Incoherent Scatter Radar Study of the E region Ionosphere at Arecibo

Similar documents
Seasonal variability and descent of mid-latitude sporadic E layers at Arecibo

Imaging coherent scatter radar, incoherent scatter radar, and optical observations of quasiperiodic structures associated with sporadic E layers

JD Mathews Publication List March 2012 Papers Submitted and in Review Non-Refereed Papers and News Articles

Validation of Imaging Doppler Interferometer Winds Using Meteor Radar

Effect of sporadic E clouds on GPS radio occultation signals

Meteor Science and Aeronomy Using the Arecibo VHF and UHF Radars.

1 Introduction. considerably in the 1990 s due to the discovery

Modeling of Sporadic-E Structures from Wind-Driven Kelvin-Helmholtz Turbulence

Seasonal dependence of MSTIDs obtained from nm airglow imaging at Arecibo

Doppler Studies of Near-Antapex UHF Radar Micrometeors

Coordinated observations of the dynamics and coupling processes of mesosphere and lower thermosphere winds with MF radars at the middle-high latitude

Metallic ion transport associated with midlatitude intermediate layer development

Statistical characteristics of low-latitude ionospheric field-aligned. irregularities obtained with the Piura VHF radar.

The bottomside parameters B0, B1 obtained from incoherent scatter measurements during a solar maximum and their comparisons with the IRI-2001 model

Dependence of equatorial Fregion vertical drifts on season and solar cycle

Observations of Overturning in the Upper Mesosphere and Lower Thermosphere

A Study on Vertically Propagating Tidal and Gravity Waves During Continuous Convections Events over the Equatorial Tropical Region

All Physics Faculty Publications

Curriculum Vitae JOHN DAVID MATHEWS. University Park, PA Phone: (814) Mobil: (814)

Longitude Variations of the Solar Semidiurnal Tides in the Mesosphere and. Lower Thermosphere at Low Latitudes Observed from Ground and Space

Coordinated global radar observations of tidal and planetary waves in the mesosphere and lower thermosphere during January 20-30, 1993

Gravity waves in the equatorial thermosphere and their relation to lower atmospheric variability

Enhanced gravity wave activity over the equatorial MLT region during counter electrojet events

Tides in the Polar Mesosphere Derived from Two MF Radar Measurements at Poker Flat and Tromsø

Three-dimensional measurements of traveling ionospheric disturbances with the Poker Flat Incoherent Scatter Radar

State of the art in mesosphere science John Meriwether Department of Physics and Astronomy Clemson University

Eddy turbulence parameters inferred from radar observations at Jicamarca

Solar Forcing of the Thermosphere and Ionosphere from below: Coupling via Neutral Wave Dynamics Dave Fritts and Ruth Lieberman, NorthWest Research

The Mid-Latitude Mesosphere s Response to Sudden Stratospheric Warmings as Determined from Rayleigh Lidar Temperatures

Numerical simulation of the equatorial wind jet in the thermosphere

Implications of Meteor Observations by the MU Radar

SOLAR ACTIVITY DEPENDENCE OF EFFECTIVE WINDS DERIVED FROM IONOSPHERIC DATAAT WUHAN

Curriculum Vitae JOHN DAVID MATHEWS. University Park, PA Phone: (814) Mobile: (814)

Curriculum Vitae. JOHN DAVID MATHEWS Professor of Electrical Engineering. Case Western Reserve University (August, 1972)

Solar cycle variation of ion densities measured by SROSS C2 and FORMOSAT 1 over Indian low and equatorial latitudes

Overturning instability in the mesosphere and lower thermosphere: analysis of instability conditions in lidar data

Some ubiquitous features of the mesospheric Fe and Na layer borders from simultaneous and common-volume Fe and Na lidar observations

Dynamical and Thermal Effects of Gravity Waves in the Terrestrial Thermosphere-Ionosphere

Characteristics of Wave Induced Oscillations in Mesospheric O2 Emission Intensity and Temperature

Modeling 3-D artificial ionospheric ducts

The terdiurnal tide in the mesosphere and lower thermosphere over Wuhan (30 N, 114 E)

Tracking F-region plasma depletion bands using GPS-TEC, incoherent scatter radar, and all-sky imaging at Arecibo

V. Deepa, G. Ramkumar, M. Antonita, K. K. Kumar, M. N. Sasi. HAL Id: hal

Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: Case studies

Comparative meteor science The effects of meteoroids on planetary atmospheres and ionospheres

First detection of wave interactions in the middle atmosphere of Mars

Improved horizontal wind model HWM07 enables estimation of equatorial ionospheric electric fields from satellite magnetic measurements

E-region wind-driven electrical coupling of patchy sporadic-e and spread-f at midlatitude

The Equatorial Ionosphere: A Tutorial

THERMOSPHERIC TIDES DURING THERMOSPHERE MAPPING STUDY PERIODS

Structure of Atmosphere. (University of Washington ESS, 2015)

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, A08326, doi: /2012ja017858, 2012

Simulated equinoctial asymmetry of the ionospheric vertical plasma drifts

ABSTRACT VARIABILITY OF THE HELIUM ION CONCENTRATION IN THE TOPSIDE IONOSPHERE OVER ARECIBO. by Qingjin Ma

Summer-time nocturnal wave characteristics in mesospheric OH and O 2 airglow emissions

SCIENCE CHINA Technological Sciences

Simulating the Ionosphere, one electron at a time.

