The Dirac distribution

Similar documents
63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

ENGI 9420 Lecture Notes 7 - Fourier Series Page 7.01

Summary: Method of Separation of Variables

8 Laplace s Method and Local Limit Theorems

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

The Regulated and Riemann Integrals

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Abstract inner product spaces

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

Best Approximation in the 2-norm

Theoretical foundations of Gaussian quadrature

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int

Physics 215 Quantum Mechanics 1 Assignment 2

12 TRANSFORMING BIVARIATE DENSITY FUNCTIONS

Chapter 28. Fourier Series An Eigenvalue Problem.

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

AM1 Mathematical Analysis 1 Oct Feb Exercises Lecture 3. sin(x + h) sin x h cos(x + h) cos x h

Math Fall 2006 Sample problems for the final exam: Solutions

AP Calculus Multiple Choice: BC Edition Solutions

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

3 Mathematics of the Poisson Equation

Lecture 1. Functional series. Pointwise and uniform convergence.

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f

Section 17.2 Line Integrals

Analytical Methods Exam: Preparatory Exercises

NOTES ON HILBERT SPACE

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.

Improper Integrals, and Differential Equations

Indefinite Integral. Chapter Integration - reverse of differentiation

Integration Techniques

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Waveguides Free Space. Modal Excitation. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Problem Set 3 Solutions

Best Approximation. Chapter The General Case

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

c n φ n (x), 0 < x < L, (1) n=1

Notes on the Eigenfunction Method for solving differential equations

7.2 The Definite Integral

Math 100 Review Sheet

Construction of Gauss Quadrature Rules

Math Calculus with Analytic Geometry II

Math 360: A primitive integral and elementary functions

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Chapter 5. , r = r 1 r 2 (1) µ = m 1 m 2. r, r 2 = R µ m 2. R(m 1 + m 2 ) + m 2 r = r 1. m 2. r = r 1. R + µ m 1

Sections 5.2: The Definite Integral

n=0 ( 1)n /(n + 1) converges, but not n=100 1/n2, is at most 1/100.

Sturm-Liouville Eigenvalue problem: Let p(x) > 0, q(x) 0, r(x) 0 in I = (a, b). Here we assume b > a. Let X C 2 1

Quantum Mechanics Qualifying Exam - August 2016 Notes and Instructions

PHYSICS 116C Homework 4 Solutions

1. Gauss-Jacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ),

7.2 Riemann Integrable Functions

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Chapter 0. What is the Lebesgue integral about?

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

1 Probability Density Functions

US01CMTH02 UNIT Curvature

Riemann Sums and Riemann Integrals

Review of Riemann Integral

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Example Sheet 6. Infinite and Improper Integrals

The Riemann Integral

Convergence of Fourier Series and Fejer s Theorem. Lee Ricketson

MATH 174A: PROBLEM SET 5. Suggested Solution

Definite integral. Mathematics FRDIS MENDELU

13.4 Work done by Constant Forces

4. Calculus of Variations

Riemann Sums and Riemann Integrals

Mapping the delta function and other Radon measures

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Green function and Eigenfunctions

1 The Lagrange interpolation formula

Orthogonal functions

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

Chapter 6 Notes, Larson/Hostetler 3e

(4.1) D r v(t) ω(t, v(t))

Line Integrals. Partitioning the Curve. Estimating the Mass

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

Riemann is the Mann! (But Lebesgue may besgue to differ.)

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

ODE: Existence and Uniqueness of a Solution

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 6

Inner-product spaces

LECTURE 3. Orthogonal Functions. n X. It should be noted, however, that the vectors f i need not be orthogonal nor need they have unit length for

Matrices. Elementary Matrix Theory. Definition of a Matrix. Matrix Elements:

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 6 (First moments of an arc) A.J.Hobson

Math& 152 Section Integration by Parts

38 Riemann sums and existence of the definite integral.

Fourier series. Preliminary material on inner products. Suppose V is vector space over C and (, )

Week 10: Line Integrals

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

Review of Calculus, cont d

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

Handout 4. Inverse and Implicit Function Theorems.

