Star. Planet. Chapter 1 Our Place in the Universe. 1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe?

Similar documents
Chapter 1 Lecture. The Cosmic Perspective Seventh Edition. A Modern View of the Universe Pearson Education, Inc.

Stars. 1.1 A Modern View of the Universe. What Objects Do We Find in The Universe? 8/12/2010. Our goals for learning:

Chapter 1 Our Place in the Universe. Copyright 2012 Pearson Education, Inc.

9/5/16. Astronomy 1001 Syllabus Sec 1 T,Th AM; Sec 2 T,TH PM. Astronomy 1001 First Assignments: Chapter 1: A Modern View of the Universe

Chapter 1 Lecture. The Cosmic Perspective Seventh Edition. A Modern View of the Universe

Chapter 1 Our Place in the Universe

Star. Chapter 1: Our Place in the Universe. 1.1 A Modern View of the Universe Our goals for learning:

AST 103 Ch.1 Our Place in the Universe #2. Prof. Ken Nagamine Dept. of Physics & Astronomy UNLV

Bell Ringer. want to do someday? 1. Briefly describe the Doppler effect in one sentence. 2. What do you want to do someday, like, in life?

Plan. Questions? Syllabus; administrative details. Some Definitions. An Idea of Scale

AST 103 The Solar System

Our Place in the Universe (Chapter 1) The Structure and Size of the Universe

Required Material. Required Material. Pre-Course Assessment 1/27/09. Textbook: The Cosmic Perspective, 5 th edition by Bennett et al.

Required Material. Required Material 1/27/09. Textbook: The Cosmic Perspective, 5 th edition by Bennett et al.

Chapter 1 Review Clickers. The Cosmic Perspective Seventh Edition. A Modern View of the Universe Pearson Education, Inc.

What is the solar system?

Lecture 2: A Modern View of the Universe!

THE SIZE AND STRUCTURE OF THE UNIVERSE

Introduction to Astronomy

Lecture 3: Chapter 1- Charting the Heavens. Assignment: Read Chapter 1 of Astronomy Today

LESSON 1. Solar System

The Universe and Galaxies. Adapted from:

Phys 214. Planets and Life

Measures of Astronomical Distances. Measures of Astronomical Distances

Miami Dade County Public Schools Educational Transformation Office and the Division of Academics: Department of Science

Phys 214. Planets and Life

o Terms to know o Big Bang Theory o Doppler Effect o Redshift o Universe

Figure 19.19: HST photo called Hubble Deep Field.

Welcome Aboard!! CHANGE OF KOMATSU S OFFICE HOURS. Briefing Welcome to the Cosmic Tour: Some Guide Lines. Lecture 1 Our Place in the Universe

Homework. Our Home World! Nights for 1 st Class Sky Observation Exercise (field near Leeds Business School)

TAKEN FROM HORIZONS 7TH EDITION CHAPTER 1 TUTORIAL QUIZ

The Universe and Galaxies

Back of chapters have additional Resources and various tutorials to help you getting acquainted With the subject Also exercises you can do for extra

Understanding the Universe S TA R T ING WITH EARTH A ND B E YO ND

Start with known facts and reasonable guesses. More on order of magnitude Astronomy How many piano tuners are there in Boulder County?

Cosmic Landscape Introduction Study Notes

The Universe. Unit 3 covers the following framework standards: ES 8 and 12. Content was adapted the following:

Universe Celestial Object Galaxy Solar System

Test Name: 09.LCW.0352.SCIENCE.GR Q1.S.THEUNIVERSE-SOLARSYSTEMHONORS Test ID: Date: 09/21/2017

The Earth and the Universe

PHYS 101: Elementary Astronomy. Dr. Jared Workman

KNOWLEDGE TO GET FROM TODAY S CLASS MEETING

ASTRONOMY 202 Spring 2007: Solar System Exploration

It is a very human trait to wonder where we are in this universe. Usually, the only hint of the vastness of the universe comes at night.

Answers. The Universe. Year 10 Science Chapter 6

THE ORIGIN OF THE UNIVERSE AND BLACK HOLES

Astronomy 1. 10/17/17 - NASA JPL field trip 10/17/17 - LA Griffith Observatory field trip

Cambridge University Press Origins of Life in the Universe Robert Jastrow and Michael Rampino Excerpt More information PART I

Astronomy. Study of objects in space such as the Sun, stars, planets, comets, gas, & galaxies. *Also, the Earth s place in the universe.

