Computing Krippendorff 's Alpha-Reliability

Similar documents
Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Further Results on Pair Sum Graphs

Acid Base Reactions. Acid Base Reactions. Acid Base Reactions. Chemical Reactions and Equations. Chemical Reactions and Equations

International Journal of Mathematical Archive-7(5), 2016, Available online through ISSN

Causes of deadlocks. Four necessary conditions for deadlock to occur are: The first three properties are generally desirable

5.1 The Nuclear Atom

A Review of Complex Arithmetic

Bohr type models of the atom give a totally incorrect picture of the atom and are of only historical significance.

Some Families of Higher Order Three-Step Iterative Techniques. where is a real number and y (5)

A Simple Proof that e is Irrational

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

APPENDIX: STATISTICAL TOOLS

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Iterative Methods of Order Four for Solving Nonlinear Equations

1985 AP Calculus BC: Section I

Parallel Matched Filtering Algorithm with Low Complexity

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Chapter (8) Estimation and Confedence Intervals Examples

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

3. Electromagnetic Propagation in Anisotropic Media 3.1 Maxwell s Equations and Dielectric Tensor _

European Business Confidence Survey December 2012 Positive expectations for 2013

PURE MATHEMATICS A-LEVEL PAPER 1

Observer Bias and Reliability By Xunchi Pu

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

Frequency Response & Digital Filters

Linear Algebra Existence of the determinant. Expansion according to a row.

Modern Physics. Unit 5: Schrödinger s Equation and the Hydrogen Atom Lecture 5.6: Energy Eigenvalues of Schrödinger s Equation for the Hydrogen Atom

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

Topic 5:Discrete-Time Fourier Transform (DTFT)

Lecture 27: The 180º Hybrid.

Chapter Taylor Theorem Revisited

Chain DOUBLE PITCH TYPE RS TYPE RS POLY-STEEL TYPE

Alpha and beta decay equation practice

How many neutrino species?

Another Explanation of the Cosmological Redshift. April 6, 2010.

NET/JRF, GATE, IIT JAM, JEST, TIFR

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

GUC (Dr. Hany Hammad) 4/20/2016

Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list.

H2 Mathematics Arithmetic & Geometric Series ( )

Lecture contents. Density of states Distribution function Statistic of carriers. Intrinsic Extrinsic with no compensation Compensation

PREPARATORY MATHEMATICS FOR ENGINEERS

Even/Odd Mode Analysis of the Wilkinson Divider

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

Discrete Fourier Transform. Nuno Vasconcelos UCSD

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ]

On the approximation of the constant of Napier

POSTERIOR ESTIMATES OF TWO PARAMETER EXPONENTIAL DISTRIBUTION USING S-PLUS SOFTWARE

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times.

ph People Grade Level: basic Duration: minutes Setting: classroom or field site

ω (argument or phase)

Probability & Statistics,

Thomas Whitham Sixth Form

. This is made to keep the kinetic energy at outlet a minimum.

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Brief Notes on the Fermi-Dirac and Bose-Einstein Distributions, Bose-Einstein Condensates and Degenerate Fermi Gases Last Update: 28 th December 2008

CHAPTER IV RESULTS. Grade One Test Results. The first graders took two different sets of pretests and posttests, one at the first

EEO 401 Digital Signal Processing Prof. Mark Fowler

The pn junction: 2 Current vs Voltage (IV) characteristics

MILLIKAN OIL DROP EXPERIMENT

Discrete Fourier Transform (DFT)

The Language of SOCIAL MEDIA. Christine Dugan

CHLORIDE PENETRATION PROFILES IN EXISTING HARBOR STRUCTURES CONSTRUCTED WITH BLAST FURNACE CEMENT CONCRETE

(Reference: sections in Silberberg 5 th ed.)

NAME: ANSWER KEY DATE: PERIOD. DIRECTIONS: MULTIPLE CHOICE. Choose the letter of the correct answer.