Transcription:

A DIRAC DISTRIBUTION A The Dirc distribution A Definition of the Dirc distribution The Dirc distribution δx cn be introduced by three equivlent wys Dirc [] defined it by reltions δx dx, δx if x The distribution is usully depicted by the rrow of unit length see Fig Figure : Grph of the Dirc distribution δx 2 The sifting property of the Dirc distribution my serve s nother possible definition: Let s suppose tht funciton fx is continnous over the intervl x, x 2 or tht it hs t most finite number of finite discontinuities over tht intervl Then fx δx x dx x x2 2 [ fx + fx + ], if x x, x 2, 2 fx+, if x x, 2 fx, if x x 2,, if x x, x 2 Of course, if the function is continuous, the first of the reltions 2 reduces to the form x2 x fx δx x dx fx, if x x, x 2, 2 which is the most frequently ppering form of the sifting property see Fig 2 2 Figure 2: Sifting property of the Dirc distribution 3 Very often the Dirc distribution is defined s the limit of the sequence of functions δ p x The function δ p x hve to stisfy two conditions: δx lim δ px

2 A DIRAC DISTRIBUTION δ p x lim δ p x dx nd lim 3 lim x δ p x In most cses the functions δ p x stisfy more severe conditions: δ p x dx nd lim δ px 3 A2 Exmples of functions δ p x Probbly the most obvious exmple of functions δ p x is δ p x p rect px see Fig 3 Evidently, these functions stisfy the conditions A3 Figure 3: Grph of the function δ p x p rect px b Another obvious exmple provide the functions δ p x p tri px 2 see Fig 4 Also these functions obviously stisfy the conditions A3 Figure 4: Grph of the function δ p x p tri px c An importnt exmple is the sequence of functions p δ p x π exp px2 3 see Fig 5 Let us show, tht lso these functions stisfy the conditions A3: p δ p x dx exp px 2 dx exp t 2 dt π π The integrl I exp t2 dt is evluted s follows: I 2 exp x 2 dx,

A DIRAC DISTRIBUTION 3 Figure 5: Grph of the function δ p x p/π exp px 2 so tht I 2 4 4 π π/2 exp x 2 dx exp y 2 dy 4 exp r 2 r dϕ dr 2π exp s ds π exp r 2 r dr exp [ x 2 + y 2 ] dx dy Hence I π The second condition A3 is stisfied s well: lim δ px p lim π exppx 2 2x 2 π lim exp px 2 p x x d Also the functions see Fig 6 stisfy the conditions A3: δ p x dx π δ p x π p dx + p 2 x 2 π lim δ px π lim p + p 2 x 2 p + p 2 x 2 4 dt + t 2 π rctg t π lim x 2px 2 t t x e In clcultions nd proofs of theorems bout the Fourier trnsform we often meet formlly different expressions of the function δ p x 2π p p exp±itx dt π p see Fig 7 The first of the conditions A3 is stisfied: cos tx dt π x p π px 5

4 A DIRAC DISTRIBUTION Figure 6: Grph of the function δ p x π p +p 2 x 2 Figure 7: Grph of the function δ p x πx δ p x dx π 2 π x sin y y dx π dy 2 π π 2 cf eg [2], 372, [3], 5225 The second condition A3 is however, not stisfied becuse the corresponding limit does not exist: If x, the function δ p x πx tkes the vlues from the intervl πx, πx, which does not depend on p The condition A3 is, of course, stisfied becuse lim x δ p x p π, nd hence δ p x lim lim x δ p x lim π lim πx p px x x A3 Properties of the Dirc distribution sin y y dy Let us denote by x n the roots of the eqution fx nd suppose tht f x n Then

A DIRAC DISTRIBUTION 5 δfx n δx x n f x n Proof: Let us choose the numbers n, b n, in neighbourhood of ech root x n in such wy tht n < x n < b n nd the function fx is monotonous in the intervl < n, b n > Then where gxδfx dx n I n, 2 I n b n n gxδfx dx By the substitution x x n f x n t we get I n f x n b n b n x nf x n n x nf x n n gxδx x n f x n dx 3 g t f x n + x n δt dt 4 If f x n <, the upper limit of integrtion is greter thn the lower one nd it is I n f x n n x nf x n b n x nf x n g t f x n + x n δt dt gx n f x n From 2 nd 3 nd from the sifting property of the Dirc distribution A2 it follows gxδfx dx n gx n f x n n b n f gxδx x n dx 5 x n n If f x n >, the reltion 5 follows imeditely from 2, 4 nd A2 Thus, the eqution is proved Importnt consequences of eqution re: δ x δx, 6 b It is ie where δx x δ δ sin π x π δx 2 2 δx 2 m x x, 7 δx m, 8 δx + δx + 9 2 d x, dx x δx dhx dx, Hx 2 + x x 2