Lunar tide in the equatorial electrojet in relation to stratospheric warmings

A comparison of lower thermospheric winds derived from range spread and specular meteor trail echoes

Effects of hot oxygen in the ionosphere: TRANSCAR simulations

Longitude variations of the solar semidiurnal tides in the mesosphere and lower thermosphere at low latitudes observed from ground and space

Equatorial and Low Latitude Scintillation Initiated From Low Altitude Forcing via Hurricanes/Typhoons

Characterization of a semidiurnal eastward-propagating tide at high northern latitudes with Mars Global Surveyor electron density profiles

Exploring the Ripples of Earth s Upper Atmosphere: Waves & Tides

Joule heating and nitric oxide in the thermosphere, 2

tidal variability in the mesosphere and lower thermosphere (MLT) due to the El Niño Southern Oscillation

J.D. Mathews Penn State

Upper atmosphere response to stratosphere sudden warming: Local time and height dependence simulated by GAIA model

Ionogram height time intensity observations of descending sporadic E layers at mid-latitude

A decade-long climatology of terdiurnal tides using TIMED/SABER observations

PROFESSIONAL EXPERIENCE

Seasonal and longitudinal dependence of equatorialdisturbance vertical plasma drifts

On Forecasting Thermospheric and Ionospheric Disturbances in Space Weather Events

VHF radar observations of post-midnight F-region field-aligned irregularities over Indonesia during solar minimum

Equatorial counter electrojets and polar stratospheric sudden warmings a classical example of high latitude-low latitude coupling?

Incoherent Scatter theory and its application at the magnetic Equator

Alan Z. Liu Embry Riddle Aeronautical University - Daytona Beach, Chester S. Gardner

Incoherent Scatter theory and its application at the magnetic Equator

Observations of electric fields associated with internal gravity waves

Day-to-day variations of migrating semidiurnal tide in the mesosphere and thermosphere

Analysis of Ultra-fast Kelvin Waves Simulated by the Kyushu University GCM

Why this hole in Puerto Rico? Centaurus A NGC5128 Radio continuum. Incoherent Scatter Radar (430 MHz) Hours. Proceedings of IRE Nov 1958

A Crucial Space Weather Effect: Meteors and Meteoroids

Recent Advances in Chinese Meridian Project

CURRICULUM VITAE. Name : Sumanta Sarkhel, Ph.D. Address for Correspondence. Personal Data. Academic Records

A comparative study of the bottomside profile parameters over Wuhan with IRI-2001 for

High altitude large-scale plasma waves in the equatorial electrojet at twilight

The influence of hemispheric asymmetries on field-aligned ion drifts at the geomagnetic equator

Satellite-based measurements of gravity wave-induced midlatitude plasma density perturbations

Xian Lu. Assistant Professor Physics and Astronomy Clemson University Phone:

Cooperative wind observation in the upper mesosphere and lower thermosphere with foil chaff technique, the MU radar, and Yamagawa MF radar

Atmospheric density and pressure inferred from the meteor diffusion coefficient and airglow O 2 b temperature in the MLT region

Ionospheric ion temperature climate and upper atmospheric long-term cooling

Comparison of CHAMP and TIME-GCM nonmigrating tidal signals in the thermospheric zonal wind

Climatology and latitudinal gradients of quiettimethermospheric

All Physics Faculty Publications

Parameters of internal gravity waves in the mesosphere-lower thermosphere region derived from meteor radar wind measurements

Tidal signatures in mesospheric turbulence

On the height variation of the equatorial F-region vertical plasmadrifts

Equinoctial asymmetry of ionospheric vertical plasma drifts and its effect on F region plasma density

Transcription:

