EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

Similar documents
EE 330 Lecture 17. MOSFET Modeling CMOS Process Flow

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

EE 330 Lecture 18. Small-signal Model (very preliminary) Bulk CMOS Process Flow

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

EE 330 Class Seating

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

MOS Transistor Theory

EE105 - Fall 2006 Microelectronic Devices and Circuits

Lecture 4: CMOS Transistor Theory

EE 330 Lecture 37. Digital Circuits. Other Logic Families. Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates)

EE105 - Fall 2005 Microelectronic Devices and Circuits

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

MOSFET: Introduction

EE 434 Lecture 33. Logic Design

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

Lecture 5: CMOS Transistor Theory

ECE 342 Electronic Circuits. 3. MOS Transistors

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

MOS Transistor Properties Review

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

Practice 3: Semiconductors

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Chapter 4 Field-Effect Transistors

EE 330 Lecture 36. Digital Circuits. Transfer Characteristics of the Inverter Pair One device sizing strategy Multiple-input gates

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

MOS Transistor Theory

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

ECE 546 Lecture 10 MOS Transistors

Lecture 11: MOS Transistor

Lecture 3: CMOS Transistor Theory

Device Models (PN Diode, MOSFET )

EE 434 Lecture 34. Logic Design

Nanoscale CMOS Design Issues

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

MOS Transistor I-V Characteristics and Parasitics

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

6.012 Electronic Devices and Circuits Spring 2005

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

ECE315 / ECE515 Lecture-2 Date:

Integrated Circuits & Systems

Lecture 12: MOSFET Devices

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Chapter 20. Current Mirrors. Basics. Cascoding. Biasing Circuits. Baker Ch. 20 Current Mirrors. Introduction to VLSI

The Devices: MOS Transistors

EE 435. Lecture 37. Parasitic Capacitances in MOS Devices. String DAC Parasitic Capacitances

EE5311- Digital IC Design

Chapter 13 Small-Signal Modeling and Linear Amplification

Device Models (PN Diode, MOSFET )

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

CMOS Inverter (static view)

High-to-Low Propagation Delay t PHL

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

6.012 Electronic Devices and Circuits

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

Electronics Fets and Mosfets Prof D C Dube Department of Physics Indian Institute of Technology, Delhi

ECE 497 JS Lecture - 12 Device Technologies

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues

VLSI Design The MOS Transistor

The Devices. Jan M. Rabaey

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

ECE-305: Fall 2017 MOS Capacitors and Transistors

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

ELEC 3908, Physical Electronics, Lecture 27. MOSFET Scaling and Velocity Saturation

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

The Devices. Devices

The Physical Structure (NMOS)

EECS 141: FALL 05 MIDTERM 1

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Lecture 04 Review of MOSFET

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

Power Dissipation. Where Does Power Go in CMOS?

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

Lecture 28 Field-Effect Transistors

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

Content. MIS Capacitor. Accumulation Depletion Inversion MOS CAPACITOR. A Cantoni Digital Switching

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

EE 434 Lecture 13. Basic Semiconductor Processes Devices in Semiconductor Processes

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Lecture 5: DC & Transient Response

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ECE321 Electronics I

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

Exam 2 Fall How does the total propagation delay (T HL +T LH ) for an inverter sized for equal

Biasing the CE Amplifier

S No. Questions Bloom s Taxonomy Level UNIT-I

Transcription:

EE 330 Lecture 16 MOSFET Modeling CMOS Process Flow

Model Extensions 300 Id 250 200 150 100 50 300 0 0 1 2 3 4 5 Vds Existing Model 250 200 Id 150 100 50 Slope is not 0 0 0 1 2 3 4 Actual Device Vds

Model Extensions 300 250 200 Id 150 I D 0 μc μc OX OX W V L W 2L 100 50 GS 0 V 0 1 2 3 4 V 2 V 2 V V 1 V GS T T DS DS DS Note: This introduces small discontinuity (not shown) in model at SAT/Triode transition V GS V V GS V GS T V V T T Vds V V DS DS V V GS GS V V T T

Further Model Extensions Existing model does not depend upon the bulk voltage! Observe that changing the bulk voltage will change the electric field in the channel region! V DS V GS ID V BS I B I G E (V BS small)