6 A DIRAC DISTRIBUTION is the Heviside function Proof: 2 d x dx x 2 lim d 2 dx π rctg px π lim p + p 2 δx 3 x2 cf A24 c The following properties of the Dirc distribution re frequently used eg while evluting convolutions nd cross coreltions: fx δx f δx, 4 d c δx δx b dx δ b, c < min, b, d > mx, b 5 A4 The Dirc distribution obtined from complete system of orthonorml functions Interesting nd often useful expressions of the Dirc distribution cn be obtined from complete systems of orthogonl functions Let functions ψ n x, n being integers, form complete orthonorml system of functions on n intervl x, x + nd let x nd x be inner points of tht intervl Then ψnx ψ n x δx x, n where the summtion goes over ll n for which the orthonorml system {ψ n x} is complete Proof: To prove we shll demonstrte tht the left hnd side of eqution hs the sifting property of the Dirc distribution ie tht x+ x fx δx x dx fx, x+ x fx n ψ nx ψ n x dx fx 2 To prove 2 we expnd function fx into the system of orthonorml functions {ψ n x}, ie fx m c m ψ m x, 3 where c m x+ x fx ψ mx dx Now we insert the series 3 into the left hnd side of eqution 2, exchnge the order of integrtion nd ddition nd mke use of the condition of orthonormlity x+ x ψ nx ψ m x dx δ m,n : x+ x m c m ψ m x n x+ ψnx ψ n x dx c m ψ n x ψnx ψ m x dx m n x c m ψ n x δ m,n m n c m ψ m x fx m

A DIRAC DISTRIBUTION 7 Thus, we hve got the right hnd side of 2 nd the sttement is proved The functions ψ n x exp in2π x, n, ±, ±2, form the complete orthonorml system on ny intervl of the length nd hence lso on the intervl /2, /2 Therefore, ccording to it is n exp in2π x x δx x, x, x 2, 2 Every summnd of the infinite geometric series on the left hnd side of the foregoing reltion is periodic function with the period Consequently the sum of the series hs the sme period nd for ll x, x it holds n exp in2π x x m δx x m 4 Reltion 4 is importnt for the proof of the fct, tht the Fourier trnsform of the lttice function is proportionl to the lttice function chrcterizing the reciprocl lttice cf section 43 This is true for the lttices of ny dimensions N, N being integer N To be prepred for the proof in the spce of the dimension N 2 we denote the length of the intervl, so tht in eqution 4 my be both positive nd negtive The series t the left hnd side of 4 my be rewritten in vrious forms For exmple + 2 n cos n2π x x m δx x m 5 The series t the left hnd side of 4 is geometric series of the rtio exp i2π x x We my replce it by the limit n exp in2π x x lim By summing 2p + terms of the limit we get p n p exp in2π x x lim p n p exp in2π x x lim lim { { exp exp ip2π x x [ ]} exp i2p + 2π x x exp i2π x x ip2π x x [ exp i2p + π x x ] exp iπ x x ] [ ]} exp i2p + π x x exp [ i2p + π x x lim exp iπ x x ] sin [ 2p + π x x sin π x x exp iπ x x Hence lim sin [ ] 2p + π x x sin π x x m δ x x m 6