HOMEWORK FOR UNIT 5-2: COMBINING FORCES

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016

Integrated Optical Waveguides

INTRODUCTION TO SAMPLING DISTRIBUTIONS

N1.1 Homework Answers

Chapter 8: Electron Configurations and Periodicity

Math 34A. Final Review

Lectur 22. RF and Microwave Circuit Design Γ-Plane and Smith Chart Analysis. ECE 303 Fall 2005 Farhan Rana Cornell University

Text: WMM, Chapter 5. Sections , ,

Ordinary Differential Equations

Computing and Communications -- Network Coding

1 Minimum Cut Problem

Handout 32. Electronic Energy Transport and Thermoelectric Effects

Statistics 3858 : Likelihood Ratio for Exponential Distribution

ln x = n e = 20 (nearest integer)

Logarithms. Secondary Mathematics 3 Page 164 Jordan School District

TURFGRASS DISEASE RESEARCH REPORT J. M. Vargas, Jr. and R. Detweiler Department of Botany and Plant Pathology Michigan State University

What are those βs anyway? Understanding Design Matrix & Odds ratios

A Propagating Wave Packet Group Velocity Dispersion

Introduction to logistic regression

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

2008 AP Calculus BC Multiple Choice Exam

Lecture 26: Quadrature (90º) Hybrid.

4. (5a + b) 7 & x 1 = (3x 1)log 10 4 = log (M1) [4] d = 3 [4] T 2 = 5 + = 16 or or 16.

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c.

Session : Plasmas in Equilibrium

Solution to 1223 The Evil Warden.

Chapter 3.1: Polynomial Functions

LECTURE 5 Guassian Wave Packet

Control Systems. Controllability and Observability (Chapter 6)

3.4 Properties of the Stress Tensor

Transcription:

Uivrsity f Psylvaia ShlarlyCmms partmtal Paprs (ASC) Abrg Shl fr Cmmuiati -5-0 Cmputig Krippdrff 's Alpha-Rliability Klaus Krippdrff Uivrsity f Psylvaia, kkrippdrff@as.up.du Fllw this ad additial wrks at: http://rpsitry.up.du/as_paprs Part f th Cmmuiati Cmms Rmmdd Citati Krippdrff, K. (0). Cmputig Krippdrff's Alpha-Rliability. Rtrivd frm http://rpsitry.up.du/as_paprs/43 Pstprit vrsi. This papr is pstd at ShlarlyCmms. http://rpsitry.up.du/as_paprs/43 Fr mr ifrmati, plas tat libraryrpsitry@pbx.up.du.

Cmputig Krippdrff 's Alpha-Rliability Abstrat Krippdrff s alpha (α) is a rliability ffiit dvlpd t masur th agrmt amg bsrvrs, drs, judgs, ratrs, r masurig istrumts drawig distitis amg typially ustruturd phma r assig mputabl valus t thm. α mrgd i tt aalysis but is widly appliabl whrvr tw r mr mthds f gratig data ar applid t th sam st f bjts, uits f aalysis, r itms ad th qusti is hw muh th rsultig data a b trustd t rprst smthig ral. isiplis Cmmuiati Sial ad Bhaviral Sis Cmmts Pstprit vrsi. This wrkig papr is availabl at ShlarlyCmms: http://rpsitry.up.du/as_paprs/43

