The Laplace Expansion Theorem: Computing the Determinants and Inverses of Matrices

Similar documents
Distance Between Ellipses in 2D

Fitting a Natural Spline to Samples of the Form (t, f(t))

Solving Systems of Polynomial Equations

1111: Linear Algebra I

MATRICES AND MATRIX OPERATIONS

Computing Orthonormal Sets in 2D, 3D, and 4D

Information About Ellipses

sum of squared error.

Perspective Projection of an Ellipse

ENGR-1100 Introduction to Engineering Analysis. Lecture 21. Lecture outline

ENGR-1100 Introduction to Engineering Analysis. Lecture 21

7.3. Determinants. Introduction. Prerequisites. Learning Outcomes

A Relationship Between Minimum Bending Energy and Degree Elevation for Bézier Curves

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by

MAC Module 3 Determinants. Learning Objectives. Upon completing this module, you should be able to:

Determinants Chapter 3 of Lay

MATH 2050 Assignment 8 Fall [10] 1. Find the determinant by reducing to triangular form for the following matrices.

Reconstructing an Ellipsoid from its Perspective Projection onto a Plane

Least-Squares Fitting of Data with Polynomials

Determinants. Samy Tindel. Purdue University. Differential equations and linear algebra - MA 262

Chapter 2. Square matrices

MATH 2030: EIGENVALUES AND EIGENVECTORS

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices

Linear Mixed Models: Methodology and Algorithms

Intersection of Infinite Cylinders

Interpolation of Rigid Motions in 3D

Lectures on Linear Algebra for IT

Linear Algebra and Vector Analysis MATH 1120

2 b 3 b 4. c c 2 c 3 c 4

MATRICES The numbers or letters in any given matrix are called its entries or elements

Distance from Line to Rectangle in 3D

Determinants of 2 2 Matrices

Chapter 3. Determinants and Eigenvalues

Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat

Example. We can represent the information on July sales more simply as

Chapter 2:Determinants. Section 2.1: Determinants by cofactor expansion

Linear Algebra 1 Exam 1 Solutions 6/12/3

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same.

Determinants - Uniqueness and Properties

Math 240 Calculus III

Converting Between Coordinate Systems

Review from Bootcamp: Linear Algebra

MATRIX DETERMINANTS. 1 Reminder Definition and components of a matrix

Matrices and Determinants

Chapter 4. Determinants

Intersection of Objects with Linear and Angular Velocities using Oriented Bounding Boxes

Determinant of a Matrix

Graduate Mathematical Economics Lecture 1

Undergraduate Mathematical Economics Lecture 1

Linear Algebra Primer

Principal Curvatures of Surfaces

Low-Degree Polynomial Roots

TOPIC III LINEAR ALGEBRA

Intersection of Rectangle and Ellipse

ECON 186 Class Notes: Linear Algebra

Evaluating Determinants by Row Reduction

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

3 Matrix Algebra. 3.1 Operations on matrices

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

Linear Algebra: Lecture Notes. Dr Rachel Quinlan School of Mathematics, Statistics and Applied Mathematics NUI Galway

ENGI 9420 Lecture Notes 2 - Matrix Algebra Page Matrix operations can render the solution of a linear system much more efficient.

Lesson 3. Inverse of Matrices by Determinants and Gauss-Jordan Method

Matrices A brief introduction

MTH 464: Computational Linear Algebra

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product.

Linear Algebra (part 1) : Matrices and Systems of Linear Equations (by Evan Dummit, 2016, v. 2.02)

a 11 a 12 a 11 a 12 a 13 a 21 a 22 a 23 . a 31 a 32 a 33 a 12 a 21 a 23 a 31 a = = = = 12

Linear Algebra Summary. Based on Linear Algebra and its applications by David C. Lay

Linear Algebra Primer

Differential Equations and Linear Algebra C. Henry Edwards David E. Penney Third Edition

Conceptual Questions for Review

M. Matrices and Linear Algebra

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3].

Lecture Notes in Linear Algebra

Linear Systems and Matrices

Introduction to Matrix Algebra

A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 2010

1 Matrices and Systems of Linear Equations

A Review of Matrix Analysis

Math Camp Notes: Linear Algebra I

Linear Algebra: Lecture notes from Kolman and Hill 9th edition.

THE ADJOINT OF A MATRIX The transpose of this matrix is called the adjoint of A That is, C C n1 C 22.. adj A. C n C nn.

Intersection of Ellipsoids

7.4. The Inverse of a Matrix. Introduction. Prerequisites. Learning Outcomes

Mathematics. EC / EE / IN / ME / CE. for

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI?