Further Model Extensions Existing model does not depend upon the bulk voltage! Observe that changing the bulk voltage will change the electric field in the channel region! V DS V GS ID V BS I B I G E (V BS small) Changing the bulk voltage will change the thickness of the inversion layer Changing the bulk voltage will change the threshold voltage of the device V V V T T 0 B S

Typical Effects of Bulk on Threshold Voltage for n-channel Device V T V T 0 V B S 1 0.4V - 2 0.6V V T V T0 ~ -5V V BS Bulk-Diffusion Generally Reverse Biased (V BS < 0 or at least less than 0.3V) for n-channel Shift in threshold voltage with bulk voltage can be substantial Often V BS =0

Typical Effects of Bulk on Threshold Voltage for n-channel Device V T V T 0 V B S 1 0.4V - 2 0.6V V T ΔV=? V T0 ~ -5V V BS V V -V V T T T 0 B S V 0. 4 0. 6 5 0. 6 0. 6 4V T

Typical Effects of Bulk on Threshold Voltage for p-channel Device T T 0 B S V V V 1 0.4V - 2 0.6V V BS V T0 V T Bulk-Diffusion Generally Reverse Biased (V BS > 0 or at least greater than -0.3V) for n-channel Same functional form as for n-channel devices but V T0 is now negative and the magnitude of V T still increases with the magnitude of the reverse bias

Model Extension Summary I I G B 0 0 0 V V GS T W V L 2 W 2 μc V V 1 V V V V V V 2L DS I μc V V V V V V V V D OX GS T DS GS T DS GS T OX GS T DS GS T DS GS T V T V T0 V BS Model Parameters : {μ,c OX,V T0,φ,γ,λ} Design Parameters : {W,L} but only one degree of freedom W/L

Id Operation Regions by Applications I D 300 250 200 150 100 50 Triode Region Saturation Region Analog Circuits Cutoff Region 0 0 1 2 3 4 5 Vds Digital Circuits V DS Most analog circuits operate in the saturation region (basic VVR operates in triode and is an exception) Most digital circuits operate in triode and cutoff regions and switch between these two with Boolean inputs

Model Extension (short devices) 0 V V GS T W V L 2 W 2L DS I μc V V V V V V V V D OX GS T DS GS T DS GS T 2 μc V V V V V V V OX GS T GS T DS GS T As the channel length becomes very short, velocity saturation will occur in the channel and this will occur with electric fields around 2V/u. So, if a gate length is around 1u, then voltages up to 2V can be applied without velocity saturation. But, if gate length decreases and voltages are kept high, velocity saturation will occur 0 V V GS T W I μc V V V V V V V D OX GS T DS GS T DS 1 GS L 1 W μc V V V V V V 2 OX GS T GS T DS 1 GS L V 2 2 2 V α is the velocity saturation index, 2 α 1 T T 2

Model Extension (short devices) 0 V V GS T W I μc V V V V V V V D OX GS T DS GS T DS 1 GS L 1 W μc V V V V V V 2 OX GS T GS T DS 1 GS L V 2 2 2 V α is the velocity saturation index, 2 α 1 T T 2 No longer a square-law model (some term it an α-power model) For long devices, α=2 Channel length modulation (λ) and bulk effects can be added to the velocity Saturation as well Degrading of α is not an attractive limitation of the MOSFET

Model Extension (BSIM model)

Model Errors with Different W/L Values I D Actual Modeled with one value of L, W Modeled with another value of L, W V GS3 V GS2 V GS1 V DS Binning models can improve model accuracy

BSIM Binning Model - Bin on device sizes - multiple BSIM models! With 32 bins, this model has 3040 model parameters!

Model Changes with Process Variations (n-ch characteristics shown) I D TT FS or FF (Fast n, slow p or Fast n, fast p ) SS or SF (Slow n, slow p or Slow n, fast p ) V GS3 V GS2 V GS1 V DS Corner models can improve model accuracy

BSIM Corner Models with Binning - Often 4 corners in addition to nominal TT, FF, FS, SF, and SS - bin on device sizes With 32 size bins and 4 corners, this model has 15,200 model parameters!

