Photonic crystals of core shell colloidal particles

Similar documents
II.2 Photonic Crystals of Core-Shell Colloidal Particles

Synthesis and Characterization of Monodisperse Core-Shell Colloidal Spheres of Zinc Sulfide and Silica

Optical properties of spherical and anisotropic gold shell colloids

Synthesis and characterization of silica gold core-shell (SiO nanoparticles

Synthesis and characterization of silica titania core shell particles

MONODISPERSE COLLOIDAL SUSPENSIONS OF SILICA AND PMMA SPHERES AS MODEL ELECTRORHEOLOGICAL FLUIDS: A REAL-SPACE STUDY OF STRUCTURE FORMATION

Byung Kee Lee*, Young Hwa Jung**, and Do Kyung Kim

Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays.

A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Ryan Huschka LANP Seminar February 19, 2008

SUPPLEMENTARY INFORMATION

Metallo-dielectric diamond and zinc-blende photonic crystals

Self-assembled nanostructures for antireflection optical coatings

Towards a Complete Photonic Band Gap in the Visible

Three-dimensional silica-gold core-shell photonic crystal: linear reflection and ultrafast non-linear optical properties

Optical cavity modes in gold shell particles

Photonic crystals: a novel class of functional materials

Enhanced Photonic Properties of Thin Opaline Films as a Consequence of Embedded Nanoparticles.

Polarization control of defect modes in threedimensional woodpile photonic crystals

Self-Assembly of Coated Colloidal Particles for Optical Applications

Photonic Crystals. Introduction

Optical Vibration Modes in (Cd, Pb, Zn)S Quantum Dots in the Langmuir Blodgett Matrix

Optical and Photonic Glasses. Lecture 39. Non-Linear Optical Glasses III Metal Doped Nano-Glasses. Professor Rui Almeida

Preparation of monodisperse silica particles with controllable size and shape

2 Preparation of hollow spheres, microcapsules and microballoons by surfactant free emulsion templating

Optical properties of planar colloidal crystals: Dynamical diffraction and the scalar wave approximation

TUNABLE MULTI-CHANNEL FILTERING USING 1-D PHOTONIC QUANTUM WELL STRUCTURES

Tuning of 2-D Silicon Photonic Crystals

Nonlinear optical spectroscopy in one-dimensional photonic crystals. Abstract

Nanophysics: Main trends

Nanocomposite photonic crystal devices

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS

Nanomaterials and their Optical Applications

transmission reflection absorption

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

Surface Plasmon Polariton Assisted Metal-Dielectric Multilayers as Passband Filters for Ultraviolet Range

Biosensing based on slow plasmon nanocavities

Quantum Optics in Photonic Crystals. Peter Lodahl Dept. of Communications, Optics & Materials (COM) Technical University of Denmark

GEOMETRICAL INFLUENCE ON PHOTONIC BANDGAP OF THREE DIMENSIONAL CHALCOGENIDE PHOTONIC CRYSTALS

Analysis of Photonic Band Structure in 1-D Photonic Crystal using PWE and FDTD Method

EXPERIMENTAL PROBES OF THE OPTICAL PROPERTIES OF PHOTONIC CRYS- TALS

quantum dots, metallic nanoparticles, and lanthanide ions doped upconversion

Superparamagnetic nanoparticle arrays for magnetically tunable photonics. Josh Kurzman Materials 265

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References

INVESTIGATIONS OF Mn, Fe, Ni AND Pb DOPED

Temperature ( o C)

SUPPLEMENTARY INFORMATION

Lecture 6: Individual nanoparticles, nanocrystals and quantum dots

Photonic band gaps with layer-by-layer double-etched structures

Collective effects in second-harmonic generation from plasmonic oligomers

Photonic crystal fiber with a hybrid honeycomb cladding

Optical properties of TiO2:Ag composites

Lecture 10: Surface Plasmon Excitation. 5 nm

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes

Black phosphorus: A new bandgap tuning knob

Effect of Temperature on Nanocomposite of Metal Nanoparticles in Photonic Crystals

ph-depending Enhancement of Electron Transfer by {001} Facet-Dominating TiO 2 Nanoparticles for Photocatalytic H 2 Evolution under Visible Irradiation

Progress In Electromagnetics Research Letters, Vol. 33, 27 35, 2012

The photonic band structure of macro- ionic crystal

Methoden moderner Röntgenphysik II Streuung und Abbildung

Introduction to Photonic Crystals

Self-Assembly of Polyhedral Hybrid Colloidal Particles

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix

Enhanced Nonlinear Optical Response from Nano-Scale Composite Materials

TERRESTRIAL REDSHIFTS FROM A DIFFUSE LIGHT SOURCE. FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

STUDIES ON ZnS - CuS NANOPARTICLE SYSTEM.