Cmputig Krippdrff s Alpha-Rliability Klaus Krippdrff kkrippdrff@as.up.du 0..5 Krippdrff s alpha () is a rliability ffiit dvlpd t masur th agrmt amg bsrvrs, drs, judgs, ratrs, r masurig istrumts drawig distitis amg typially ustruturd phma r assig mputabl valus t thm. mrgd i tt aalysis but is widly appliabl whrvr tw r mr mthds f gratig data ar applid t th sam st f bjts, uits f aalysis, r itms ad th qusti is hw muh th rsultig data a b trustd t rprst smthig ral. s gral frm is: whr is th bsrvd disagrmt amg valus assigd t uits f aalysis: k mtrik k ad is th disagrmt wuld xpt wh th dig f uits is attributabl t ha rathr tha t th prprtis f ths uits: k mtrik ( ) k Th argumts i th tw disagrmt masurs, k,, k ad, rfr t th frquis f valus i iid matris, t b dfid blw. Algbraially, wh bsrvrs agr prftly, bsrvd disagrmt =0 ad =, whih idiats prft rliability. Wh bsrvrs agr as if ha had prdud th rsults, = ad =0, whih idiats th abs f rliability. =0 urs wh bsrvrs ar uabl t distiguish amg uits r assig valus t thm draw radmly frm a lltiv stimat f th ppulati f data. T rly data gratd by ay mthd, ds t b far frm ths tw xtrm ditis, idally =. Fr rliability sidratis, s rag is: 0 Systmati disagrmt Samplig rrrs Ulik thr spializd ffiits, is a gralizati f svral kw rliability idis. It abls rsarhrs t judg a varity f data with th sam rliability stadard. applis t: Ay umbr f bsrvrs, t just tw Ay umbr f atgris, sal valus, r masurs Ay mtri r lvl f masurmt (mial, rdial, itrval, rati, ad mr) Implt r missig data Larg ad small sampl sizs alik, t rquirig a miimum valuats rliability variabl at a tim. It ffrs thr aalytial pssibilitis t prstd hr.

Rliability data dupliat th prss f gratig data whs rliability is i qusti. Giv suh data, -rliability a b mputd i fur mputatial stps, graphd blw. Rliability ata Rliability ata Matrix Obsrvd iffr -Agrmt O Variabl Ciids Futi u iu k k kju mu Ths fur mputatial stps will b dfid ad illustratd with fur kids f data f irasig mplxity: A. Biary r dihtmus data, tw bsrvrs, missig data Pag B. Nmial data, tw bsrvrs, missig data Pag 3 C. Nmial data, ay umbr f bsrvrs, missig data Pag 4. All mtris, ay umbr f bsrvrs, missig data Pag 5 Fially, E. A gral mputatial frm is prstd, bypassig iid matris Pag 9 A. Biary r dihtmus data, tw bsrvrs, missig data Cstrut a rliability data matrix; hr, a bsrvrs-by-n uits matrix, taiig N valus, ad k: Uits: u N Obsrvrs: i: i i iu in j: j j ju jn Fr xampl, wh tw bsrvrs judg N=0 uits, th -by-0 data matrix tais 0 valus: Itms judgd: 3 4 5 6 7 8 9 0 Mg: 0 0 0 0 0 0 0 0 Ow: 0 0 0 0 0 0 Tabulat iids withi uits. Ciid matris aut fr all valus taid i a rliability data matrix. Thy diffr frm th familiar tigy matris, whih aut fr uits i tw dimsis, t valus. Th imprta f this diffr bms appart i C. It a -by- iid matrix, uits ar trd twi, as -k pairs ad as k- pairs. I th xampl, uit is trd as a 0- pair f valus ad as a -0 pair f valus. Uit is trd as tw - pairs f valus, t.: Valus: 0 0 0 00 0 0 0 0 4 4 0 4 6 Numbr f Valus: 0 =N 4 6 0

Ardigly, 00 rprsts th t 0-0 pairs withi uits 4, 5, 7, 8, ad 0. 0 rprsts th fur 0- pairs i uits, 3, 6, ad 9, ad 0 rprsts th fur -0 pairs i th fur sam uits. rprsts th tw - pairs fud ly i uit. 0 =4 is th umbr f 0s i th rliability data matrix, =6 is th umbr f s, ad =N=0 is th ttal umbr f valus paird. Fr ths biary data, mismathig iids ur i tw lls 0, 0 f qual frquy, 4. skip Cmput -rliability (mst simpl frm): biary ( 0 ) 0 4 I th xampl: biary (0 ) 0. 095 4 6 B. Nmial data, tw bsrvrs, missig data Cstrut a rliability data matrix just as i A abv. Fr a -by- xampl: Itms judgd: 3 4 5 6 7 8 9 0 B: a a b b d d d a Grry: b a b b b d d d Tabulat iids withi uits. Th gral frm f a iid matrix ad with frquis frm th abv xampl trd ar: Valus:. k.. a b d. k.. a.. 4.... b 4.. 6...... 6.. 6. k.. = k k d. 4. 6......... k.. = k k 4 6 6 6 4 Whr k = u Numbr f -k pairs i uit u spifially: ab = a-b pair i uit ba = b-a pair i uit aa = a-a pairs i uit bb = 4 = b-b pairs i uit 3 + b-b pairs i uit 4 ad s frth. a =4 is th umbr f as b =6 is th umbr f bs ad s frth. =4 is th ttal umbr f valus fr tw bsrvrs: = N skip Cmput -rliability (mst simpl frm): mial A A A ( ) ( ) ( ) ( ) 3