The Age of the Universe If the entire age of the Universe were 1 calendar year, then 1 month would be equivalent to roughly 1 billion years

CST Prep- 8 th Grade Astronomy

Where in the Solar System Are Smaller Objects Found?

! What the hell happened to Pluto?! The speed of light!! Scale of the Solar System

SOLAR SYSTEM, STABILITY OF ORBITAL MOTIONS, SATELLITES

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 1

AY2 Introduction to Astronomy Winter quarter, 2013

1UNIT. The Universe. What do you remember? Key language. Content objectives

A MODERN VIEW OF THE UNIVERSE

The Formation of the Solar System

A Cosmic Perspective. Scott Fisher, Ph.D. - Director of Undergraduate Studies - UO Department of Physics

The Moon s relationship with Earth The formation of the Moon The surface of the Moon Phases of the Moon Travelling to the Moon

Stars and Galaxies 1

Directed Reading A. Section: The Life Cycle of Stars TYPES OF STARS THE LIFE CYCLE OF SUNLIKE STARS A TOOL FOR STUDYING STARS.

Introduction to the Universe

The Outer Planets. Video Script: The Outer Planets. Visual Learning Company

5. What force holds the different astronomical systems described in this section together? What other forces exist in nature?

UNIT 1: EARTH AND THE SOLAR SYSTEM.

Unit 1: The Earth in the Universe

2. The distance between the Sun and the next closest star, Proxima Centuari, is MOST accurately measured in

Astronomy Universe: all of space and everything in it

Science Benchmark: 06 : 04 Standard 04: Stargazing universe, the light-year, speed of light Grade Benchmark Standard Page

A Modern View of the Universe

28-Aug-17. A Tour of Our Solar System and Beyond. The Sun

Writing very large numbers

Introduction to the Universe. What makes up the Universe?

Planetarium observing is over. Nighttime observing starts next week.

u Today I will look for key ideas in the text to support the role gravity has on the formation of the planets.

Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE

1/13/16. Solar System Formation

GraspIT Questions AQA GCSE Physics Space physics

Astronomy: Exploring the Universe

An Introduction to AST 112 Stars, Galaxies, and the Cosmos

Astronomy Unit Notes Name:

GraspIT Questions AQA GCSE Physics Space physics

Prentice Hall EARTH SCIENCE

CHAPTER 28 STARS AND GALAXIES

Outline. Question of Scale. Planets Dance. Homework #2 was due today at 11:50am! It s too late now.

Our Place in the Universe

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016

Earth s Formation Unit [Astronomy] Student Success Sheets (SSS)

A100H Exploring the Universe: Introduction. Martin D. Weinberg UMass Astronomy

WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So..

According to the currents models of stellar life cycle, our sun will eventually become a. Chapter 34: Cosmology. Cosmology: How the Universe Works

9.6. Other Components of the Universe. Star Clusters. Types of Galaxies

ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy

Chapter 25: Beyond our Solar System The Universe pp

Physical Science 1 Chapter 16 INTRODUCTION. Astronomy is the study of the universe, which includes all matter, energy, space and time.

Nucleus Hydrogen nucleus. hydrogen. helium

Cosmic Microwave Background Radiation

Cosmology Vocabulary

Transcription:

Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe? How did we come to be? How can we know what the universe was like in the past? Can we see the entire universe? What is our place in the universe? Star A large, glowing ball of gas that generates heat and light through nuclear fusion Mars Planet Neptune A moderately large object that orbits a star; it shines by reflected light. Planets may be rocky, icy, or gaseous in composition. The IAU thereafter defined a planet in our solar system as an object large enough to clear the smaller bodies from its orbit, a definition just murky enough to give teachers a considerable challenge to explain precisely what this means. Taking the exclusive club approach for the heavyweights, the IAU went on to create a class of ``dwarf planets," including Pluto, that by definition are not planets. To me this is a linguistic absurdity, a contradiction that could have been avoided if they had chosen to define only the eight classical planets as the basic type of planets, allowing dwarf planets to be considered planets too, albeit of a different kind. But this cultural compromise was specifically rejected. 1

Moon (or satellite) Asteroid An object that orbits a planet. A relatively small and rocky object that orbits a star. Ida Ganymede (orbits Jupiter) Comet A relatively small and icy object that orbits a star. A star and all the material that orbits it, including its planets and moons Solar (Star) System Nebula Galaxy A great island of stars in space, all held together by gravity and orbiting a common center An interstellar cloud of gas and/or dust M31, The Great Galaxy in Andromeda 2