Structure analysis: Electron diffraction LEED TEM RHEED

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses

Defects in Self Assembled Colloidal Crystals

Experimental details. General

Optical Properties of Spherical and Oblate Spheroidal Gold Shell Colloids

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES

Supplementary documents

Transmission Electron Microscopy

Fabrication of ordered array at a nanoscopic level: context

Fluorescent silver nanoparticles via exploding wire technique

Quantum Dots for Advanced Research and Devices

Towards the Lasing Spaser: Controlling. Metamaterial Optical Response with Semiconductor. Quantum Dots

Imaging Methods: Breath Patterns

Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks

Raman spectroscopy of self-assembled InAs quantum dots in wide-bandgap matrices of AlAs and aluminium oxide

The Photonic Band Gap and Colloidal Crystals. Focus: Photonic Band Gap

Supplementary Information

Surface-enhanced raman scattering from a layer of gold nanoparticles

ABSTRACT 1. INTRODUCTION 2. EXPERIMENT

Modeling of Kerr non-linear photonic components with mode expansion

SUPPLEMENTARY INFORMATION

Influence of excitation frequency on Raman modes of In 1-x Ga x N thin films

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF

Deposition of Titania Nanoparticles on Spherical Silica

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Langmuir-Schaefer deposition of quantum dot multilayers. Supporting Information

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height

Tungsten Nitride Inverse Opals by Atomic Layer Deposition

Nanomaterials and their Optical Applications

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Supporting Information

OPTICAL PROPERTIES of Nanomaterials

PHOTOACOUSTIC TECHNIQUE FOR MEASURING BAND-GAP ENERGY OF POROUS SILICON LAYER ON n-si SUBSTRATE. Department of Physics,

Photonics applications II. Ion-doped ChGs

Transcription:

Letter to Appl. Phys. Letters June 8, 2001 Photonic crystals of core shell colloidal particles Krassimir P. Velikov, a, ) Alexander Moroz, a) and Alfons van Blaaderen a,b, ) a Physics and Chemistry of Condensed Matter, Debye Institute, Utrecht University, Princetonlaan 5, 3584 CC Utrecht, The Netherlands b FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands Abstract We report on the fabrication and optical transmission studies of thin three-dimensional (3D) photonic crystals of high-dielectric ZnS-core and low-dielectric SiO 2 -shell colloidal particles. These samples were fabricated using a vertical controlled drying method. The spectral position and width of a stopgap depend on the core-to-shell ratio, in a manner consistent with numerical calculations. Both experiments and calculations show that the relative L-stopgap width in the case of high-index core low-index shell particles can be larger in comparison to the case of homogeneous particles of either material. The core-shell morphology gives additional control over the photonic stopgap characteristics. Corresponding authors; electronic mails: K.P.Velikov@phys.uu.nl, A.vanBlaaderen@phys.uu.nl

Photonic crystals are materials with a periodically modulated dielectric constant. 1,2 In analogy to electrons in a semiconductor, electromagnetic wave propagation in a photonic crystal can be inhibited for a certain frequency range resulting in the formation of a photonic bandgap. A promising way for fabrication of photonic crystals at optical wavelengths is the use of colloidal particles. 3 Colloids can self-organize into a three-dimensional (3D) facecentered-cubic (fcc) (or body-centered-cubic) crystal with a long-range periodicity. Although fcc structures of dielectric spheres only possess stopgaps, 4,5 the (local) density of states can still be manipulated significantly. 6 Even for quite modest index contrast an interesting photonic switch can be realized with fcc crystals. 7 Photonic properties of colloidal crystals can be further improved by using a core-shell particle morphology. The latter can be used to enhance nonlinearities 8 and to engineer photonic bandgap properties. 3 Indeed, the full vector calculations on an fcc crystal of core-shell particles have shown that the relative L-stopgap width (g w ) can be increased by more than 50% compared to the case of homogeneous particles. 5 Zinc sulfide (ZnS), due to its high bulk refractive index (β-zns n 589 = 2.36) and lack of absorption in the visible and near IR region, 9 is a convenient material for photonic applications. Spherical ZnS particles can be made with a wide range of sizes (100 1500 nm in radius) and high monodispersity. 10,11 Recently, we have shown that a silica layer can be deposited on the ZnS spheres, or vice versa, in order to change the filling fraction of the highindex material and tune the optical properties of the particles. 11 Moreover, ZnS can be doped, e.g., with manganese, 12 to induce luminescence, or, a fluorescent dye can be incorporated into the silica layer at a well-defined radial position. 13 In addition, pure silica or pure ZnS particles, or shells of these materials, can be used for dielectric doping of photonic crystals in order to create localized modes inside the bandgap. 14 In this letter, we demonstrate the fabrication of photonic crystals through a controlled 2

