40 K in the area around Mrima hill was higher compared to those reported by other researchers from other parts of the country. However these values are within the range observed by other researchers in regions of high natural background (Ramli et al., 2005; Mohanty et al., 2004). This can be attributed to the washing away of minerals from the hill to the area surrounding it. The absorbed dose rate due to gamma radiation from natural radioactivity is above the global average of 60 ngyh -1 (UNSCEAR, 2000). Since ionising radiation is known to cause health problems, an epidemiological study is necessary in this area. REFERENCES Abbady AGE, Uosif MAM, El-Taher A (2005). Natural radioactivity and dose assessment for phosphate rocks from Wadi El-mashal and El- Mahamid Mines in Egypt. J. Environ. Radioactivity, 84:65-78. Hashim NO, Rathore IVS, Kinyua AM, Mustapha AO (2004). Natural and artificial radioactivity levels in sediments along the Kenyan coast. Radiation Phys. Chem., 71: 805-806. International Atomic Energy Agency (1987). Preparation and

3110 Int. J. Phys. Sci. Certification of IAEA Gamma spectrometry reference materials. International Atomic Energy Agency.IAEA/RL/148,IAEA.Vienna. Malanca A, Pessina V, Dallara G (1993). Assessment of the natural radioactivity in the Brazilian state of Rio Grande. Health phys., 65(3): 298-302. Mohanty AK, Sengupta D, Das SK, Vijayan V, Saha SK (2004). Natural radioactivity in the newly discovered high background radiation area on the eastern coast of Orissa, India. Radiation Measurements, 38:153-165. Muminov IT, Muhamedov AK, Osmanov BS, Safarof AA, Safarof AN (2005). Application of NaI(Tl) detector to measurement of natural 137 radionuclides and Cs in environmental samples- New approach by decomposition of measured spectrum. J. Environ. Radioactivity, 84(3): 321-331. Mustapha AO, Patel JP, Rathore IVS (1999). Assessment of human exposures to natural sources of radiation in Kenya, Radiation Protection Dosimetry, 82(4): 285-292. Patel JP (1991). Environmental radiation survey of the area of high natural radioactivity of Mrima hill of Kenya. Discovery and Innovation, 3(3): 31-35. Patel JP, Mangala MJ (1994). Elemental analysis of carbonatite samples from Mrima Hill, Kenya, by Energy Dispersive X-Ray Flourescence (EDXRF). Nuclear Geophysics, 8(4): 389-393 Ramli AT, Wahab MA, Hussein A, Wood K (2005) Environmental 238 U and 232 Th concentration measurements in an area of high level natural background radiation at Palong, Johor, Malaysia. J. Environ. Radioactivity, 80: 287-304. United Nations Scientific Committee on Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation. United Nations, New York.