SUPPLEMENTARY READING FOR MATH 53: DIFFERENTIAL FORMS AND THE GENERAL STOKES FORMULA

Similar documents
Math 304, Differential Forms, Lecture 1 May 26, 2011

MATH 52 FINAL EXAM DECEMBER 7, 2009

MAS 4156 Lecture Notes Differential Forms

NOTES ON DIFFERENTIAL FORMS. PART 1: FORMS ON R n

Summary for Vector Calculus and Complex Calculus (Math 321) By Lei Li

4. Be able to set up and solve an integral using a change of variables. 5. Might be useful to remember the transformation formula for rotations.

Vector Calculus handout

Final Exam. Monday March 19, 3:30-5:30pm MAT 21D, Temple, Winter 2018

25. Chain Rule. Now, f is a function of t only. Expand by multiplication:

3. The Theorems of Green and Stokes

Green s, Divergence, Stokes: Statements and First Applications

Differential forms in two dimensions Kiril Datchev, March 23, 2017

Q You mentioned that in complex analysis we study analytic functions, or, in another name, holomorphic functions. Pray tell me, what are they?

Chapter 1. Vector Algebra and Vector Space

Line and Surface Integrals. Stokes and Divergence Theorems

Multi Variable Calculus

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

Past Exam Problems in Integrals, Solutions

Math 67. Rumbos Fall Solutions to Review Problems for Final Exam. (a) Use the triangle inequality to derive the inequality

Math 234 Exam 3 Review Sheet

1 0-forms on 1-dimensional space

Divergence Theorem December 2013

Divergence Theorem and Its Application in Characterizing

Caltech Ph106 Fall 2001

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

Divergence Theorem Fundamental Theorem, Four Ways. 3D Fundamental Theorem. Divergence Theorem

MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014

MATHS 267 Answers to Stokes Practice Dr. Jones

How to Use Calculus Like a Physicist

Dr. Allen Back. Dec. 3, 2014

Math 2374: Multivariable Calculus and Vector Analysis

Math 127C, Spring 2006 Final Exam Solutions. x 2 ), g(y 1, y 2 ) = ( y 1 y 2, y1 2 + y2) 2. (g f) (0) = g (f(0))f (0).

f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1

Laplace equation in polar coordinates

The exam will have 5 questions covering multiple

Differential Forms. Introduction

MAT 211 Final Exam. Spring Jennings. Show your work!

Lecture II: Vector and Multivariate Calculus

Dr. Allen Back. Sep. 10, 2014

MATH 2400: Calculus III, Fall 2013 FINAL EXAM

Introduction to Linear Algebra

Coordinate systems and vectors in three spatial dimensions

29.3. Integral Vector Theorems. Introduction. Prerequisites. Learning Outcomes

SOLUTIONS TO PRACTICE EXAM FOR FINAL: 1/13/2002

MATH 4030 Differential Geometry Lecture Notes Part 4 last revised on December 4, Elementary tensor calculus

Vector Calculus, Maths II

INTRODUCTION TO ALGEBRAIC GEOMETRY

1 4 (1 cos(4θ))dθ = θ 4 sin(4θ)

MATH The Chain Rule Fall 2016 A vector function of a vector variable is a function F: R n R m. In practice, if x 1, x n is the input,

The Divergence Theorem

4 Divergence theorem and its consequences

Multivariable Calculus Midterm 2 Solutions John Ross

dt dx dy dz dtdx dtdy dtdz dxdy dxdz dydz dxdydz dtdydz dtdxdz dtdxdy dtdxdydz

Math 733: Vector Fields, Differential Forms, and Cohomology Lecture notes R. Jason Parsley

Mathematical Notes for E&M Gradient, Divergence, and Curl

Introduction and Vectors Lecture 1

CURRENT MATERIAL: Vector Calculus.

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3

Practice problems **********************************************************

Chapter 4. The First Fundamental Form (Induced Metric)

and likewise fdy = and we have fdx = f((x, g(x))) 1 dx. (0.1)

STOKES THEOREM ON MANIFOLDS

16.2 Iterated Integrals

Math 11 Fall 2007 Practice Problem Solutions

Practice problems. m zδdv. In our case, we can cancel δ and have z =

Name: Student ID number:

( ) ( ) ( ) ( ) Calculus III - Problem Drill 24: Stokes and Divergence Theorem

Discrete geometric structures in General Relativity

Course Outline. 2. Vectors in V 3.

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

DIFFERENTIAL FORMS AND COHOMOLOGY

Review for the First Midterm Exam

SOME PROBLEMS YOU SHOULD BE ABLE TO DO

Problem Points S C O R E

Chapter 2. Vector Calculus. 2.1 Directional Derivatives and Gradients. [Bourne, pp ] & [Anton, pp ]

MULTILINEAR ALGEBRA MCKENZIE LAMB

21-256: Partial differentiation

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.

