Flight Dynamics and Control

Similar documents
Chapter 4 The Equations of Motion

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege

Fundamentals of Airplane Flight Mechanics

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY

Lecture AC-1. Aircraft Dynamics. Copy right 2003 by Jon at h an H ow

Introduction to Flight Dynamics

Chapter 1 Lecture 2. Introduction 2. Topics. Chapter-1

April 15, 2011 Sample Quiz and Exam Questions D. A. Caughey Page 1 of 9

AE Stability and Control of Aerospace Vehicles

FLIGHT DYNAMICS. Robert F. Stengel. Princeton University Press Princeton and Oxford

Flight Vehicle Terminology

Lecture 11 Overview of Flight Dynamics I. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Stability and Control

Aircraft Structures Design Example

AB-267 DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT

Introduction to Atmospheric Flight. Dr. Guven Aerospace Engineer (P.hD)

Dynamics and Control of Rotorcraft

Aircraft Flight Dynamics & Vortex Lattice Codes

Linearized Equations of Motion!

What is flight dynamics? AE540: Flight Dynamics and Control I. What is flight control? Is the study of aircraft motion and its characteristics.

AA 242B/ ME 242B: Mechanical Vibrations (Spring 2016)

Aircraft Design I Tail loads

Flight Dynamics, Simulation, and Control

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6]

Alternative Expressions for the Velocity Vector Velocity restricted to the vertical plane. Longitudinal Equations of Motion

Translational and Rotational Dynamics!

Robot Dynamics Fixed-wing UAVs: Dynamic Modeling and Control

Chapter 5 Performance analysis I Steady level flight (Lectures 17 to 20) Keywords: Steady level flight equations of motion, minimum power required,

Flight Control Simulators for Unmanned Fixed-Wing and VTOL Aircraft

Investigating the Performance of Adaptive Methods in application to Autopilot of General aviation Aircraft

Contribution of Airplane design parameters on Roll Coupling اي داءالبارامترات التصميميه للطائره على ازدواج الحركي

Pitch Control of Flight System using Dynamic Inversion and PID Controller

Optimal Control, Guidance and Estimation. Lecture 16. Overview of Flight Dynamics II. Prof. Radhakant Padhi. Prof. Radhakant Padhi

AEROSPACE ENGINEERING

CHAPTER 1. Introduction

Rotor reference axis

u (surge) X o p (roll) Body-fixed r o v (sway) w (heave) Z o Earth-fixed X Y Z r (yaw) (pitch)

PRINCIPLES OF FLIGHT

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)

Flight and Orbital Mechanics

Lecture-4. Flow Past Immersed Bodies

6. 3D Kinematics DE2-EA 2.1: M4DE. Dr Connor Myant

CS491/691: Introduction to Aerial Robotics

Spacecraft and Aircraft Dynamics

Dynamics and Control Preliminary Examination Topics

Lecture #AC 3. Aircraft Lateral Dynamics. Spiral, Roll, and Dutch Roll Modes

EVOLVING DOCUMENT ME 5070 Flight Dynamics

FREQUENCY DOMAIN FLUTTER ANALYSIS OF AIRCRAFT WING IN SUBSONIC FLOW

Supplementary Section D: Additional Material Relating to Helicopter Flight Mechanics Models for the Case Study of Chapter 10.

Time Response of Dynamic Systems! Multi-Dimensional Trajectories Position, velocity, and acceleration are vectors

Direct spatial motion simulation of aircraft subjected to engine failure

18. Linearization: the phugoid equation as example

Aircraft stability and control Prof: A. K. Ghosh Dept of Aerospace Engineering Indian Institute of Technology Kanpur

Design and modelling of an airship station holding controller for low cost satellite operations

Study. Aerodynamics. Small UAV. AVL Software

Robot Dynamics - Rotary Wing UAS: Control of a Quadrotor

Effect of Moment of Inertia and Aerodynamics Parameters on Aerodynamic Coupling in Roll Mode

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 2 SECTION PROPERTIES

A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN

Dynamic Modeling of Fixed-Wing UAVs

Design, Analysis and Research Corporation (DARcorporation) ERRATA: Airplane Flight Dynamics and Automatic Flight Controls Part I