Whri A is th prt f bsrvd maths i uits u ad A is th prt f maths btaiabl by ha. Th mputatial frm furthr simplifis th dd mputatis. I th xampl: mial (4 )( 4 6 4 ) [4(4 ) 6(6 ) 6(6 ) 6(6 ) ( )] 0.69 4(4 ) [4(4 ) 6(6 ) 6(6 ) 6(6 ) ( )] C. Nmial data, ay umbr f bsrvrs, missig data Cstrut a rliability data matrix just as i A ad i B abv, but fr m bsrvrs: Uits u:... u..... N Obsrvrs:... u..... N i i i... iu..... in j j j... ju..... jn..... m m m... mu..... mn Numbr f bsrvrs valuig u: m m... m u..... m N Wh data ar missig, this matrix tais lss tha mn tris ad m u is variabl. Fr xampl, a 4 bsrvrs-by- uits rliability data matrix: Uits u: 3 4 5 6 7 8 9 0 Obsrvr A: 3 3 4... Obsrvr B: 3 3 4 5. 3 Obsrvr C:. 3 3 3 3 4 5. Obsrvr : 3 3 4 4 5. Numbr m u f valus i uit u: 3 4 4 4 4 4 4 4 4 3 4 Nt that 7 ut f th 48 pssibl valus i this matrix ar missig. m u varis frm t 4. Tabulat iids withi uits. Th iid matrix appars as i B: Valus:. k.. 3 4 5. k.. 7 4/3 /3 /3. 9.... 4/3 0 4/3 /3. 3.... 3 /3 4/3 8 /3. 0. k.. = k k 4 /3 /3 /3 4. 5.... 5.... 3 3. k.. = k k 9 3 0 5 3 40 Numbr f - k pairsi uit u Ulik i th tw-bsrvr as i B: k u mu Nt that ah uit tais m u (m u ) iids. A iid matrix auts fr all pairs f valus fud i u. Uit tais 3(3 )=6 pairs f mathig s. It tributs 4

6/(3-)=3 t th ll, fr ah valu. Uit tais 4(4-)= pairs, 6 mathig - pairs, 3 mismathig -3 pairs, ad 3 mismathig 3- pairs. It adds 6/(4-)= t, 3/(4- )= t 3, t 3, ad 4 t th ttal, thus fully autig fr its 4 valus. Uit 6 tais 4(4-)= pairs f mismathig valus, ah adds /(4-)=/3 t a diffrt ll. Th l valu 3 i uit affrds mpariss, (-)=0 pairs ad ds t add t this aut. Thus, th margis f iid matris d t rprst all valus that ur i a rliability data matrix, ly ths that a b paird withi uits, hr =40 pairabl valus vr all uits. Skip Cmput -rliability just as i B mial A A A ( ) ( ) ( ) ( ) I th xampl: (40 )(7 0 8 4 3) [9(9 ) 3(3 ) 0(0 ) 5(5 ) 3(3 )] mial 0.743 40(40 ) [9(9 ) 3(3 ) 0(0 ) 5(5 ) 3(3 )]. Ay mtri, ay umbr f bsrvrs, missig data Cstrut a rliability data matrix just as i C Tabulat iids withi uits just as i C Isrt th diffr futi mtri k that is apprpriat t th mtri f th giv data it th tw disagrmts ad dfid i th bgiig f this dumt. Nt that auts fr diffrt mtris r lvls f masurmt by wighig th bsrvd ad xptd iids by th squard diffr btw th iidig valus. iffrs a b xprssd as mathmatial futis ad i th frm f a tabl. Th lattr maks thir rlativ magituds traspart. Itrval ad rati mtri diffrs ar futis f th valus big paird. Ordial diffrs dpd thir frquis f usig valus. Ad mial diffrs ar addd hr t graliz stp. Nmial mtri diffrs Tw valus ithr math, r thy d t: Nmial atgris, ams: a b d f a 0 b 0 0 iff = k mial k 0 iff k d 0 0 f 0 5

