dynamical constraints on the dark matter distribution in the milky way

Similar documents
Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu

Thom et al. (2008), ApJ

A novel determination of the local dark matter density. Riccardo Catena. Institut für Theoretische Physik, Heidelberg

The local dark matter halo density. Riccardo Catena. Institut für Theoretische Physik, Heidelberg

The Milky Way Galaxy

Structure of Our Galaxy The Milkyway. More background Stars and Gas in our Galaxy

Astronomy 330 Lecture 7 24 Sep 2010

Defining the Milky Way Rotation Curve using Open Clusters

Fabrizio Nesti. LNGS, July 5 th w/ C.F. Martins, G. Gentile, P. Salucci. Università dell Aquila, Italy. The Dark Matter density. F.

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Action-based Dynamical Modeling of the Milky Way Disk with Gaia & RAVE

Einführung in die Astronomie II

Milky Way S&G Ch 2. Milky Way in near 1 IR H-W Rixhttp://online.kitp.ucsb.edu/online/galarcheo-c15/rix/

View of the Galaxy from within. Lecture 12: Galaxies. Comparison to an external disk galaxy. Where do we lie in our Galaxy?

Dynamics of the Milky Way

Dark Matter: Observational Constraints

Fabrizio Nesti. Ruđer Boškovic Institute, Zagreb Gran Sasso Science Institute, L Aquila. ULB, Bruxelles, March 7 th 2014

AS1001:Extra-Galactic Astronomy

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

The Milky Way - Chapter 23

Modelling mass distribution of the Milky Way galaxy using Gaia s billionstar

Abundance distribution in the Galactic thick disk

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye

Stellar Dynamics and Structure of Galaxies

Visible Matter. References: Ryden, Introduction to Cosmology - Par. 8.1 Liddle, Introduction to Modern Cosmology - Par. 9.1

Spatial distribution of stars in the Milky Way

Structure and Mass Distribution of the Milky Way Bulge and Disk

The motions of stars in the Galaxy

Gaia Revue des Exigences préliminaires 1

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu

The cosmic distance scale

Gravitational microlensing. Exoplanets Microlensing and Transit methods

Lecture 28: Spiral Galaxies Readings: Section 25-4, 25-5, and 26-3

Summary: Nuclear burning in stars

Components of Galaxies: Dark Matter

Data sets and population synthesis

distribution of mass! The rotation curve of the Galaxy ! Stellar relaxation time! Virial theorem! Differential rotation of the stars in the disk

Our Galaxy. Chapter Twenty-Five. Guiding Questions

The Physics of the Interstellar Medium

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Distances & the Milky Way. The Curtis View. Our Galaxy. The Shapley View 3/27/18

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

arxiv:astro-ph/ v1 20 Nov 1996

Overview of Dynamical Modeling. Glenn van de Ven

INTRODUCTION TO SPACE

Astronomy 730. Milky Way

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky.

Lecture Five: The Milky Way: Structure

Our View of the Milky Way. 23. The Milky Way Galaxy

Chapter 14 The Milky Way Galaxy

Ay162, Spring 2006 Week 8 p. 1 of 15

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars

Astronomy 114. Lecture 27: The Galaxy. Martin D. Weinberg. UMass/Astronomy Department

The Milky Way Galaxy. Sun you are here. This is what our Galaxy would look like if we were looking at it from another galaxy.

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies!

Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles

Simulations of the Gaia final catalogue: expectation of the distance estimation

The Milky Way Galaxy. sun. Examples of three Milky-Way like Galaxies

The Milky Way s rotation curve out to 100 kpc and its constraint on the Galactic mass distribution

The Milky Way. 20 March The Shape of the Galaxy Stellar Populations and Motions Stars as a Gas. University of Rochester

The halo is specially interesting because gravitational potential becomes dominated by the dark matter halo

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

Chapter 23 The Milky Way Galaxy Pearson Education, Inc.