Drag Computation (1)

Experimental Aircraft Parameter Estimation

Modeling of a Small Unmanned Aerial Vehicle

4-7. Elementary aeroelasticity

( ) (where v = pr ) v V

The Physics of Low-Altitude Aerobatic Flying By: Eric Boyd. SPH 3U Mr. Leck

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments

Use of Compliant Hinges to Tailor Flight Dynamics of Unmanned Aircraft

MAV Unsteady Characteristics in-flight Measurement with the Help of SmartAP Autopilot

Aerodynamics SYST 460/560. George Mason University Fall 2008 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH. Copyright Lance Sherry (2008)

AE Stability and Control of Aerospace Vehicles

Aim. Unit abstract. Learning outcomes. QCF level: 6 Credit value: 15

Applications Linear Control Design Techniques in Aircraft Control I

Given the water behaves as shown above, which direction will the cylinder rotate?

Quadrotor Modeling and Control

Simulation of Non-Linear Flight Control Using Backstepping Method

Stability and Control Analysis in Twin-Boom Vertical Stabilizer Unmanned Aerial Vehicle (UAV)

Fluid Mechanics. Forces on Fluid Elements. Fluid Elements - Definition:

Chapter 1 Introduction (Lectures 1,2 and 3)

Rotational & Rigid-Body Mechanics. Lectures 3+4

Design, Analysis and Research Corporation (DARcorporation) ERRATA: Airplane Flight Dynamics and Automatic Flight Controls Part I

Aeroelastic Gust Response

Aerodynamics. High-Lift Devices

MODELLING AND CONTROL OF A SYMMETRIC FLAPPING WING VEHICLE: AN OPTIMAL CONTROL APPROACH. A Thesis JUSTIN PATRICK JACKSON

Modelling the Dynamic Response of a Morphing Wing with Active Winglets

ABSTRACT. Thomas Woodrow Sukut, 2d Lt USAF

Small lightweight aircraft navigation in the presence of wind

MODIFICATION OF AERODYNAMIC WING LOADS BY FLUIDIC DEVICES

ANALYSIS OF AUTOPILOT SYSTEM BASED ON BANK ANGLE OF SMALL UAV

A First Order Model of a Variable Camber Wing for a Civil Passenger Aircraft

Aero-Propulsive-Elastic Modeling Using OpenVSP

Chapter 8 Part 1. Attitude Dynamics: Disturbance Torques AERO-423

Aeroelasticity. Lecture 7: Practical Aircraft Aeroelasticity. G. Dimitriadis. AERO0032-1, Aeroelasticity and Experimental Aerodynamics, Lecture 7

Lecture 31. EXAMPLES: EQUATIONS OF MOTION USING NEWTON AND ENERGY APPROACHES

A model of an aircraft towing a cable-body system

SENSITIVITY ANALYSIS FOR DYNAMIC MODELS OF AERIAL MUNITIONS

DESIGN PROJECT REPORT: Longitudinal and lateral-directional stability augmentation of Boeing 747 for cruise flight condition.

MEEN 363 Notes Copyright, Dara W. Childs

1/30. Rigid Body Rotations. Dave Frank

Transcription:

Flight Dynamics and Control Lecture 1: Introduction G. Dimitriadis University of Liege

Reference material Lecture Notes Flight Dynamics Principles, M.V. Cook, Arnold, 1997 Fundamentals of Airplane Flight Mechanics, David G. Hull, Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg, 2007, http://dx.doi.org/10.1007/978-3-540-46573-7

What is it about?

Introduction The study of the mechanics and dynamics of flight is the means by which : We can design an airplane to accomplish efficiently a specific task We can make the task of the pilot easier by ensuring good handling qualities We can avoid unwanted or unexpected phenomena that can be encountered in flight

Aircraft description Pilot Flight Control Airplane Response Task System The pilot has direct control only of the Flight Control System. However, he can tailor his inputs to the FCS by observing the airplane s response while always keeping an eye on the task at hand.