Ordial mtri diffrs Valus hav th maig f raks ad diffrs btw raks dpd hw may raks thy ar apart frm ah thr. Fr xampl, with frquis frm data i C (ad uusd rak addd t shw that it ds t mattr): rdial k g k g g Raks: st d 3 rd 4 th 5 th 6 th k st 0.5 30 3.5 34 st = 9 d 0.5 9.5 3 d = 3 3 rd 506 3 0 7.5 0.5 3rd = 0 4 th 900 36 56 0.5 4 4th = 5 5 th 99 46 00 6.3 0.5 5th = 0 6 th 56 59 3 6.3 0 6th = 3 st,3 rd=.5 4 th,6 th=4 Ordial mtri diffrs may b stadardizd: 0 rdial k by: rdial k g k g g max mi whr max is th largst ad mi th smallst rak amg all raks usd. Stadardizati ds t afft, hwvr. k Itrval mtri diffrs Valus diffr algbraially: itrval k Itrval valus: - 0 3 4-0 3 4 5 k 0 0 3 4 4 0 3 9 4 0 3 6 9 4 0 4 5 6 9 4 0 Itrval mtri diffrs may b stadardizd as wll: 0 itrval k by: itrvall k k max whr max is th largst ad mi is th smallst valu urrig i th data. This stadardizati ds t afft ithr. mi 6

Rati mtri diffrs Algbrai diffrs btw tw valus ar xprssd rlativ t a abslut zr pit. Thy ar prprtial t th magitud f thir valus: rati k Rati valus: 0 3 4 5 k k 3 4 5 0 0 () () () 3 () 4 () 5 0 () () 3 () 4 () 3 4 5 6. 0 () () 3 () 5 6 7 3.5.04 0 () () 7 8 4.36..0 0 () 5.44.8.06.0 0 9 Cirular mtri diffrs Shrtst diffrs btw ay tw valus a irular sal with arbitrary dpits but a fixd irumfr U = th umbr f qual itrvals a irl. Cirular valus: 0 3 4 5 With th si futi xprssd i dgrs: 0 0.5.75.75.5 k irular k si 80 U.5 0.5.75.75.75.5 0.5.75 With th si futi xprssd i radia: 3.75.5 0.5.75 irular k k si U 4.75.75.5 0.5 5.5.75.75.5 0 Biplar mtri diffrs Algbrai diffrs ar xprssd rlativ t th tw dpits, mi ad max, f th sal. Nar th tr, a biplar mtri bhavs lik a itrval mtri ad ar th pls it bhavs lik a rati mtri. plar k ( k ) ( k )( mi Biplar valus: - - 0 max k ) - 0 3 4 7 6 35 44 -.43 0 3 35 44 53 0.333.067 0 53 6.600.50.067 0 7.00.600.333.43 0 7

rdial Cmput -rliability (th mputatially mst ffiit frm): k mtri k k mtri k k mtri Nt that th sums i this frm umrat ly f th tw symmtrial ff-diagal triagls f a iid matrix. Its tris, k as wll as th prduts k ar wightd by a apprpriatly hs diffr futi mtri k. Cmputatis ar illustratd with th umrial data i C abv, itrprtd as rdial, itrval ad rati data rsptivly. Zr frquis appar as 0 i th list f multipliatis: k With data i C as rdial data: rdial k k rdial k k rdialk k I th Exampl: 4 4.5 30 0.5 9 0 7.5 0 0 40 3 3 3 3 3 3 0.85 93 90.5 9530 9334 30.5 359 333 057.5 03.5 534 itrval k With data i C as itrval data: itrval k itrval k itrvalk k I th xampl: 4 4 3 0 0 0 0 (40 ) 3 3 3 3 3 3 9 3 9 0 9 5 3 9 3 4 30 3 5 3 3 3 0 5 0 3 5 3 k 0.849 rati k With data i C as rati data: rati I th xampl: 40 9 3 3 9 0 4 k rati k k rati k k 4 3 4 0 0 0 0 3 3 3 4 3 5 3 5 3 6 3 7 3 4 3 9 5 9 3 30 35 33 0 5 5 6 5 6 7 7 0 3 8 53 9 0.797 8