9 Appendix. Determinants and Cramer s formula

11 a 12 a 13 a 21 a 22 a b 12 b 13 b 21 b 22 b b 11 a 12 + b 12 a 13 + b 13 a 21 + b 21 a 22 + b 22 a 23 + b 23

1 Matrices and Systems of Linear Equations. a 1n a 2n

6.4 Determinants and Cramer s Rule

Choose three of: Choose three of: Choose three of:

= 1 and 2 1. T =, and so det A b d

Diagonalization. MATH 1502 Calculus II Notes. November 4, 2008

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics

8-15. Stop by or call (630)

Curtis Heberle MTH 189 Final Paper 12/14/2010. Algebraic Groups

5.3 Determinants and Cramer s Rule

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Determinants. Beifang Chen

Fundamentals of Engineering Analysis (650163)

Transcription:

The Laplace Expansion Theorem: Computing the Determinants and Inverses of Matrices David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Created: August 25, 2007 Last Modified: August 6, 2008 Contents 1 Determinants and Inverses of 2 2 Matrices 2 2 Determinants and Inverses of 3 3 Matrices 3 3 The Laplace Expansion Theorem 4 4 Determinants and Inverses of 4 4 Matrices 6 1

A standard method for symbolically computing the determinant of an n n matrix involves cofactors and expanding by a row or by a column. This document describes the standard formulas for computing the determinants of 2 2 and 3 3 matrices, mentions the general form of Laplace Expansion Theorem for which the standard determinant formulas are special cases, and shows how to compute the determinant of a 4 4 matrix using (1) expansion by a row or column and (2) expansion by 2 2 submatrices. Method (2) involves fewer arithmetic operations than does method (1). 1 Determinants and Inverses of 2 2 Matrices The prototypical example is for a 2 2 matrix, A = [a rc ], where the row index satisfies 0 r 1 and the column index satisfies 0 c 1. The matrix is Expanding by the first row, A = a 00 a 01 a 10 a 11 det(a) = +a 00 det[a 11 ] a 01 det[a 10 ] = a 00 a 11 a 01 a 10 (1) where the determinant of a 1 1 matrix is just the single entry of that matrix. The terms in the determinant formula for a 2 2 matrix involve the matrix entries in the first row, an alternating sign for these entries, and determinants of 1 1 submatrices. For example, the first term in the formula uses row entry a 00, sign +1, and submatrix [a 11 ]. The row entry a 00 has row index 0 and column index 0. The submatrix [a 11 ] is obtained from A by deleting row 0 and column 0. The second term in the formula uses row entry a 01, sign 1, and submatrix [a 10 ]. The row entry a 01 has row index 0 and column index 1. The submatrix [a 10 ] is obtained from A by deleting row 0 and column 1. Similarly, you may expand by the second row: det(a) = a 10 det[a 01 ] + a 11 det[a 00 ] = a 10 a 01 + a 11 a 00 (2) The first term in the formula uses row entry a 10, sign 1, and submatrix [a 01 ]. The row entry a 10 has row index 1 and column index 0. The submatrix [a 01 ] is obtained from A by deleting row 1 and column 0. The second term in the formula uses row entry a 11, sign +1, and submatrix [a 00 ]. The row entry a 11 has row index 1 and column index 1. The submatrix [a 00 ] is obtained from A by deleting row 1 and column 1. Expansions by column are also possible. Expanding by the first column leads to and expanding by the second column leads to det(a) = +a 00 det[a 11 ] a 10 det[a 01 ] = a 00 a 11 a 10 a 01 (3) det(a) = a 01 det[a 10 ] + a 11 det[a 00 ] = a 01 a 10 + a 11 a 00 (4) The four determinant formulas, Equations (1) through (4), are examples of the Laplace Expansion Theorem. The sign associated with an entry a rc is ( 1) r+c. For example, in expansion by the first row, the sign associated with a 00 is ( 1) 0+0 = 1 and the sign associated with a 01 is ( 1) 0+1 = 1. A determinant of a submatrix [a rc ] is called a minor. The combination of the sign and minor in a term of the determinant 2