Control Surfaces Aircraft control is accomplished through control surfaces and power Ailerons Elevators Rudder Throttle Control deflections were first developed by the Wright brothers from watching birds

Wright Flyer The Flyer did not have separate control surfaces. The trailing edges of the windtips could be bent by a system of cables

Modern control surfaces Rudder Elevator Aileron Rudderon (rudder+aileron ) Elevon (elevator+aileron)

Other devices Flaps Airbreak Spoilers Combinations of control surfaces and other devices: flaperons, spoilerons, decelerons (aileron and airbrake) Vectored thrust

Mathematical Model Flight Condition Input Aileron Elevator Rudder Throttle Aircraft equations of motion Output Displacement Velocity Acceleration Atmospheric Condition

Aircraft degrees of freedom Six degrees of freedom: 3 displacements x: horizontal motion y y: side motion z: vertical motion 3 rotations Around x: roll x U cg w Around y: pitch z Around z: yaw U: resultant linear velocity, cg: centre of gravity w: resultant angular velocity

Aircraft frames of reference There are many possible coordinate systems: Inertial (immobile and far away) Earth-fixed (rotates with the earth s surface) Vehicle carried vertical frame (fixed on aircraft cg, vertical axis parallel to gravity) Air-trajectory (fixed on aircraft cg, parallel to the direction of motion of the aircraft) Body-fixed (fixed on aircraft cg, parallel to a geometric datum line on the aircraft) Stability axes (fixed on aircraft cg, parallel to a reference flight condition) Others

Airplane geometry c s = b /2 c(y) x( y) c /4 cg c /4 y l T l t c x MAC

Airplane references (1) Standard mean chord (SMC) Mean aerodynamic chord (MAC) s s s s c = c 2 ( y) dy / c( y) dy x MAC = c( y) x( y) s c = Wing area s Aspect Ratio s ( ) c y dy / dy s S = bc AR = b 2 /S s s dy / c y s s ( ) dy

Airplane references (2) Centre of gravity (cg) Tailplane area (S T ) Tail moment arm (l T ) Tail volume ratio: A measure of the aerodynamic effectiveness of the tailplane V T = S T l T Sc

Airplane references (3) c /4 cg c /4 l F lf Fin moment arm (l F ) Fin volume ratio V F = S F l F Sc

Aerodynamic Reference Centres Centre of pressure (cp): The point at which the resultant aerodynamic force F acts. There is no aerodynamic moment around the cp. Half-chord: The point at which the aerodynamic force due to camber, F c, acts Quarter-chord (or aerodynamic centre): The point at which the aerodynamic force due to angle of attack, F a, acts. The aerodynamic moment around the quarter-chord, M 0, is constant with angle of attack

Airfoil with centres By placing all of the lift and drag on the aerodynamic centre we move the lift and drag due to camber from the halfchord to the quarter chord. This is balanced by the moment M 0 F c F cp D c /2 h n c D c L c L L a c F a D a ac L D c /4 M 0 Camber line V 0

Full description of aircraft movement The static stability analysis presented in the aircraft design lectures is good for the preliminary design of aircraft Aircraft flight is a dynamic phenomenon: Every control input or external excitation results in a dynamic response The dynamic response may be oscillatory and have a single or several frequency components The dynamic response may be damped (stable) or undamped (unstable) The modelling of this dynamic response necessitates the derivation of the full equations of motion of the aircraft

Nomenclature Here is a definition of the degrees of freedom of an aircraft and the forces and moments acting on it. All degrees of freedom are relative to the aircraft s centre of gravity and use aircraft geometrical axes. Symbols Definition x, U, X translation, velocity and force applied in the direction parallel to the axis of the fuselage y, V, Y translation, velocity and force applied in the direction perpendicular to the plane of symmetry of the aircraft z, W, Z translation, velocity and force applied in the direction perpendicular to both x and y p, L angular velocity and moment in roll direction q, M angular velocity and moment in pitch direction r, N angular velocity and moment in yaw direction

Body and axes Axis system Could be any body but in this case it is an aircraft of mass m. For the moment it is a flexible body Any point p on the body can have a velocity and acceleration with respect to the c.g.