8 A DIRAC DISTRIBUTION A5 The Dirc distribution in E N In Crtesin coordintes From the fct tht D f xδ x x d N x f x, if x D D fx, x 2,, x N δx x δx 2 x 2 δx N x N dx dx 2 dx N fx, x 2,, x N, it follows tht in Crtesin coordintes Obviously N δ x x δx x δx 2 x 2 δx N x N δx k x k 2 k δ x δ x 3 N b Generl coordintes Let the Crtesin coordintes x, x 2,, x N be connected with generl coordintes y, y 2,, y N in E N by reltions x x y,, y N, x 2 x 2 y,, y N, x N x N y,, y N with the Jcobin Jy,, y N x x y N y,, x N y,, x N y N If x P, x P 2,, x P N then nd yp, y P 2,, y P N re coordintes of point P nd if JyP,, y P N, δx x P δx 2 x P 2 δx N x P N Jy,, y N δy y P δy 2 y P 2 δy N y P N 4 If, however, Jy P,, y P N nd the point P is specified by k coordintes yp, y P 2,, y P k tht mens tht N k coordintes y k+, y k+2,, y N re superfluous for the specifiction of the point P, we denote by J k y,, y k Jy,, y N dy k+ dy N the integrl over the N k superfluous coordintes nd it holds

A DIRAC DISTRIBUTION 9 δx x P δx 2 x P 2 δx N x P N J k y,, y k δy y P δy 2 y P 2 δy k y P k 5 c Exmple: Polr coordintes in E 2 x r cos ϕ, x 2 r sin ϕ, Jr, ϕ cos ϕ sin ϕ r sin ϕ r cos ϕ r i At points P r P, ϕ P, r P, it is δx x P δx 2 x P 2 δr rp δϕ ϕ P r ii At the point P r P the coordinte ϕ is superfluous nd so tht J r α+2π α r dϕ 2πr, δx δx 2 δr 2πr d Exmple: Sphericl coordintes in E 3 see Fig 8 x r sin ϑ cos ϕ, x 2 r sin ϑ sin ϕ, x 3 r cos ϑ, Figure 8: Sphericl coordintes Jr, ϑ, ϕ x r x 2 r x 3 r x ϑ x 2 ϑ x 3 ϑ x ϕ x 2 ϕ x 3 ϕ sin ϑ cos ϕ r cos ϑ cos ϕ r sin ϑ sin ϕ sin ϑ sin ϕ r cos ϑ sin ϕ r sin ϑ cos ϕ cos ϑ r sin ϑ r 2 sin ϑ i At the point P with coordintes r P, ϑ P, ϑ P π, ie with Jr P, ϑ P, ϕ P, it is

A DIRAC DISTRIBUTION δx x P δx 2 x P 2 δx 3 x P 3 δr rp δϑ ϑ P δϕ ϕ P r 2 sin ϑ ii At the point P with coordintes r P, ϑ P, or ϑ P π, the Jcobin Jr P, ϑ P, ϕ P nd Therefore J 2 r, ϑ 2π r 2 sin ϑ dϕ 2πr 2 sin ϑ δx δx 2 δx 3 x P 3 δr rp δϑ 2πr 2 sin ϑ iii At the point P with r P, it is Jr P, ϑ P, ϕ P nd Therefore J r π 2π r 2 sin ϑ dϕ dϑ 4πr 2 δx δx 2 δx 3 δr 4πr 2 e Exmple: Obligue coordintes importnt for the Fourier trnsform of lttices in E N, N 2 Let More explicitly this cn be rewritten s x i ik y k, det ik det A x y + + N y N, x N N y + + NN y N, or in the mtrix form x x N,, N N,, NN y y N, ie x A y As the Jcobin is x i y k ik, Jy,, y N,, N N,, NN det A nd

A DIRAC DISTRIBUTION ie δx x P δx N x P N det A δy y P δy N y P N, δ x x P det A δ y yp A6 Notes nd fetures δ p x p 2 + p 2 x 2 3/2 δ p x 22n 3 n!n 2! 2n 3! p π + p 2 x 2, n 2, 3, 2 n 2 3 δ p x p π px δy y y J m xyj m xy x dx 4 δ p x, y p π exp{ p[ exp x2 y 2 ]} 5 δ p x, y p2 π circ p x 2 + y 2 δ p x, y p 2 J p x 2 + y 2 4π p 7 x 2 + y 2 δxy 6 δx + δy x2 + y 2 8 References [] Dirc P A M: The Principles of Quntum Mechnics 4th edition At the Clrendon Press, Oxford 958, 5 [2] Grdshteyn I S, Ryzhik I M: Tble of Integrls, Series, nd Products Acdemic Press, New York nd London 994 [3] Abrmowitz M, Stegun I A: Hndbook of Mthemticl Functions Dover Publictions, Inc, New York 972