How many models of the MOSFET do we have? Switch-level model (2) Square-law model Square-law model (with λ and bulk additions) α-law model (with λ and bulk additions) BSIM model BSIM model (with binning extensions) BSIM model (with binning extensions and process corners)

The Modeling Challenge I D Actual Modeled with one model V GS3 (and W/L variations or Process Variations) Local Agreement with Any Model V GS2 (and W/L variations or Process Variations) V GS1 (and W/L variations or Process Variations) V DS (and W/L variations or Process Variations) I G I D V DS I = f V,V D 1 GS DS I = f V,V G 2 GS DS I = f V,V B 3 GS DS V GS I B V BS = 0 Difficult to obtain analytical functions that accurately fit actual devices over bias, size, and process variations

Model Status Simple dc Model Square-Law Model Small Signal Better Analytical dc Model Sophisticated Model for Computer Simulations BSIM Model Square-Law Model (with extensions for λ,γ effects) Short-Channel α-law Model Frequency Dependent Small Signal Simpler dc Model Switch-Level Models Ideal switches R SW and C GS

In the next few slides, the models we have developed will be listed and reviewed Square-law Model Switch-level Models Extended Square-law model Short-channel model BSIM Model BSIM Binning Model Corner Models

Square-Law Model I D V GS4 V GS3 V DS V GS2 V GS1 0 VGS VT W V L 2 W 2L DS I μc V V V V V V V V D OX GS T DS GS T DS GS T 2 μc V V V V V V V OX GS T GS T DS GS T Model Parameters : {μ,c OX,V T0 } Design Parameters : {W,L} but only one degree of freedom W/L

Switch-Level Models Drain Gate G D Source R SW C GS V GS Switch closed for V GS = 1 S Switch-level model including gate capacitance and drain resistance C GS and R SW dependent upon device sizes and process For minimum-sized devices in a 0.5u process 2KΩ n channel C GS 1.5fF R sw 6KΩ p channel Considerable emphasis will be placed upon device sizing to manage C GS and R SW Model Parameters : {C GS,R SW }

Extended Square-Law Model I I G B 0 0 0 V V GS T W V L 2 W 2 μc V V 1 V V V V V V 2L DS I μc V V V V V V V V D OX GS T DS GS T DS GS T OX GS T DS GS T DS GS T V T V T0 V BS Model Parameters : {μ,c OX,V T0,φ,γ,λ} Design Parameters : {W,L} but only one degree of freedom W/L

Short-Channel Model 0 V V GS T W I μc V V V V V V V D OX GS T DS GS T DS 1 GS L 1 W μc V V V V V V 2 OX GS T GS T DS 1 GS L V 2 2 2 V T T 2 α is the velocity saturation index, 2 α 1 Channel length modulation (λ) and bulk effects can be added to the velocity Saturation as well

BSIM model Note this model has 95 model parameters!

BSIM Binning Model - Bin on device sizes - multiple BSIM models! With 32 bins, this model has 3040 model parameters!

BSIM Corner Models - Often 4 corners in addition to nominal TT, FF, FS, SF, and SS - five different BSIM models! TT: typical-typical FF: fast n, fast p FS: fast n, slow p SF: slow n, fast p SS: slow n, slow p With 4 corners, this model has 475 model parameters!

Accuracy Complexity Hierarchical Model Comparisons BSIM Binning Models Analytical Numerical (for simulation only) L Number of Model Parameters BSIM Models Number of Model Parameters Square-Law Models Number of Model Parameters Switch-Level Models Approx 3000 (for 30 bins) Approx 100 3 to 6 W Number of Model Parameters 0 to 2

Corner Models Basic Model FF (Fast n, Fast p) FS (Fast n, Slow p) TT Typical-Typical SF (Slow n, Fast p) SS (Slow n, Slow p) Corner Model Applicable at any level in model hierarchy (same model, different parameters) Often 4 corners (FF, FS, SF, SS) used but sometimes many more Designers must provide enough robustness so good yield at all corners

n-channel. p-channel modeling Source Gate Drain Bulk I D 3 V GS4 2.5 D n-channel MOSFET D 2 1.5 1 V GS3 V GS2 G S G D S 0.5 0 0 1 2 3 4 5 VDS GS4 GS3 GS2 GS1 V GS1 V V V V > 0 V DS G B (for enhancement devices) G I G V GS I D D S I B B S V BS V DS 0 VGS VTn W V L 2 W 2L I =I =0 DS I μ C V V V V V V V V D n OX GS Tn DS GS Tn DS GS Tn G B 2 μ C V V V V V V V n OX GS Tn GS Tn DS GS Tn Positive V DS and V GS cause a positive I D