Vector notation We define the following vector notation Noting that u and a are velocities and accelerations with respect to the center of gravity x = x y z! ", w = p q r! ", U = U V W! ", F = X Y Z! ", M = L M N! " u = u v w! ", a = a x a y a z! "

Developing the equations of motion All equations of motion of dynamic systems can be derived using Newton s Second Law. Two sets of equations are derived: Sum of forces acting on the system (internal and external) are equal to its mass times its acceleration Sum of moments acting on the system (internal and external) are equal to its moment of inertia times its angular acceleration Therefore, the object of the derivation is to estimate the accelerations (linear and angular of the aircraft) As usual, the same equations of motion can be obtained using Lagrange s equation (i.e. conservation of energy)

Local velocities (1) The local velocity vector u is given simply by Substituting for the vector definitions Where x denotes the vector (cross) product and u =!x + w x u =!x!y!z! " + p q r! " x y z! " p q r! " x y z! " = i j k p q r x y z

Local velocities (2) The equations for the local velocities at point p(x,y,z) are u = v = x ry + qz y pz + rx w = z qx + py Now assume that the body is rigid, i.e. no parts of it are moving with respect to the c.g

Total local velocities This gives x = y = z = 0 therefore u = ry + qz u = w x, or, v = pz + rx w = qx + py (1) The total local velocities u =u+u at p(x,y,z) are given by u = U + u = U ry + qz v = V + v = V pz + rx w = W + w = W qx + py

Local accelerations (1) Similarly, the local accelerations at point p(x,y,z) are given by Substituting for the vector definitions where a =!u + w u a =!u!v!w! " + p q r! " u v w! " =!ry +!qz!pz +!rx!qx +!py! " + p q r! " u v w! " p q r! " u v w! " = i j k p q r ry + qz pz + rx qx + py (2)

Local accelerations (2) Carrying out all the algebra leads to a x = x( q 2 + r 2 ) + y( pq!r ) + z( pr +!q ) a y = x( pq +!r ) y( p 2 + r 2 ) + z( qr!p ) a z = x( pr!q ) + y( qr +!p ) z( p 2 + q 2 ) Remembering that this is only part of the acceleration of point p. The acceleration of the centre of gravity must be added.

Total local acceleration The total local acceleration at point p(x,y,z) is defined as So that, finally! a =! U + w U + a (3) a! x = U! rv + qw x( q 2 + r 2 ) + y( pq!r ) + z( pr +!q ) a! y = V! pw + ru + x( pq +!r ) y( p 2 + r 2 ) + z( qr!p ) (4) a! z = W! qu + pv + x( pr!q ) + y( qr +!p ) z( p 2 + q 2 )

Example A pilot in an aerobatic aircraft performs a loop in 20s at a steady velocity of 100m/s. His seat is located 5m ahead of, and 1m above, the c.g. What total normal load factor does he experience at the top and the bottom of the loop?

Solution Movement only in the plane of symmetry: V = p = p = r = 0 Normal acceleration: a z = W qu + x q zq 2 cg 100m/s For a steady manoeuvre: 2R W = q = 0 Pitch rate: q = 2π 20 = 0.314rad/s 100m/s 1m 5m cg

Solution (2) Substituting into equation for normal acceleration at the seat: a z = qu zq 2 = 0.314 100 ( 1) 0.314 2 = 31.3m/s 2 Normal load factor definition: a z n = g = 31.3 9.81 = 3.19 Total normal load factor at top of loop: n = n 1= 2.19 Total normal load factor at bottom of loop: n = n +1= 4.19

Generalized Force Equations Assume that point p(x,y,z) has a small mass dm. Applying Newton s 2 nd law to the entire body yields a! dm = F (5) where the subscript denotes that the integral is taken over the entire volume

Force equations (2) Remember from equation (3) that! a =! U + w U + a Substituting from equations (2) and (1)! a =! U + w U +!w x + w w x ( ) Putting this last result back into Newton s 2 nd Law, equation (5) (!U + w U +!w x + w ( w x) )dm = F (6)

Centre of gravity As far as the integral over the volume is concerned, w and U are constants The generalized force equation becomes!u dm + w U dm +!w xdm + w w xdm( = F ' The definition of the centre of gravity is xdm = 0 The force equation becomes m ( U! + w U) = F (7)

Generalized Moment Equations The angular acceleration of point p(x,y,z) around the centre of gravity is given by x a" Again, use Newton s second law, this time in moment form, to obtain x a" dm = M (8) Substitute from equation (6) x ( U! + w U +!w x + w ( w x) )dm = M