drying 15,16 of a suspension of particles with a high-dielectric ZnS core and a low-dielectric SiO 2 shell. We study optical transmission at normal incidence on thin photonic crystals. In accordance with previous calculations, 5 we demonstrate that photonic crystals of high-index core and low-index shell particles posses a larger relative L-stopgap width in comparison to crystals of low-index core and high-index shell 17 or homogeneous particles. Photonic crystals were fabricated of monodisperse colloidal (core-shell) particles. Three different types of colloidal particles were used. Pure silica particles of radius 123 nm (with a relative width of the size distribution, δ = 5%) were synthesized following the Stöber-Fink- Bohn method. 18 Homogeneous ZnS-SiO 2 composite particles of radius 125 nm (δ = 6%) were obtained after condensation of silica inside the pores of the ZnS spheres. In this case, micropores are filled up with silica, which results in an increase of the effective refractive index of the particle. ZnS-core-SiO 2 -shell particles of total radius 128 nm (δ = 5%) with a ZnS-SiO 2 composite core radius of 84 nm (δ = 6%) were obtained after coating of ZnS cores with silica. The synthesis and optical characterization of the core-shell particles from ZnS and SiO 2 are described elsewhere. 11 The size and polydispersity were determined by transmission electron microscopy (TEM). The wavelength dependent effective refractive index of the ZnS was determined from extinction measurements of a dilute suspension in ethanol. 11 Thin colloidal crystals were grown onto glass substrates using a vertical controlled drying method. 15,16 This method allows the growth of large (cm) arrays of colloidal crystals with precise control over the crystal thickness. Depending on the particle polydispersity, large (mm) single crystalline domains can be obtained. Scanning electron microscopy (SEM) was used to determine the number of layers in the crystal. The optical transmission spectra, measured with a Cary 500 UV-near-IR spectrometer, were taken along the [111] crystallographic axis, normal to the direction of the glass plate. The light beam spot was about 5 mm 2, which is comparable to the area of a single crystalline domain. 3

Figure 1 shows SEM micrographs of thin planar crystals of close-packed monodisperse ZnS-core-SiO 2 -shell colloidal particles. Cracks, typically observed every 5-10 µm, are formed after drying and shrinkage of the particles. More cracks form under influence of the vacuum and electron beam in the SEM, therefore there are less cracks present in the films used for extinction measurements. However, the crystalline order extends over a much longer distance. The inset shows a TEM image of a single particle, where the ZnS core and SiO 2 shell can be directly seen. Figure 2 shows optical transmission spectra of thin photonic crystals of ZnScore-SiO 2 -shell particles. The spectra exhibit a minimum in the optical transmission, where the light satisfies the Bragg condition and is diffracted away from the propagation direction. The small shift (~ 7 nm) of the stop bandgap position to longer wavelengths is a finite-size effect. The thickness dependence of the stopgap position disappears if the sample is thicker than ~ 8-10 layers. 19 For the given dielectric contrast, this is also expected from onedimensional calculations. 20 The fast decrease of the optical transmission, near, but before the absorption edge of ZnS, 9 is due to the strong incoherent scattering from the crystal defects. Theoretical spectra were calculated using the layer KKR method. 21 In order to compare with the numerical calculations, the background scattering was subtracted. 19 The peak position, the width, and the interference ripples agree well with theory (Fig. 2(b)). However, the height of the maximum does not. This is because of the unavoidable presence of crystal defects. An exact match of the experimental spectra is difficult to obtain, because the crystal thickness is very likely not constant over the measured region. In order to demonstrate the importance of the particle morphology we performed calculations for infinite crystals. Figure 3 shows the calculated relative L-stopgap width, g w, of ZnS-core-SiO 2 -shell and SiO 2 -core-zns-shell particles as a function of the core-to-totalradius ratio (γ = R c /R). The calculations were performed using a wavelength dependent effective refractive index. 11 In both cases, the filling fraction of bulk ZnS (in a silica matrix, n 4