Errata for Vector and Geometric Calculus Printings 1-4

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that

Compatible Discretization Schemes

Math 114: Course Summary

MATH 2083 FINAL EXAM REVIEW The final exam will be on Wednesday, May 4 from 10:00am-12:00pm.

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8

Arc Length and Surface Area in Parametric Equations

Survey on exterior algebra and differential forms

MA 510 ASSIGNMENT SHEET Spring 2009 Text: Vector Calculus, J. Marsden and A. Tromba, fifth edition

2.20 Fall 2018 Math Review

Name. FINAL- Math 13

Sheaf theory August 23, 2016

Math 32B Discussion Session Week 10 Notes March 14 and March 16, 2017

Math 11 Fall 2016 Final Practice Problem Solutions

MATH 423/ Note that the algebraic operations on the right hand side are vector subtraction and scalar multiplication.

AE/ME 339. K. M. Isaac. 9/22/2005 Topic 6 FluidFlowEquations_Introduction. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

Math Divergence and Curl

MATH 280 Multivariate Calculus Fall Integrating a vector field over a curve

Ma 1c Practical - Solutions to Homework Set 7

Math 5BI: Problem Set 9 Integral Theorems of Vector Calculus

Mo, 12/03: Review Tu, 12/04: 9:40-10:30, AEB 340, study session

Math 11 Fall 2018 Practice Final Exam

Transcription:

SUPPLEMENTARY READING FOR MATH 53: DIFFERENTIAL FORMS AND THE GENERAL STOKES FORMULA EDWARD FRENKEL, UC BERKELEY The purpose of these notes is to outline briefly a general formalism which allows for a uniform treatment of various integrals studied in Chapter 16 of Stewart s book. More details can be found in the book by I. Madsen and J. Tornehave, From Calculus to Cohomology, Cambridge University Press, 1997. 1. What do we integrate? Let Y be an m dimensional domain in R n (of course, m n). What can we integrate over Y? Let for example m = 1, i.e., Y is a curve C. We have learned how to integrate the following expressions over curves in R 3 : (1.1) P dx + Qdy + Rdz, where P, Q, R are functions in (x, y, z). How do we perform this integration in practice? We first parametrize our curve: x = x(t), y = y(t), z = z(t), a t b. In other words, we identify our curve C with a flat one-dimensional domain: the interval [a, b]. Then we write C (P dx + Qdy + Rdz) = [a,b] ( P t ) dt + Q y dt + r t t dt (here we use the fact that dx = dt, etc.). The RHS is a familiar one-dimensional t integral. This is what the book calls the line integral of the vector field F = P, Q, R over C, but as we see it is more natural to think that we really integrate not F, but the expression (1.1). Likewise, the general expression that can be integrated over a surface S in R 3 (the case m = 2) is (1.2) Adydz + Bdzdx + Cdxdy, where A, B, C are functions in (x, y, z). The integral of this expression over S can be computed as follows. We parametrize S: x = x(u, v), y = y(u, v), z = z(u, v), (u, v) D R 2, Date: December 3, 2009. 1

2 EDWARD FRENKEL, UC BERKELEY that is identify S with a flat domain D in R 2. After that we can write (1.3) (Adydz + Bdzdx + Cdxdy) = S ( ) (y, z) (z, x) (x, y) A dudv + B dudv + C (u, v) (u, v) (u, v) dudv. Here we use the change of variables formulas: where (x,y) (u,v) D dxdy = (x, y) dudv, etc., (u, v) denotes the familiar Jacobian. Note that, according to the last formula, we have dxdy = dydx, because (x, y) x) = (y, (u, v) (u, v). The right hand side of formula (1.3) is what the book calls the flux of the vector field A, B, C (look at formula (9) of Sect. 16.7 and expand r u r v ). But this formula shows that it is more natural to think that we are integrating the expression (1.2). Finally, the most general expression that we can integrate over a solid E in R 3 has the form (1.4) f(x, y, z)dxdydz, and the corresponding integral is E f(x, y, z)dxdydz, which is the standard triple integral. Note that we do not need to parametrize E: unlike C and S, it is already flat (in other words, (x, y, z) themselves are the flat coordinates). After these examples one can guess that the general object that we should integrate over an m dimensional domain Y in R n (with coordinates x 1,..., x n ) is the sum of terms of the form (1.5) f(x 1,..., x n )dx i1 dx i2... dx im, where f(x 1,..., x n ) is a function in x 1,..., x n. We must have exactly m factors dx j in this expression, since we are going to integrate m times. Moreover, all dx ij s appearing in a product dx i1 dx i2... dx im must be distinct. Indeed, we don t want to integrate dxdx, say, over a surface S in R 3 the result would be 0. So for example for m = 2 and n = 3 we have the following possibilities: dxdy, dydx, dydz, dzdy, dxdz, dzdx. But actually dxdy is the same as dydx, as we have seen above. Hence there are only 3 truly distinct elements: dxdy, dydz, dzdx. Therefore the sum of terms of the form