Center of gravity Using the definition of the centre of gravity, the moment equation becomes x (!w x)dm + x w ( w x) dm = M Now remember the matrix form of the cross product x w = Xw w x = X T w, where X = 0 z y z 0 x y x 0 ( ( ( '

Moments of inertia The first term in the moment equation becomes x (!w x)dm = XX T!w dm = XX T dm(!w ' where I c = XX T dm = y 2 + z 2 xy xz xy x 2 + z 2 yz xz yz x 2 + y 2 is the system s inertia matrix ( ( dm ( ' (

Moments of inertia (2) The individual moments and products of inertia are defined as I x = ( y 2 + z 2 )dm, I y = ( x 2 + z 2 )dm, I z = ( x 2 + y 2 )dm I xy = xydm, I xz = xzdm, I yz = yzdm So that the inertia matrix becomes " I c = I x I xy I xz I xy I y I yz I xz I yz I z ' ' ' ' (8)

Moment equation Using the definition of the inertia matrix, the first term in the moment equation becomes simply x (!w x)dm = I c!w Similarly, the second term is x w ( w x) dm = w ( I c w) The full moment equation becomes I c!w + w ( I c w) = M (9)

Complete equations of motion Assembling equations (7) and (9) we get the complete equations of motion m ( U! + w U) = F (10) I c!w + w ( I c w) = M This is a set of 6 equations of motion with 6 unknowns, U, V, W, p, q, r. They are nonlinear Ordinary Differential Equations.

Scalar form Substituting for the definitions of I c, U, w, F and M we get a nicer form m (!U rv + qw ) = X m (!V pw + ru) = Y m! W qu + pv ( ) = Z I x!p ( I y I z )qr + I xy ( pr!q ) I xz ( pq +!r ) + I ( yz r 2 q 2 ) = L I y!q + ( I x I z ) pr + I yz ( pq!r ) + I ( xz p 2 r 2 ) I xy ( qr +!p ) = M I z!r ( I x I ) y pq I yz ( pr +!q ) + I xz ( qr!p ) + I ( xy q 2 + p 2 ) = N (11)

Symmetric aircraft Consider an aircraft that is symmetric about the x-z plane. For ever point p(x,y,z) with mass dm, there is a point p(x, -y,z) with mass dm. It follows that Similarly, I xy = I yz = xydm = 0 yzdm = 0

y p(x,y,z) O p(x,-y,z) x z The elementary mass moment xydm around the CG is cancelled by the elementary mass moment x(-y)dm.

Asymmetric Aircraft Blohm und Voss 141 Blohm und Voss 237 Ruttan Bumerang

Symmetric aircraft (2) For symmetric aircraft, the equations of motion become m ( U! rv + qw ) = X m (!V pw + ru) = Y m!w qu + pv ( ) = Z I x!p ( I y I z )qr I xz ( pq +!r ) = L I y!q + ( I x I z ) pr + I ( xz p 2 r 2 ) = M I z!r ( I x I ) y pq + I xz ( qr!p ) = N (12)

Discussion of the equations If we can solve for U, V, W, p, q, r as functions of time, then we know the complete time history of the motion of the aircraft. Unfortunately, terms such as ru, pv, qw, etc and pq, r 2, qr etc are nonlinear. Furthermore, we have only defined the inertial loads up to now. We have not said anything about the external loads acting on the aircraft.

External Forces and Moments There are five sources of external forces and moments: Aerodynamic Gravitational Controls Propulsion Atmospheric Disturbances

External Forces and moments The full equations of motion in the presence of external forces and moments are m( U rv + qw ) = X a + X g + X c + X p + X d m( V pw + ru) = Y a + Y g + Y c + Y p + Y d m( W qu + pv ) = Z a + Z g + Z c + Z p + Z d I x p ( I y I z )qr I xz pq + r I y q + ( ) = L a + L g + L c + L p + L d ( I x I z )pr + I ( xz p 2 r 2 ) = M a + M g + M c + M p + M d I z r ( I x I y )pq + I xz qr p ( ) = N a + N g + N c + N p + N d