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

An Introduction to Galaxies and Cosmology

THE GALACTIC BULGE AS SEEN BY GAIA

Dark Matter: Observational Constraints

Galaxy Rotation Curves of a Galactic Mass Distribution. By: Camiel Pieterse Supervised by: Prof. dr. Wim Beenakker Theoretical High Energy Physics

STRUCTURE AND DYNAMICS OF GALAXIES

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds.

Ch. 25 In-Class Notes: Beyond Our Solar System

Contents 1. INTRODUCTION ROTATION CURVES Measurements of Galactic Rotation Rotation curve of the Galaxy

telescopes resolve it into many faint (i.e. distant) stars What does it tell us?

Galaxies and the Universe. Our Galaxy - The Milky Way The Interstellar Medium

Dark Baryons and their Hidden Places. Physics 554: Nuclear Astrophysics Towfiq Ahmed December 7, 2007

objects via gravitational microlensing

What can M2M do for Milky Way Models?

The Milky Way Galaxy Guiding Questions

The Milky Way Galaxy

Exploring the structure and evolu4on of the Milky Way disk

NRAO Instruments Provide Unique Windows On Star Formation

Name Midterm Exam October 20, 2017

Review of the Bulge Stellar Population And Comparison to the Nuclear Bulge

DM direct detection predictions from hydrodynamic simulations

Stars, Galaxies & the Universe Lecture Outline

Part two of a year-long introduction to astrophysics:

The Universe o. Galaxies. The Universe of. Galaxies. Ajit Kembhavi IUCAA

Sep 09, Overview of the Milky Way Structure of the Milky Way Rotation in the plane Stellar populations

DETERMINATION OF THE DISTANCE TO THE GALACTIC CENTRE NIGEL CLAYTON (ASTRONOMY)

Galaxy Gas Halos and What They Can Tell Us About Galaxy Formation

Lec 22 Physical Properties of Molecular Clouds

Oxygen in red giants from near-infrared OH lines: 3D effects and first results from. Puerto de la Cruz, May 14, 2012! Carlos Allende Prieto!

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way

Rotation curves of spiral galaxies

PE#4: It contains some useful diagrams and formula which we ll use today

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015

Galaxies: The Nature of Galaxies

The origin of the steep vertical stellar distribution in the Galactic disc

Gas 1: Molecular clouds

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation!

Transcription:

dynamical constraints on the dark matter distribution in the milky way Miguel Pato (Physik-Department T30d, TU Munich) Oskar Klein Centre for Cosmoparticle Physics / Wenner-Gren Fabio Iocco in collaboration with Gianfranco Bertone APS 4th meeting, Amsterdam, 29 Sep 2014

galactic modelling Milky Way edge on dark halo ~8 kpc bulge/bar Sun Galactic Centre 200 kpc gas disk stellar disk bulge tilted bar disk thin+thick gas H 2, HI, HII dark matter??? not to scale! tot = bulge + disk + gas + dm how can we constrain the parameters of a galactic mass model? miguel pato (okc stockholm) () 1

galactic modelling tot = bulge + disk + gas + dm {z} {z } dynamics traces total potential rotation curve R 0:1 30 kpc local stars R R 0 8 kpc (Oort's limit) tracers R 20 60 kpc (radial Jeans) satellites R 100 300 kpc (virial) \photometry" traces individual baryonic components star counts bulge, disk luminosity bulge, disk gravitational microlensing bulge emission lines gas [Iocco, MP, Bertone & Jetzer, JCAP11(2011)029] [Iocco, MP, Bertone, submitted] miguel pato (okc stockholm) () 2

galactic modelling tot = bulge + disk + gas + dm {z} {z } dynamics traces total potential rotation curve R 0:1 30 kpc local stars R R 0 8 kpc (Oort's limit) tracers R 20 60 kpc (radial Jeans) satellites R 100 300 kpc (virial) \photometry" traces individual baryonic components star counts bulge, disk luminosity bulge, disk gravitational microlensing bulge emission lines gas 1. 2. [Iocco, MP, Bertone & Jetzer, JCAP11(2011)029] [Iocco, MP, Bertone, submitted] miguel pato (okc stockholm) () 3