Universe How did we come to be? The sum total of all matter and energy; that is, everything within and between all galaxies the sum total of all things which can be directly observed or whose physical effects on other things can be detected. How can we know what the universe was like in the past? Light travels at a finite speed (300,000 km/s). Moon Sun Sirius Destination Andromeda Galaxy Light travel time 1 second 8 minutes 8 years 2.5 million years Example: We see the Orion Nebula as it looked 1,500 years ago. Thus, we see objects as they were in the past: The farther away we look in distance, the further back we look in time. M31, The Great Galaxy in Andromeda Example: This photo shows the Andromeda Galaxy as it looked about 2 1/2 million years ago. Question: When will be able to see what it looks like now? Light-year The distance light can travel in one year. About 10 trillion km (6 trillion miles). M31, The Great Galaxy in Andromeda 3

At great distances, we see objects as they were when the universe was much younger. How far is a light-year? 1light - year = (speed of light) (1 year) = 300,000 km 365 days 24 hr 60 min 60 s s 1 yr 1 day 1 hr 1 min How far is a light-year? Can we see the entire universe? 1light - year = (speed of light) (1 year) = 300,000 km 365 days 24 hr 60 min 60 s s 1 yr 1 day 1 hr 1 min = 9,460,000,000,000 km Thought Question Why can t we see a galaxy 15 billion light-years away? (Assume universe is 14 billion years old.) A. Because no galaxies exist at such a great distance. B. Galaxies may exist at that distance, but their light would be too faint for our telescopes to see. C. Because looking 15 billion light-years away means looking to a time before the universe existed. Thought Question Why can t we see a galaxy 15 billion light-years away? (Assume universe is 14 billion years old.) A. Because no galaxies exist at such a great distance. B. Galaxies may exist at that distance, but their light would be too faint for our telescopes to see. C. Because looking 15 billion light-years away means looking to a time before the universe existed. 4

What have we learned? What is our physical place in the universe? Earth is part of the Solar System, which is the Milky Way galaxy, which is a member of the Local Group of galaxies in the Local Supercluster How did we come to be? The matter in our bodies came from the Big Bang, which produced hydrogen and helium All other elements were constructed from H and He in star and then recycled into new star systems, including our solar system What have we learned? How can we know that the universe was like in the past? When we look to great distances we are seeing events that happened long ago because light travels at a finite speed Can we see the entire universe? No, the observable portion of the universe is about 14 billion light-years in radius because the universe is about 14 billion years old 1.2 The Scale of the Universe Our goals for learning: How big is Earth compared to our solar system? How far away are the stars? How big is the Milky Way Galaxy? How big is the universe? How do our lifetimes compare to the age of the universe? How big is Earth compared to our solar system? Let s reduce the size of the solar system by a factor of 10 billion; the Sun is now the size of a large grapefruit (14 cm diameter). How big is Earth on this scale? A. an atom B. a ball point C. a marble D. a golf ball Let s reduce the size of the solar system by a factor of 10 billion; the Sun is now the size of a large grapefruit (14 cm diameter). How big is Earth on this scale? A. an atom B. a ball point C. a marble D. a golf ball On a 1-to-10 billion scale: Sun is the size of a large grapefruit (14 cm) Earth is the size of a ball point, 15 meters away. The scale of the solar system 5

How far away are the stars? On our 1-to-10 billion scale, it s just a few minutes walk to Pluto. Answer: D, the distance across the U.S. How far would you have to walk to reach Alpha Centauri? A. 1 mile B. 10 miles C. 100 miles D. the distance across the U.S. (2500 miles) How big is the Milky Way Galaxy? The Milky Way has about 100 billion stars. On the same ten billion-toone scale. Thought Question Suppose you tried to count the more than 100 billion stars in our galaxy, at a rate of one per second How long would it take you? A. a few weeks B. a few months C. a few years D. a few thousand years Suppose you tried to count the more than 100 billion stars in our galaxy, at a rate of one per second How big is the Universe? The Milky Way is one of about 100 billion galaxies. 10 11 stars/galaxy x 10 11 galaxies = 10 22 stars How long would it take you? A. a few weeks B. a few months C. a few years D. a few thousand years As many stars as grains of (dry) sand on all Earth s beaches 6