Bulk Source n-channel. p-channel modeling Gate Drain (for enhancement devices) VTp 0 p-channel MOSFET S S G G D S D V GS G I G G I D B S D I B D V BS B V DS 0 V V GS Tp W V L 2 W 2L I =I =0 DS I -μ C V V V V V V V V D p OX GS Tp DS GS Tp DS GS Tp G B 2 -μ C V V V V V V V p OX GS Tp GS Tp DS GS Tp Negative V DS and V GS cause a negative I D Functional form of models are the same, just sign differences and some parameter differences (usually mobility is the most important)

Bulk Source n-channel. p-channel modeling Gate Drain (for enhancement devices) VTp 0 p-channel MOSFET S S G G S D G D S D B 0 V V GS Tp W V L 2 W 2L I =I =0 DS I -μ C V V V V V V V V D p OX GS Tp DS GS Tp DS GS Tp G B 2 -μ C V V V V V V V p OX GS Tp GS Tp DS GS Tp V GS G I G I D B D I B V BS V DS V GS G I G S B I B -I D D V BS V DS Actually should use C OXp and C OXn but they are usually almost identical in most processes μ n 3μ p May choose to model I D which will be nonnegative

n-channel. p-channel modeling Bulk Source Gate Drain V GS G I G I D S B D I B V BS V DS p-channel MOSFET (for enhancement devices) 0 V V GS Tp W V L 2 W 2L I =I =0 DS I -μ C V V V V V V V V D p OX GS Tp DS GS Tp DS GS Tp G B 2 -μ C V V V V V V V p OX GS Tp GS Tp DS GS Tp 0 V V GS Tp W V L 2 W 2L I =I =0 DS I μ C V V V V V V V V D p OX GS Tp DS GS Tp DS GS Tp G Alternate equivalent representation B 2 μ C V V V V V V V p OX GS Tp GS Tp DS GS Tp These look like those for the n-channel device but with

D n-channel. p-channel modeling D S S G G G G S D S D D D G B G B S S G I G V GS I D D I B B V BS V DS V GS G I G S B I B V BS V DS S I D D I D 3 2.5 2 1.5 V GS4 V GS3 Models essentially the same with different signs and model parameters 1 V GS2 0.5 0 V GS1 0 1 2 3 4 5 V DS VDS VGS4 VGS3 VGS2 V GS1> 0 0 VGS VTn W V L 2 W 2 μ C V V V V V V V 2L I =I =0 DS I μ C V V V V V V V V D n OX GS Tn DS GS Tn DS GS Tn G B n OX GS Tn GS Tn DS GS Tn 0 V V GS Tp W V L 2 W 2L I =I =0 DS I -μ C V V V V V V V V D p OX GS Tp DS GS Tp DS GS Tp G B 2 -μ C p OX VGS VTp VGS VTp VDS VGS VTp

Model Relationships Determine R SW and C GS for an n-channel MOSFET from square-law model In the 0.5u CMOS process if L=1u, W=1u (Assume μc OX =100μAV -2, C OX =2.5fFu -2,V T0 =1V, V DD =3.5V, V SS =0) 0 V V GS T W V L 2 W 2L DS I μc V V V V V V V V D OX GS T DS GS T DS GS T 2 μc V V V V V V V OX GS T GS T DS GS T when SW is on, operation is deep triode

Model Relationships Determine R SW and C GS for an n-channel MOSFET from square-law model In the 0.5u CMOS process if L=1u, W=1u (Assume μc OX =100μAV -2, C OX =2.5fFu -2,V T0 =1V, V DD =3.5V, V SS =0) When on operating in deep triode W V W L 2 L DS I μc V V V μc V V V D OX GS T DS OX GS T DS V 1 1 DS R = 4K SQ I W 1 D V GS =VDD μc V V ( E 4) 3. 5 1 OX GS T L V GS =3.5V 1 C GS = C OX WL = (2.5fFµ -2 )(1µ 2 ) = 2.5fF

Model Relationships Determine R SW and C GS for an p-channel MOSFET from square-law model In the 0.5u CMOS process if L=1u, W=1u ( C OX =2.5fFu -2,V T0 =1V, V DD =3.5V, V SS =0) Observe µ n \ µ p 3 0 V V GS T W V L 2 W 2L DS -I μc V V V V V V V V D OX GS T DS GS T DS GS T 2 μc V V V V V V V OX GS T GS T DS GS T When SW is on, operation is deep triode