(1.5) becomes formula (1.2). Other examples are given by formulas (1.1) and (1.4) they correspond to the cases when m = 1, n = 3 and m = 3, n = 3, respectively. How to integrate the expression (1.5) over an m-dimensional domain Y in R n? In the same way as in the case n = 3 (see above). First, parametrize the domain, i.e., identify it with a flat domain Z R m with coordinates z 1,..., z m. This means writing each x i as a function x i (z 1,..., z m ). After that we can write Y fdx i1 dx i2... dx im = Z f (x i 1, x i2,..., x im ) (z 1, z 2,..., z m ) dz 1dz 2... dz m, where we have included the Jacobian of the corresponding change of variables. The RHS is a standard multiple integral, which can be evaluated as an iterated integral in the same way as we do it for m = 2 and m = 3. Terminology: the expression (1.5) is called a differential form of degree m, or an m form. Note that a 0 form is just the same as a function. Thus, (1.1) is a 1 form, (1.2) is a 2 form, etc. Conclusion: we are integrating m forms. 3 2. de Rham differential Now we introduce an operation d that manufactures an (m + 1) form, denoted by dω, out of any m form ω. On an m form (1.5) it acts as follows: d (f(x 1,..., x n )dx i1 dx i2... dx im ) = n j=1 f j dx j dx i1 dx i2... dx im. A general m form is a sum of terms of the form (1.5). The result of application of d to a general form is just the sum of the applications of d to each of these terms (in other words, d is a linear map). This operation is called the de Rham differential, after French mathematician Georges de Rham. Examples. (1) Let ω be a 0 form, that is a function f. Then we find: df = n j=1 f j dx j. This is nothing but the usual differential of the function f considered as a 1 form. (2) Let ω be a 1 form (1.1) in R 3. Then dω = P P P dxdx + dydx + y dzdx + Q + R Q Q dxdy + dydy + y dzdy R R dxdz + dydz + y dzdz.

4 EDWARD FRENKEL, UC BERKELEY But remember that dxdx = dydy = dzdz = 0, and also that dydx = dxdy, etc. Therefore we can rewrite this formula as follows: ( R dω = y Q ) dydz ( P + R ) dzdx ( Q + P ) dxdy. y We see that the functions arising here are the components of curl of the vector field P, Q, R. Thus we obtain a very nice interpretation of curl using the de Rham differential! (3) Let ω be a 2 form given by (1.2). Then we find in the same way as in example (2): ( A dω = + B y + C ) dxdydz. The function in the RHS is nothing but div of the vector field A, B, C. An important property of d is that it is nilpotent: d 2 = 0 (check this!). This implies that if ω = dν, then dω = 0. This fact is a generalization of the following facts that we have seen in our course: curl( f) = 0, div(curl F) = 0. Moreover, the converse is also true (it is known as the Poincare lemma): If ω is an m form well-defined on the entire R n, such that dω = 0, then there exists an (m 1) form ν, such that ω = dν. This is a generalization of the following facts: m = 1. If curl F = 0, then F is conservative, i.e., F = f for some function f. m = 2. If div E = 0, then E = curl F for some F. 3. The general Stokes formula Let Y be an m dimensional domain in R n, and denote by b(y ) its boundary (it is (m 1) dimensional). Let ω be any (m 1) form in R n. Then the following formula, called the general Stokes formula, is true: (3.1) dω = ω. Y Here are the special cases of this formula (to see that, look at the examples above): m = 1, n = 1. This is the Fundamental Theorem of Calculus. m = 1, n = 2 and m = 1, n = 3. This is the Fundamental Theorem for line integrals. m = 2, n = 2. This is Green s Theorem. m = 2, n = 3. This is Stokes Theorem. m = 3, n = 3. This is the Divergence Theorem. b(y )

Thus, formula (3.1) gives us an elegant one-line formulation of the main results of Chapter 16. It also indicates a tantalizing connection between the geometric operation of taking the boundary b(y ) of a domain Y and the algebraic operation d on differential forms. According to formula (3.1), the two are dual to each. Integration is a pairing of two objects: one geometric the domain of integration and one algebraic the differential form that we are integrating. On each type of objects there is a natural operation: taking the boundary of the domain on the geometric side, and taking the de Rham differential on the algebraic side. Both operations are nilpotent: for the de Rham differential d we have d 2 = 0, and we also know that the boundary of the boundary of any domain is empty. The general Stokes formula (3.1) says that we can trade one operation for the other. It is in this sense that they are dual to each other. This is a deep result which opens up the possibility of analyzing geometry by algebraic means. This idea is in fact one of the cornerstones of modern analysis. If you want to read more about this, try the article The notion of dimension in geometry and algebra by Yu.I. Manin, available at http://arxiv.org/abs/math.ag/0502016 5