Now let s step through the Universe in powers of 10: How do our lifetimes compare to the age of the Universe? The Cosmic Calendar: a scale on which we compress the history of the universe into 1 year. How do our lifetimes compare to the age of the Universe? The Cosmic Calendar: a scale on which we compress the history of the universe into 1 year. What have we learned? How big is Earth compared to our solar system? The distances between planets are huge compared to their sizes on a scale of 1-to-10 billion, Earth is the size of a ball point and the Sun is 15 meters away How far away are the stars? On the same scale, the stars are thousands of km away How big is the Milky Way galaxy? It would take more than 3,000 years to count the stars in the Milky Way Galaxy at a rate of one per second, and they are spread across 100,000 light-years What have we learned? How big is the universe? The observable universe is 14 billion lightyears in radius and contains over 100 billion galaxies with a total number of stars comparable to the number of grains of sand on all of Earth s beaches How do our lifetimes compare to the age of the universe? On a cosmic calendar that compresses the history of the Universe into one year, human civilization is just a few seconds old, and a human lifetime is a fraction of a second 1.3 Spaceship Earth Our goals for learning: How is Earth moving in our solar system? How is our solar system moving in the Galaxy? How do galaxies move within the Universe? Are we ever sitting still? 7

How is Earth moving in our solar system? Contrary to our perception, we are not sitting still. We are moving with the Earth in several ways, and at surprisingly fast speeds Earth orbits the Sun (revolves) once every year: at an average distance of 1 AU 150 million km. with Earth s axis tilted by 23.5º (pointing to Polaris) and rotating in the same direction it orbits, counterclockwise as viewed from above the North Pole. The Earth rotates around its axis once every day. Our Sun moves randomly relative to the other stars in the local Solar neighborhood typical relative speeds of more than 70,000 km/hr but stars are so far away that we cannot easily notice their motion And orbits the galaxy every 230 million years. More detailed study of the Milky Way s rotation reveals one of the greatest mysteries in astronomy: Most of Milky Way s light comes from disk and bulge. but most of the mass is in its halo How do galaxies move within the universe? Galaxies are carried along with the expansion of the Universe. But how did Hubble figure out that the universe is expanding? Hubble discovered that: All galaxies outside our Local Group are moving away from us. The more distant the galaxy, the faster it is racing away. Conclusion: We live in an expanding universe. 8

Are we ever sitting still? Earth rotates on axis: > 1,000 km/hr Earth orbits Sun: > 100,000 km/hr Solar system moves among stars: ~ 70,000 km/hr Milky Way rotates: ~ 800,000 km/hr Milky Way moves in Local Group Universe expands What have we learned? How is Earth moving in our solar system? It rotates on its axis once a day and orbit the Sun at a distance of 1 A.U. = 150 million km How is our solar system moving in the Milky Way galaxy? Stars in the Local Neighborhood move randomly relative to one another and orbit the center of the Milky Way in about 230 million years What have we learned? How do galaxies move within the universe? All galaxies beyond the Local Group are moving away from us with expansion of the Universe: the more distant they are, the faster they re moving Are we ever sitting still? No! 1.4 The Human Adventure of Astronomy Our goals for learning: How has the study of astronomy affected human history? How has the study of astronomy affected human history? Copernican Revolution showed that Earth was not the center of the universe (Chapter 3) Study of planetary motion led to Newton s Laws of motion and gravity (Chapter 4) Newton s laws laid the foundation of the industrial revolution Modern discoveries are continuing to expand our cosmic perspective What have we learned? How has the study of astronomy affected human history? Throughout history, astronomy has provided an expanded perspective on Earth that has grown hand in hand with social and technological developments 9

Put these objects in the correct order, from nearest to farthest from Earth: The Sun, the Milky Way, Alpha Centauri, Pluto, the Andromeda galaxy The Sun, Alpha Centauri, Pluto, the Andromeda galaxy, the Milky Way The Sun, Pluto, Alpha Centauri, the Milky Way, the Andromeda galaxy Pluto, the Sun, Alpha Centauri, the Milky Way, the Andromeda galaxy Put these objects in the correct order, from nearest to farthest from Earth: The Sun, the Milky Way, Alpha Centauri, Pluto, the Andromeda galaxy The Sun, Alpha Centauri, Pluto, the Andromeda galaxy, the Milky Way The Sun, Pluto, Alpha Centauri, the Milky Way, the Andromeda galaxy Pluto, the Sun, Alpha Centauri, the Milky Way, the Andromeda galaxy What does it mean to say that the universe is expanding? The galaxies are getting farther apart from each other Each galaxy is getting larger The solar system is getting larger All of the above What does it mean to say that the universe is expanding? The galaxies are getting farther apart from each other Each galaxy is getting larger The solar system is getting larger All of the above Does the expansion of the universe cause you to expand? Yes No Does the expansion of the universe cause you to expand? Yes No 10