E. A gral mputatial frm, bypassig iid matris: Start frm a rliability data matrix as i C abv: Uits u:... u..... N Obsrvrs:... u..... N i i i... iu..... in j j j... ju..... jn..... m m m... mu..... mn Wh data ar missig, this matrix will tai fwr tha mn valus. Fr th 4 bsrvrs-by- uits xampl f rliability data usd i C ad abv: Uits u: 3 4 5 6 7 8 9 0 Obsrvrs: A: 3 3 4... B: 3 3 4 5. 3 C:. 3 3 3 3 4 5. : 3 3 4 4 5. Nt that Out f th mn=4=48 pssibl valus i this matrix, 7 ar missig. Th valu 3, assigd by bsrvr B t th th uit at b paird with xistig valus i that uit, at tribut t bsrvd agrmts r disagrmts, drps ut wh strutig a iid matrix, ad has t b igrd. Thus, this matrix tais a ttal f..= 40 pairabl valus. Istad f ad, umrat th valus fud i uits ad rat a valus-by-uits matrix: Uits:... u...... Valus:... u............... u....... k k k... uk....... k..... Ttals:..... u......... Whr u = th umbr f valus assigd t uit u. u m bsrvrs. uk by aalgy u. = u = th umbr f valus assigd t uit u. = u u. u = th umbr f pairabl valus urrig i th rliability data (mittig all uits with l r valus: u.).. = u u. u. = th ttal umbr f all pairabl valus i th rliability data (mittig all uits with l r valus: u.);.. mn 9

it rval Fr th abv xampl Uits u : 3 4 5 6 7 8 9 0 Valus, k : 3 0 0 0 0 0 3 0 0 0 9 =. 0 3 0 0 4 0 4 0 0 0 3 =. 3 0 4 4 0 0 0 0 0 0 0 =. 3 4 0 0 0 0 0 4 0 0 0 0 0 5 =. 4 5 0 0 0 0 0 0 0 0 0 3 0 0 3 =. 5 Ttals u. : 3 4 4 4 4 4 4 4 4 4 40 =.. Nt that th margial sum. 3 f pairabl valus 3 mits th ly l valu i uit,.=. Cmput with th apprpriat mtri diffr futi as dfid i abv: mtri (.. ). u k u k.. u k mtri uk mtri If th abv xampl sists f mial data (prft agrmt s as 0 disagrmt): mi al 0 3 0 0 0 6 0 40 4 4 4 0. 743 93 90 95 9330 35 3305 03 53 k 3 0 0 0 If th abv xampl sists f itrval data (prft agrmt s as 0 disagrmt): 3 0 0 0 0 4 9 3 9 0 9 5 3 9 3 4 3... 4 3 0 3 5 40 0. 849 k 3 0 0 0 0 4 3 3 3... 5 3 Mst mputatis f a b prfrmd with SPSS r SAS mars writt by Adrw Hays. Availabl at http://www.afhays.m: G t SPSS ad SAS Mars th t KALPHA. Rfrs: Klaus Krippdrff (004). Ctt Aalysis, a Itrduti t Its Mthdlgy, d Editi. Thusad Oaks, CA: Sag Publiatis spially Chaptr, pags -56. Klaus Krippdrff (004). Rliability i Ctt Aalysis: Sm mm Misptis ad Rmmdatis. Huma Cmmuiati Rsarh 30,3: 4-433. http://rpsitry.up.du/as_paprs/4 Last assd 0..5 Adrw F. Hays, ad Klaus Krippdrff (007). Aswrig th all fr a stadard rliability masur fr dig data. Cmmuiati Mthds ad Masurs : 77-89. http://www.u.du/urss/007fall/jm/80/00/haysadkrippdrff.pdf Last assd 0..5 0