1. rotation curve: basics v 2 c = r d tot dr sph. = G M (< r ) r miguel pato (okc stockholm) () 4

1. rotation curve: basics v 2 c = r d tot dr sph. = G M (< r ) r miguel pato (okc stockholm) () 4

1. rotation curve: basics v 2 c = r d tot dr sph. = G M (< r ) r A B R0 terminal velocities local standard of rest miguel pato (okc stockholm) () 4

1. rotation curve: basics v 2 c = r d tot dr sph. = G M (< r ) r A B R0 terminal velocities local standard of rest object v0 l R0 Sun Galactic Centre R l.o.s. v l.o.s. LSR = vc (R 0 ) R 0 =R 0 v 0 cos b sin ` Doppler shift 1. gas (21cm, H, CO) 2. stars (H, He, O,...) 3. masers (H 2O, CH 3OH,...) miguel pato (okc stockholm) () 4

1. rotation curve: basics v 2 c = r d tot dr sph. = G M (< r ) r A B R0 terminal velocities local standard of rest vc object v0 l R0 Sun Galactic Centre R l.o.s. v l.o.s. LSR = vc (R 0 ) R 0 =R 0 v 0 cos b sin ` Doppler shift 1. gas (21cm, H, CO) 2. stars (H, He, O,...) 3. masers (H 2O, CH 3OH,...) R R miguel pato (okc stockholm) () 5

1. rotation curve: basics v 2 c = r d tot dr sph. = G M (< r ) r A B R0 terminal velocities local standard of rest vc object v0 l R0 Sun Galactic Centre R l.o.s. v l.o.s. LSR = vc (R 0 ) R 0 =R 0 v 0 cos b sin ` Doppler shift 1. gas (21cm, H, CO) 2. stars (H, He, O,...) 3. masers (H 2O, CH 3OH,...) R R miguel pato (okc stockholm) () 6

1. rotation curve: basics v 2 c = r d tot dr sph. = G M (< r ) r A B R0 terminal velocities local standard of rest vc object v0 l R0 Sun Galactic Centre R l.o.s. v l.o.s. LSR = vc (R 0 ) R 0 =R 0 v 0 cos b sin ` Doppler shift 1. gas (21cm, H, CO) 2. stars (H, He, O,...) 3. masers (H 2O, CH 3OH,...) R R miguel pato (okc stockholm) () 7

1. rotation curve: basics terminal vel v 2 c R 0 = r d tot dr sph. = G M (< r ) r gas stars masers 0 object v0 l R0 Sun Galactic Centre vc R R R 10 20 R/kpc l.o.s. v l.o.s. LSR = vc (R 0 ) R 0 =R 0 v 0 cos b sin ` Doppler shift 1. gas (21cm, H, CO) 2. stars (H, He, O,...) 3. masers (H 2O, CH 3OH,...) miguel pato (okc stockholm) () 8

1. rotation curve: basics terminal vel v 2 c R 0 = r d tot dr sph. = G M (< r ) r gas stars masers 0 object v0 l R0 Sun Galactic Centre vc R R R 10 20 R/kpc l.o.s. v l.o.s. LSR = vc (R 0 ) R 0 =R 0 v 0 cos b sin ` distance Doppler shift 1. terminal velocities (gas) 2. photo-spectroscopy (stars) 3. parallax (masers) miguel pato (okc stockholm) () 9

1. rotation curve: basics terminal vel v 2 c R 0 = r d tot dr sph. = G M (< r ) r gas stars masers 0 object 10 20 R/kpc l.o.s. vc v0 l R0 Sun Galactic Centre R A B R0 terminal velocities local standard of rest R R miguel pato (okc stockholm) () 10