Incoherent Scatter Radar Study of the E region Ionosphere at Arecibo TheionosphericE regionliesinthealtituderangeof90to150km.thisregionsupportsawide rangeofwaves,includinggravitywaves,tides,andplanetarywaves.inthisregion,theionized andneutralparticlestransitfromcompletelycoupledinthelowere regiontoveryweakly coupledattheuppere region.thisistheregionwherethinionizationlayersareformeddueto themagneticfieldandtherapidaltitudinalvariationoftheneutralwind.fluiddynamics, electrodynamicsandtheircouplingarefullymanifestedinthisregion.thegreatsensitivityof theareciboincoherentscatterradar(isr)providesthemostaccuratemeasurementsof electronconcentration,iondrift,andionandelectrontemperatures,neutralwindsand electricalfieldwithveryhightimeandheightresolutions.theareciboisrhasplayedavitalrole instudyingtheenergetics,dynamics,couplingandcompositionsinthee region.withaslewof co locatedopticalandradiosensors,theareciboisrwillcontinueitspivotalroleinthestudyof theionosphereandtheatmosphere.thefollowingsummarizesafewtopicsthatcanbebest carriedoutatarecibo. Study of Gravity Waves, Tides and Planetary Waves Gravitywavescanhaveaperiodofasshortasafewminutes.ThefactthatAreciboISRcan measuretheelectronconcentrationwithatimeresolutionofafewsecondsmakesitthe primary,ifnottheonly,instrumenttostudye regiongravitywaves.figure1showselectron densityprofilesobtainedbydjuthetal.(1997)usingtheplasmalinetechnique.djuthetal. havefurtherstudiedtherelationshipoftheverticalwavelengthofthegravitywavesasa functionofaltitude,whichisshowninfigure2.thegeneraltrendisthatthevertical wavelengthincreaseswithaltitudes.subsequentstudiesrevealthatgravitywavesare ubiquitousatarecibo(djuthetal.2004). TheAreciboISRisanimportantground basedtoolinstudyingtides.thetidalwavescanbe seeninthewindobservationsaswellasintemperatureobservations,asillustratedinfigure3 (Zhouetal.1997).Itisgenerallyregardedthatdiurnalandsemidiurnaltides(withaperiodof 24and12hrrespectively)arethedominanttidalmodes.ArecentstudyatAreciboshowsthat terdiurnaltide(8hrperiod)cancompetewiththediurnalandsemidiurnaltides(gongand Zhou2011).Figure4showsthepowerspectralanalysisofthemeridionalwindmeasuredat Arecibo.Otherthantidalperiods,aplanetarywavewithaperiodof2 daycanalsobeseen. Further,spectralpeakat1.5/daymaybearesultofnon linearinteractionbetweenatwo day planetarywaveandthediurnaltide.figure5revealstheimpactofa2 dayplanetarywaveon electronconcentration.thepenetrationofelectronstoloweraltitudesonodddaysaround90 kmisduetoverticaltransportoflong livedions mostlikelymetallicions(zhou1998). ScientificquestionsthatcanbemosteffectivelypursuedbytheAreciboincoherentscatter radarinclude: Whatarethegenerationmechanismsandpropagationcharacteristicsofthegravity waves,tidesandplanetarywaves?

Howdogravitywaves,tides,planetarywavesandmeanflowinteractwitheachother? Howdothedifferentwavesandtheirinteractionsaffecttheenergetics,composition andtemperaturestructures? Study of Layered Phenomena Oneofthemostinterestingphenomenaintheionosphereistheformationofthinionization layers,oftencalledsporadice soreslayers.whilesporadice smayvaryinintensity,their occurrenceatareciboisquiteregular.itsgenerationiswellunderstoodtobeduetowinds pushingtheionsacrossthegeomagneticfieldlinesinoppositedirections.figure6showsion layersobservedatarecibo(mathewsetal.,1997).rapidmodulationoftheeslayershavebeen showntobeassociatedwiththequasi periodicechoesobservedbyvhfcoherentscatter radars(hyselletal.,2004).thesethinionizationlayershavealsobeenobservedtobe associatedwithneutralatomlayers,suchasna,fe,kandca(e.g.zhouetal.2008).thecolocatedresonancelidarsandopticalinstrumentsmakeareciboobservatoryaprimarysiteto studynotonlytheeslayersbutalsotheneutralmetalliclayersinthelowerpartofthee region, aswellastheirconnectionswithmeteoricinput. AnothertypeofthinionizationlayersfrequentlyobservedatAreciboistheso called intermediatelayers.thistypeoflayerisformedattheupperpartofthee regionandbecomes partoftheessystemoncedescendingintothelowerpartofthee region,asshowninfigure6. Onequestionregardingtheintermediatelayerisitscomposition.Eslayersaregenerally understoodtobecomposedofmetallicionsgeneratedthroughmeteoricablations. Intermediatelayers,asshownbyRoddyetal.(2004),maycontainalargefractionofmetallic ionsaswell.howdometallicionsgetuptothealtitudeswellabovemeteoricablationheightsis stillnotwellunderstood. Study of E region Electric Field Electricfieldintheionospherealongthegeomagneticfieldlineisgenerallyregardedtobe negligiblebecauseofthehighconductanceinthisdirection.asaresult,theelectricfield perpendiculartothefieldlineisheightinvariant.thispropertyisthoughttoapplytoboththe F andthee regionwhereelectrondensityishighenoughandion neutralcollisionislow enoughfortheionospheretobehighlyanisotropic.arecentstudybyzhouetal.(2011), however,showsstrongevidencethatthee regionelectricfieldisnotheightinvariant.figure6 showsthededucedelectricfieldatarecibo.aheightvariantelectricfieldchallengesour fundamentalunderstandingofthephysicsoccurringintheionosphere.areciboobservatory s location(dipangle~45 o )anditsaccurateandhighresolutionmeasurementsmakeitbest suitedforthistypesofstudies.