= 1.45) in the particle core or shell was 0.62. The high-index core low-index-shell particles display a maximum in the g w at γ ~ 0.70, which is about 20% larger than that of a photonic crystal of homogeneous particles with the higher refractive index. It is remarkable that calculations show that a so-called air-sphere crystal, with the high index material surrounding a sphere of air, also has a smaller g w compared to the case of γ ~ 0.70. In contrast, the reverse system displays a minimum at γ ~ 0.76 and a gap width that is lower than that of homogeneous particles. These calculations demonstrate the effect of the morphology and optimization of the filling fraction of the high dielectric material, using core-shell particles, on the optical properties of photonic crystals. For the L-stopgap the high-index core low-index shell morphology is clearly better than the low-index-core high-index shell 17 for photonic applications. Figure 4 compares measured optical transmission spectra of thin photonic crystals from silica, ZnS-core-SiO 2 -shell, and homogeneous ZnS-SiO 2 composite particles of similar radii. Despite being of almost the same total radius, the L-stopgap moves towards longer wavelengths because of the increased dielectric contrast. Figure 5 presents the experimental and calculated relative L-stopgap width, g w, measured at half-maximum as a function of the core-to-total-radius ratio. The values determined from the experimental spectra (Fig. 4) are in good agreement with those from the theoretical spectra for an eight-layer thick crystal. However, the g w obtained from the experiment is slightly broadened due to the presence of a moderate disorder in the crystal. This effect has been observed earlier. 22 Assuming equal contributions of the crystal defects in the three cases, based on the similar particle polydispersity, a clear maximum can be distinguished in the case of the crystal of core-shell particles. One should notice that the g w for thin crystals is still strongly dependent on the number of crystal layers. For instance, calculations for seven layers showed a ~ 1% increase of g w. In conclusion, we have demonstrated the fabrication of photonic crystals of high-index 5

ZnS core and low-index SiO 2 shell colloidal particles. Due to the optimal filling fraction of the high dielectric material, photonic crystals from core-shell particles possess a larger relative L-stopgap width than crystals from homogeneous particles. By applying a lowdielectric coating we demonstrated the ability to control the filling fraction of the high dielectric material and optical properties of the photonic crystal. The combination of ZnS and SiO 2 opens new possibilities to study dielectrically and fluorescently doped photonic crystals. We would like to thank A. Imhof, J. P. Hoogenboom (AMOLF), E. J. Vlietstra, and C. M. van Kats (Utrecht University) for their assistance and helpful discussions. This work is part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie, which is financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek. 6

References 1 E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987). 2 V. P. Bykov, Sov. J. Quantum Electron. 4, 861 (1975). 3 A. van Blaaderen, MRS Bull. 23, 39 (1998). 4 H. S. Sozuer, J. W. Haus, and R. Inguva, Phys. Rev. B-Condens Matter 45, 13962 (1992). 5 A. Moroz and C. Sommers, J. Phys.-Condes. Matter 11, 997 (1999). 6 Z. Zhang and S. Satpathy, Phys. Rev. Lett. 65, 2650 (1990). 7 G. S. Pan, R. Kesavamoorthy, and S. A. Asher, Phys. Rev. Lett. 78, 3860 (1997). 8 D.S. Chemla and D.A. Miller, Opt. Lett., 522 (1986). 9 S. M. Scholz, R. Vacassy, J. Dutta et al., J. Appl. Phys. 83, 7860 (1998). 10 D. M. Wilhelmy and E. Matijevic, J. Chem. Soc. Faraday Trans. 80, 563 (1984). 11 K. P. Velikov and A. van Blaaderen, to appear in Langmuir, (2001). 12 R.N. Bhargava, D. Gallagher, X. Hong et al., Phys. Rev. Lett. 72, 416 (1994). 13 A. van Blaaderen and A. Vrij, Langmuir 8, 2921 (1992). 14 R.D. Pradhan, I.I. Tarhan, and G.H. Watson, Phys. Rev. B-Condens Matter 54, 13721 (1996). 15 N.D. Denkov, O.D. Velev, P.A. Kralchevsky et al., Langmuir 8, 3183 (1992). 16 P. Jiang, J. F. Bertone, K. S. Hwang et al., Chem. Mat. 11, 2132 (1999). 17 M. L. Breen, A. D. Dinsmore, R. H. Pink et al., Langmuir 17, 903 (2001). 18 W. Stober, A. Fink, and E. Bohn, J. Colloid Interface Sci. 26, 62 (1968). 19 J. F. Bertone, P. Jiang, K. S. Hwang et al., Phys. Rev. Lett. 83, 300 (1999). 20 C. Rorres, SIAM J. Appl. Math., 303 (1974). 21 N. Stefanou, V. Yannopapas, and A. Modinos, Comput. Phys. Commun. 113, 49 (1998). 22 Y. A. Vlasov, M. Deutsch, and D. J. Norris, Appl. Phys. Lett. 76, 1627 (2000). 7