Model Relationships Determine R SW and C GS for an p-channel MOSFET from square-law model In the 0.5u CMOS process if L=1u, W=1u ( C OX =2.5fFu -2,V T0 =1V, V DD =3.5V, V SS =0) Observe µ n \ µ p 3 W V W L 2 L DS -I μ C V V V μ C V V V D p OX GS T DS p OX GS T DS -V 1 1 DS R = 12K SQ -I W 1 1 D V GS =VDD μ C V V ( 4) 3. 5 1 p OX GS T L E V GS =3.5V 3 1 C GS = C OX WL = (2.5fFµ -2 )(1µ 2 ) = 2.5fF Observe the resistance of the p-channel device is approximately 3 times larger than that of the n-channel device for same bias and dimensions!

Modeling of the MOSFET Goal: Obtain a mathematical relationship between the port variables of a device. I f V,V,V I I D G B 1 f f 2 3 GS DS BS VGS,V DS,VBS V GS,V DS,VBS Drain V DS I D I B Gate Bulk I D Simple dc Model V GS V BS Small Signal Better Analytical dc Model Sophisticated Model for Computer Simulations Frequency Dependent Small Signal Simpler dc Model

Small-Signal Model Goal with small signal model is to predict performance of circuit or device in the vicinity of an operating point Operating point is often termed Q-point

Small-Signal Model y Y Q Q-point X Q x Analytical expressions for small signal model will be developed later

Design Rules Technology Files Process Flow (Fabrication Technology) Model Parameters

n-well n-well n- p-

Bulk CMOS Process Description n-well process Single Metal Only Depicted Double Poly This type of process dominates what is used for high-volume lowcost processing of integrated circuits today Many process variants and specialized processes are used for lowervolume or niche applications Emphasis in this course will be on the electronics associated with the design of integrated electronic circuits in processes targeting highvolume low-cost products where competition based upon price differentiation may be acute Basic electronics concepts, however, are applicable for lower-volume or niche applicaitons

Components Shown n-channel MOSFET p-channel MOSFET Poly Resistor Doubly Poly Capacitor

C D A A B B C D

Consider Basic Components Only Well Contacts and Guard Rings Will be Discussed Later

A A B B

A A B B

Metal details hidden to reduce clutter A A D G S B D B S B n-channel MOSFET G

A A D G S B B B W L

A A Capacitor Resistor p-channel MOSFET B B n-channel MOSFET

n-well n-well n- p-

N-well Mask A A B B

N-well Mask A A B B

Detailed Description of First Photolithographic Steps Only Top View Cross-Section View

~ Blank Wafer Implant n-well Photoresist Mask p-doped Substrate Will use positive photoresist (exposed region soluble in developer) A A B Develop Expose B

Develop N-well Exposure Photoresist Mask A-A Section B-B Section

Implant A-A Section B-B Section

N-well Mask A-A Section B-B Section

n-well n-well n- p-

Active Mask A A B B

Active Mask A A B B

Active Mask Field Oxide A-A Section Field Oxide Field Oxide Field Oxide B-B Section

n-well n-well n- p-

Poly1 Mask A A B B

Poly1 Mask A A B B

Poly plays a key role in all four types of devices! A A Capacitor Resistor P-channel MOSFET B B n-channel MOSFET

Poly 1 Mask A-A Section Gate Oxide Gate Oxide B-B Section

n-well n-well n- p-

Poly 2 Mask A A B B

Poly 2 Mask A A B B

Poly 2 Mask A-A Section B-B Section

n-well n-well n- p-

P-Select A A B B

P-Select A A B B

P-Select Mask p-diffusion p-diffusion A-A Section Note the gate is self aligned!! B-B Section

n-select Mask n-diffusion A-A Section n-diffusion B-B Section

n-well n-well n- p-

Contact Mask A A B B

Contact Mask A A B B

Contact Mask A-A Section B-B Section

n-well n-well n- p-

Metal 1 Mask A A B B

Metal 1 Mask A A B B

Metal Mask A-A Section B-B Section

A A B B

A A Capacitor Resistor P-channel MOSFET B B n-channel MOSFET

End of Lecture 16