In a scale model solar system that used a grapefruit to represent the Sun, how far away would the Earth be? 6 inches 1 foot 5 feet 50 feet 1 mile In a scale model solar system that used a grapefruit to represent the Sun, how far away would the Earth be? 6 inches 1 foot 5 feet 50 feet 1 mile In a scale model solar system that used a grapefruit to represent the Sun, how far away should you put another grapefruit to represent Alpha Centauri, the next nearest star? 10 feet 1,000 feet 1 mile 10 miles 2,000 miles In a scale model solar system that used a grapefruit to represent the Sun, how far away should you put another grapefruit to represent Alpha Centauri, the next nearest star? 10 feet 1,000 feet 1 mile 10 miles 2,000 miles At the speed of light, how long would it take to go from Earth to the Sun? 1. About a second 2. About a minute 3. About 8 minutes 4. About a day 5. About a year At the speed of light, how long would it take to go from Earth to the Sun? 1. About a second 2. About a minute 3. About 8 minutes 4. About a day 5. About a year 11

At the speed of light, how long would it take to reach the nearest star, Alpha Centauri? 1. About a month 2. About a year 3. About 4 years 4. About 1,000 years 5. About 1,000,000 years At the speed of light, how long would it take to reach the nearest star, Alpha Centauri? 1. About a month 2. About a year 3. About 4 years 4. About 1,000 years 5. About 1,000,000 years About how old is the Earth? About how old is the Earth? 6,000 years 1 million years 1 billion years 5 billion years 14 billion years 6,000 years 1 million years 1 billion years 5 billion years 14 billion years About how old is the universe? About how old is the universe? 6,000 years 1 million years 1 billion years 5 billion years 14 billion years 6,000 years 1 million years 1 billion years 5 billion years 14 billion years 12

The Earth rotates on its axis: The Earth rotates on its axis: Once a day Once a week Once a month Once a year Once every 250,000 years Once a day Once a week Once a month Once a year Once every 250,000 years The Earth revolves around the Sun: The Earth revolves around the Sun: Once a day Once a week Once a month Once a year Once every 250,000 years Once a day Once a week Once a month Once a year Once every 250,000 years The Moon revolves around the Earth: Once a day Once a week Once a month Once a year Once every 250,000 years The Moon revolves around the Earth: Once a day Once a week Once a month Once a year Once every 250,000 years 13

The Earth revolves around the Milky Way galaxy: Once a day Once a week Once a month Once a year Once every 250,000 years The Earth revolves around the Milky Way galaxy: Once a day Once a week Once a month Once a year Once every 250,000 years Why do we not feel or sense the various motions of the Earth in the universe? Why do we not feel or sense the various motions of the Earth in the universe? 1. They are not real, they are just models 2. They are too slow to sense 3. They are nearly uniform, and you can not sense uniform velocity, only acceleration, which is a change of velocity or direction 1. They are not real, they are just models 2. They are too slow to sense 3. They are nearly uniform, and you can not sense uniform velocity, only acceleration, which is a change of velocity or direction Considering the size and scale of the universe makes me: Feel very small Think it is remarkable that we can discover anything about the universe at all Think it is remarkable that all of this was created for us Think that the Earth is less important than I used to think Appreciate how fragile and unique the Earth is Suppose that, at this very moment, students are studying astronomy on planets in Andromeda. Could they know that we exist here on Earth? 1. Yes, because we can see stars in Andromeda, so they can see us in the Milky Way. 2. No, the light from the solar system has not yet reached Andromeda. 3. No, the light from the solar system that has reached Andromeda came from a time before the Earth had formed. 4. No, radio signals from terrestrial civilizations have not yet reached Andromeda. 5. Yes, in principle. With sufficiently powerful telescopes, they should be able to see man-made features such as the Great Wall of China on the surface of the Earth. 14