References: Djuth, F. T., M. P. Sulzer, J. H. Elder, V. B. Wickwar, High-resolution studies of atmosphere-ionosphere coupling at Arecibo Observatory, Puerto Rico, RADIO SCIENCE 32, pp.: 2321-2344, 1997. Djuth, F, T., Sulzer, M. P., S. A. Gonzales, Mathews, J. D., Elder, J. H, Walterscheid, R. L, A continuum of gravity waves in the Arecibo thermosphere? Geophysical Research Letters, Vol 31, DOI: 10.1029/2003GL019376, 2004. Gong, Y., and Q. Zhou, Incoherent scatter radar study of the terdiurnal tide in the E- and F-region heights at Arecibo, 38, L15101, doi:10.1029/2011gl048318, 2011. Hysell, D., M. Larsen, and Q. Zhou, Common volume coherent and incoherent scatter radar observations of midlatitude sporadic E layer echoes and QP echoes, Annales Geophysicae, 22, 3277-3290, 2004. Mathews, J. D., M. P. Sulzer, and P. Perillat, Aspects of layer electrodynamics inferred from highresolution ISR observations of the 80-270 km ionosphere, Geophysical Research Letters, VOL. 24, NO.11, PAGES 1411-1414, JUNE 1, 1997. Roddy, P. A., G. D. Earle, C. M. Swenson, C. G. Carlson, and T. W. Bullett, Relative concentrations of molecular and metallic ions in midlatitude intermediate and sporadic-e layers, Geophysical Research Letters, VOL. 31, L19807, doi:10.1029/2004gl020604, 2004. Zhou, Q., M. P. Sulzer, and C. A. Tepley, An analysis of tidal and planetary waves in the neutral winds and temperature observed at the E-region, J. Geophys. Res., 102, 11,491-11,505, 1997. Zhou, Q., Two-day oscillation of electron concentration in the lower ionosphere, J. Atmos. Solar-Terr. Phys., 60, 1669-1677, 1998. Zhou, Q., S. Raizada, C. Tepley, J. Plane, Seasonal and diurnal variation of electron and iron densities at the meteor heights above Arecibo, J. Atmo. Solar-Terr. Phys., 70, 49-60, 2008. Zhou, Q. H., Y. T. Morton, C. M. Huang, N. Aponte, M. Sulzer, and S. Gonzalez, Incoherent scatter radar observation of E-region vertical electric field at Arecibo, Geophys. Res. Lett., 38, L01101, doi:10.1029/2010gl045549, 2011.

Figure1.Residualelectrondensityprofilesexpressedasapercentageofthemeanprofile.Thedouble arrowindicatesthemagnitudeofa2%fluctuation.timeperiodsareinunitesofminutesandare referencedto13:51ltonjuly10,1992.(fromdjuthetal.1997) Figure2.Verticalhalfwavelengthasafunction ofaltitudeobservedabove Arecibo(Djuthetal., 1997).

Figure3.IontemperatureasafunctionoftimeandaltitudeaboveinJanuary1993.Theredline indicatesthegeneralphaseprogressionresultedfromtides.(fromzhouetal.,1997) k ( 150 500 e d u t i t l A 130 110 400 300 200 100 90 0 1 2 3 4 5 (a) Frequency (1/24hrs) Figure4.PowerspectralanalysisofmeridionalwindmeasureatAreciboduringJan.14 23,2010.Tidal andplanetarywaveperiodsdominatethespectra.(fromgongandzhou,2011) 0

Figure5.ElectronconcentrationatAreciboduringJan.21toJan.28,1993.Penetrationofelectronsto loweraltitudesonodddaysisaresultofa2 dayplanetarywave.(fromzhou,1998) Figure6.SporadicEandintermediatelayersobservedatArecibo.(FromMathewsetal.,1997)

Figure7.DerivedverticalelectricfieldatArecibo(Zhouetal.2011).Theheightvaryingelectricfieldis notwellunderstood.