1. rotation curve: a new compilation gas stars masers Object type R [kpc] quadrants # objects HI terminal velocities Fich+ '89 2.1 { 8.0 1,4 149 Malhotra '95 2.1 { 7.5 1,4 110 McClure-Griths & Dickey '07 2.8 { 7.6 4 701 HI thickness method Honma & Sofue '97 6.8 { 20.2 { 13 CO terminal velocities Burton & Gordon '78 1.4 { 7.9 1 284 Clemens '85 1.9 { 8.0 1 143 Knapp+ '85 0.6 { 7.8 1 37 Luna+ '06 2.0 { 8.0 4 272 HII regions Blitz '79 8.7 { 11.0 2,3 3 Fich+ '89 9.4 { 12.5 3 5 Turbide & Moat '93 11.8 { 14.7 3 5 Brand & Blitz '93 5.2 { 16.5 1,2,3,4 148 Hou+ '09 3.5 { 15.5 1,2,3,4 274 giant molecular clouds Hou+ '09 6.0 { 13.7 1,2,3,4 30 open clusters Frinchaboy & Majewski '08 4.6 { 10.7 1,2,3,4 60 planetary nebulae Durand+ '98 3.6 { 12.6 1,2,3,4 79 classical cepheids Pont+ '94 5.1 { 14.4 1,2,3,4 245 Pont+ '97 10.2 { 18.5 2,3,4 32 carbon stars Demers & Battinelli '07 9.3 { 22.2 1,2,3 55 Battinelli+ '13 12.1 { 24.8 1,2 35 masers Reid+ '14 4.0 { 15.6 1,2,3,4 80 Honma+ '12 7.7 { 9.9 1,2,3,4 11 Stepanishchev & Bobylev '11 8.3 3 1 Xu+ '13 7.9 4 1 Bobylev & Bajkova '13 4.7 { 9.4 1,2,4 7 miguel pato (okc stockholm) () 11

1. rotation curve: a new compilation coming soon: public code in python user-friendly interface data & parameter selection output rotation curve output positional data [MP & Iocco, in progress] miguel pato (okc stockholm) () 12

[Iocco, MP & Bertone, submitted] miguel pato (okc stockholm) () 13 1. rotation curve: a new compilation optmised to R = 3 20 kpc 2780 individual measurements 2174/506/100 from gas/stars/masers

galactic modelling tot = bulge + disk + gas + dm {z} {z } dynamics traces total potential rotation curve R 0:1 30 kpc local stars R R 0 8 kpc (Oort's limit) tracers R 20 60 kpc (radial Jeans) satellites R 100 300 kpc (virial) \photometry" traces individual baryonic components star counts bulge, disk luminosity bulge, disk gravitational microlensing bulge emission lines gas 2. [Iocco, MP, Bertone & Jetzer, JCAP11(2011)029] [Iocco, MP, Bertone, submitted] miguel pato (okc stockholm) () 14

2. baryons: stellar bulge bulge = 0 f (x ; y; z ) morphology f (x ; y; z ) Stanek+ '97 (E2) e r 0.9:0.4:0.3 24 optical Stanek+ '97 (G2) e r2 s =2 1.2:0.6:0.4 25 optical Zhao '96 e r2 s =2 + r 1:85 a e r a 1.5:0.6:0.4 20 infrared Bissantz & Gerhard '02 e r2 s =(1 + r)1:8 2.8:0.9:1.1 20 infrared Lopez-Corredoira+ '07 Ferrer potential 7.8:1.2:0.2 43 infrared/optical Vanhollebecke+ '09 e r2 s =(1 + r)1:8 2.6:1.8:0.8 15 infrared/optical Robin+ '12 sech 2 ( r s) + e r s 1.5:0.5:0.4 13 infrared normalisation 0 microlensing optical depth: h i = 2:17 +0:47 0:38 10 6, (`; b) = (1:50 ; 2:68 ) (MACHO '05) miguel pato (okc stockholm) () 15