Suppose that, at this very moment, students are studying astronomy on planets in Andromeda. Could they know that we exist here on Earth? 1. Yes, because we can see stars in Andromeda, so they can see us in the Milky Way. 2. No, the light from the solar system has not yet reached Andromeda. 3. No, the light from the solar system that has reached Andromeda came from a time before the Earth had formed. 4. No, radio signals from terrestrial civilizations have not yet reached Andromeda. 5. Yes, in principle. With sufficiently powerful telescopes, they should be able to see man-made features such as the Great Wall of China on the surface of the Earth. The phrase, The Red Sox haven t won the World Series in light-years doesn t make sense because 1. A light-year is a unit of distance, not time. 2. A light-year is much greater than a century. 3. The Earth is only one light-year old. 4. The Red Sox won the World Series in 2003. The phrase, The Red Sox haven t won the World Series in light-years doesn t make sense because 1. A light-year is a unit of distance, not time. 2. A light-year is much greater than a century. 3. The Earth is only one light-year old. 4. The Red Sox won the World Series in 2003. Which of the following can be used as an argument against the existence of other civilizations in the Universe? 1. The lack of potential habitats for other civilizations. 2. Most organisms on Earth are microscopic and relatively primitive. 3. The relatively short lifetime of intelligent life on Earth. 4. The immense distance to other stars in the galaxy and our lack of convenient interstellar travel. 5. The relatively young age of the Universe. Which of the following can be used as an argument against the existence of other civilizations in the Universe? 1. The lack of potential habitats for other civilizations. 2. Most organisms on Earth are microscopic and relatively primitive. 3. The relatively short lifetime of intelligent life on Earth. 4. The immense distance to other stars in the galaxy and our lack of convenient interstellar travel. 5. The relatively young age of the Universe. You hear that NASA plans to launch a spacecraft that will leave the Milky Way Galaxy to take a photograph of the galaxy from the outside. Do you think this is true? 1. Yes, the spacecraft will be able to tell us the size and shape of the Milky Way. 2. No, but it would be a good idea to do so. 3. No, even a spacecraft that moved close to the speed of light would take tens of thousands of years to get to a good vantage point. 4. No, as the Sun and Earth move through the galaxy, we will be able to take a photograph from a different perspective. 5. No, several NASA spacecrafts have already left the solar system on their way out of the galaxy. 15

You hear that NASA plans to launch a spacecraft that will leave the Milky Way Galaxy to take a photograph of the galaxy from the outside. Do you think this is true? 1. Yes, the spacecraft will be able to tell us the size and shape of the Milky Way. 2. No, but it would be a good idea to do so. 3. No, even a spacecraft that moved close to the speed of light would take tens of thousands of years to get to a good vantage point. 4. No, as the Sun and Earth move through the galaxy, we will be able to take a photograph from a different perspective. 5. No, several NASA spacecrafts have already left the solar system on their way out of the galaxy. Yes/No? The observable Universe is the same size today as it was a few billion years ago. 1. Yes, the Universe does not gain or lose mass or energy. 2. Yes, although the Universe continues to expand, what we can see - the observable Universe - stays the same size. 3. No, we can see light from more distant parts of the Universe today than we could have seen a few billion years ago. 4. No, the observable Universe is smaller today than it was a few billion years ago. 5. This question doesn t make sense because the Big Bang only happened about 1.4 billion years ago. Yes/No? The observable Universe is the same size today as it was a few billion years ago. 1. Yes, the Universe does not gain or lose mass or energy. 2. Yes, although the Universe continues to expand, what we can see - the observable Universe - stays the same size. 3. No, we can see light from more distant parts of the Universe today than we could have seen a few billion years ago. 4. No, the observable Universe is smaller today than it was a few billion years ago. 5. This question doesn t make sense because the Big Bang only happened about 1.4 billion years ago. Because nearly all galaxies are moving away from us, we must be located at the center of the Universe. 1. Yes, it is impossible not to be at the center and have everything else move away from us. 2. Yes, this was the astonishing discovery made by Hubble in the 1920s. 3. Yes, if we were not at the center, our solar system would not survive the gravitational tug from other galaxies. 4. No, the center of the Universe is at the center of our galaxy. 5. No, everything moves away from everything else in an expanding Universe and there is no unique center. Because nearly all galaxies are moving away from us, we must be located at the center of the Universe. 1. Yes, it is impossible not to be at the center and have everything else move away from us. 2. Yes, this was the astonishing discovery made by Hubble in the 1920s. 3. Yes, if we were not at the center, our solar system would not survive the gravitational tug from other galaxies. 4. No, the center of the Universe is at the center of our galaxy. 5. No, everything moves away from everything else in an expanding Universe and there is no unique center. 16