FIG. 1. Scanning electron micrographs (SEM) of a planar photonic crystal of close-packed core-shell colloidal particles. (a) Top view of the crystal showing a [111]-crystal plane. The scale bar is 5 µm. The inset shows a transmission electron micrograph (TEM) of a single ZnScore-SiO2-shell particle. The total particle radius is 128 nm with a 44 nm silica shell. (b) Side view of the crystal. The scale bar is 2 µm. 8

100 90 (a) (b) 80 Transmission % 70 60 50 40 Crystal Layers N ~ 4 N ~ 8 Experiment KKR Calculation Optical Density [a.u.] 30 20 630 nm 600 800 1000 1200 1400 600 800 1000 1200 1400 Wavelength [nm] Wavelength [nm] FIG. 2 Optical transmission spectra (a) measured on photonic crystals of ZnS-core-SiO 2 -shell colloidal particles grown on glass substrates. The experimental spectra were taken along the [111] crystallographic axis. (b) Calculated (dotted line) and experimentally determined (solid line) optical density spectra of an eight-layer thick crystal on a glass substrate (n sub = 1.40). The theoretical spectrum was calculated using the parameters similar to those determined from light scattering and TEM (R c = 93.4 nm, R = 130 nm, ϕ ZnS = 62%, n 589 = 1.92). 9

8 Relative L-gap width % 7 6 5 4 3 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Core-to-total-radius ratio FIG. 3 Calculated relative L-stopgap width as a function of the core-to-total-radius ratio for an infinite crystal of high-index core low-index shell particles (squares) and, for comparison, the reverse structure with the same parameters (circles). The high-index core (shell) consists of 62 % bulk ZnS embedded in a silica matrix. The low-index shell (core) consists of pure silica. The wavelength dependent effective dielectric constant of the high-index core (shell) was calculated using the Maxwell-Garnett formula. 11 The line is to guide the eye. 10

1.2 1.0 Homogeneous ZnS-SiO 2 743 nm Optical density (a.u.) 0.8 0.6 0.4 565 nm 630 nm ZnS-core-SiO 2 -shell 0.2 SiO 2 0.0 400 500 600 700 800 900 1000 Wavelength [nm] FIG. 4. Optical density (OD) spectra measured on photonic crystals of homogeneous ZnS- SiO 2 composite (dotted line), ZnS-core-SiO 2 -shell (dashed line), and pure silica (solid line) particles. The average crystal thickness is eight layers. The position of the L-stopgap shifts towards longer wavelengths as the effective refractive index of the single particle increases. 11

14.5 14.0 Relative L-gap width % 13.5 13.0 12.5 12.0 11.5 11.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Core-to-total-radius ratio FIG. 5. Relative L-stopgap width at half-maximum determined from the experimental (circles) and theoretical (open squares) spectra as a function of the core-to-total-radius ratio for eight-layers thick crystals. The experimental data are obtained from crystals of pure silica, ZnS-core-SiO 2 -shell, and ZnS-SiO 2 composite particles of similar radii (Fig. 4). Theoretical spectra were calculated with the same particle parameters as in Fig. 1(b). There is an optimal ratio (γ ~ 0.65) at which the stopgap has a maximal value. The line is to guide the eye. 12