2. baryons: stellar disk disk = 0 f (x ; y; z ) morphology f (x ; y; z ) Han & Gould '03 e R sech 2 (z ) 2.8:0.27 thin optical e R jzj 2.8:0.44 thick Calchi-Novati & Mancini '11 e R jzj 2.8:0.25 thin optical e R jzj 4.1:0.75 thick dejong+ '10 e R jzj 2.8:0.25 thin optical e R jzj 4.1:0.75 thick (R 2 + z 2 ) 2:75=2 1.0:0.88 halo Juric+ '08 e R jzj 2.2:0.25 thin optical e R jzj 3.3:0.74 thick (R 2 + z 2 ) 2:77=2 1.0:0.64 halo Bovy & Rix '13 e R jzj 2.2:0.40 single optical normalisation 0 local surface density: = 38 4M =pc 2 [Bovy & Rix '13] miguel pato (okc stockholm) () 16

2. baryons: gas n H = 2n H2 + n HI + n HII morphology Ferriere '12 r < 0:01 kpc M gas 7 10 5 M CO, 21cm, H,... Ferriere+ '07 r = 0:01 2 kpc CMZ, holed disk H 2 CO CMZ, holed disk H I 21cm warm, hot, very hot H II disp. meas. Ferriere '98 r = 3 20 kpc molecular ring H 2 CO cold, warm H I 21cm warm, hot H II disp. meas., H Moskalenko+ '02 r = 3 20 kpc molecular ring H 2 CO H I 21cm H II disp. meas. uncertainties CO-to-H 2 factor: X CO = 0:25 X CO = 0:50 1:0 10 20 cm 2 K 1 km 1 s for r < 2 kpc 3:0 10 20 cm 2 K 1 km 1 s for r > 2 kpc [Ferriere+ '07, Ackermann '12] miguel pato (okc stockholm) () 17

2. baryons: rotation curve i (x ; y; z )! i (r ; ; ')! v 2 c;i (R) = X i (r ; ; ') = 4G X l;m Y lm (; ') 2l + 1 Z r 1 r l+1 0 ' R d i (R; =2; ') dr i;lm (a)a l+2 da + r l Z 1 r i;lm (a)a 1 l da miguel pato (okc stockholm) () 18

2. baryons: rotation curve i (x ; y; z )! i (r ; ; ')! v 2 c;i (R) = X i (r ; ; ') = 4G X l;m full 3d morphology Y lm (; ') 2l + 1 Z r 1 r l+1 X vc;baryons 2 = v 2 c;i 0 ' R d i (R; =2; ') dr i;lm (a)a l+2 da + r l Z 1 r i;lm (a)a 1 l da i miguel pato (okc stockholm) () 18

what can we infer about dark matter? [Iocco, MP & Bertone, submitted] miguel pato (okc stockholm) () 19 summary purely observational tot = bulge + disk + gas + dm tot purely observational bulge + disk + gas

remark #1: angular velocity miguel pato (okc stockholm) () 20

remark #1: angular velocity v l.o.s. LSR = R 0 v c (R) R v 0 cos b sin `.. error of R and v c strongly correlated.. use instead the angular velocity w c v c =R.. this will be the starting point for Fabio miguel pato (okc stockholm) () 20

remark #1: angular velocity v l.o.s. LSR = R 0 v c (R) R v 0 cos b sin `.. error of R and v c strongly correlated.. use instead the angular velocity w c v c =R.. this will be the starting point for Fabio miguel pato (okc stockholm) () 21

remark #2: how to use the residuals? tot = b + dm #! 2 dm R = d dm( dm ) dr! 2 c =!2 b +!2 dm 1. assume functional dm to \t" and derive constraints [Iocco, MP & Bertone, in progress] 2. extract dm directly [MP & Iocco, in progress] miguel pato (okc stockholm) () 22

remark #3: how to improve? 1.4 1.2 breakdown! 2 dm rotation curve bulge disc gas baryonic bracketing relative uncertainty 1.0 0.8 0.6 0.4 0.2 0.0 0 5 10 15 20 25 R [kpc ].. R < R 0 : baryonic modelling.. R > R 0 : rotation curve miguel pato (okc stockholm) () 23

miguel pato (okc stockholm) () 24