formula is called a cofactor for the matrix entry that occurred in the term. For example, in the second term of Equation (1), the sign is 1, the minor is det[a 10 ], and the cofactor is a 10. This cofactor is associated with the matrix entry a 01. The cofactors may be stored in a matrix called the adjugate of A, This matrix has the property adj(a) = +a 11 a 10 a 01 +a 00 (5) A adj(a) = adj(a) A = det(a) I (6) where I is the 2 2 identity matrix. When det(a) is not zero, the matrix A has an inverse given by A 1 = 1 adj(a) (7) det(a) 2 Determinants and Inverses of 3 3 Matrices Consider a 3 3 matrix A = [a rc ], where the row index satisfies 0 r 2 and the column index satisfies 0 c 2. The matrix is a 00 a 01 a 02 A = a 10 a 11 a 12 a 20 a 21 a 22 Expanding by the first row, det(a) = +a 00 det a 11 a 12 a 21 a 22 a 01 det a 10 a 12 a 20 a 22 + a 02 det a 10 a 11 a 20 a 21 = +a 00 (a 11 a 22 a 12 a 21 ) a 01 (a 10 a 22 a 12 a 20 ) + a 02 (a 10 a 21 a 11 a 20 ) (8) = +a 00 a 11 a 22 + a 01 a 12 a 20 + a 02 a 10 a 21 a 00 a 12 a 21 a 01 a 10 a 22 a 02 a 11 a 20 Each term in the first line of Equation (8) involves a sign, an entry from row 0 of A, and a determinant of a submatrix of A. If a 0c is an entry in row 0, then the sign is ( 1) 0+c and the submatrix is obtained by removing row 0 and column c from A. Five other expansions produce the same determinant formula: by row 1, by row 2, by column 0, by column 1, or by column 2. In all six formulas, each term involves a matrix entry a rc, an associated sign ( 1) r+c, and a submatrix M rc that is obtained from A by removing row r and column c. The cofactor associated with the term is γ rc = ( 1) r+c det M rc The matrix of cofactors is Γ = [γ rc ] for rows 0 r 2 and for columns 0 c 2. The transpose of the matrix of cofactors is called the adjugate matrix, denoted adj(a), and as in the 2 2 case, satisfies Equation (6). When the determinant is not zero, the inverse of A is defined by Equation (7). In the case of the 3 3 3

matrix, the adjugate is adj(a) = +(a 11 a 22 a 12 a 21 ) (a 01 a 22 a 02 a 21 ) +(a 01 a 12 a 02 a 11 ) (a 10 a 22 a 12 a 20 ) +(a 00 a 22 a 02 a 20 ) (a 00 a 12 a 02 a 10 ) +(a 10 a 21 a 11 a 20 ) (a 00 a 21 a 01 a 20 ) +(a 00 a 11 a 01 a 10 ) (9) The first line of Equation (8) may be written also as det(a) = + det[a 00 ] det a 11 a 12 a 21 a 22 det[a 01 ] det a 10 a 12 a 20 a 22 + det[a 02 ] det a 10 a 11 a 20 a 21 (10) which is a sum of products of determinant of submatrices, with alternating signs for the terms. A visual way to look at this is shown in Figure (1). Figure 1. A visualization of the determinant of a 3 3 matrix. Each 3 3 grid represents the matrix entries. The blue-colored cells represent the 1 1 submatrices in the determinant formula and the red-colored cells represent the 2 2 submatrices in the determinant formula. In the left 3 3 grid of the figure, the blue-colored cell represents the submatrix [a 00 ] from the first term in the determinant formula. The red-colored cells are the complementary submatrix of [a 00 ], namely, the 2 2 submatrix that is part of the first term of the formula: the first row has a 11 and a 12 and the second row has a 21 and a 22. The submatrix is obtained from A by removing row 0 and column 0. In the middle 3 3 grid of the figure, the blue-colored cell represents the submatrix [a 01 ] from the second term in the determinant formula. The red-colored cells are the complementary submatrix of [a 01 ], namely, the 2 2 submatrix that is part of the second term of the formula: the first row has a 10 and a 12 and the second row has a 20 and a 22. The submatrix is obtained from A by removing row 0 and column 1. In the right 3 3 grid of the figure, the blue-colored cell represents the submatrix [a 02 ] from the third term in the determinant formula. The red-colored cells are the complementary submatrix of [a 02 ], namely, the 2 2 matrix that is part of the third term of the formula: the first row has a 10 and a 11 and the second row has a 20 and a 21. The submatrix is obtained from A by removing row 0 and column 2. 3 The Laplace Expansion Theorem This theorem is a very general formula for computing the determinant of an n n matrix A. First, some definitions. Let r = (r 1, r 2,..., r k ) be a list of k row indices for A, where 1 k < n and 0 r 1 < 4

r 2 < < r k < n. Let c = (c 1, c 2,..., c k ) be a list of k column indices for A, where 1 k < n and 0 c 1 < c 2 < < c k < n. The submatrix obtained by keeping the entries in the intersection of any row and column that are in the lists is denoted S(A; r, c) (11) The submatrix obtained by removing the entries in the rows and columns that are in the list is denoted and is the complementary submatrix for S(A; r, c). For example, let A be a 3 3 matrix. Let r = (0) and c = (1). Then S(A; r, c) = [a 01 ], S (A; r, c) = S (A; r, c) (12) a 10 a 12 a 20 a 22 In the middle 3 3 grid of Figure 1, S(A; (0), (1)) is formed from the blue-colored cell and S (A; (0), (1)) is formed from the red-colored cells. Laplace Expansion Theorem. Let A be an n n matrix. Let r = (r 1, r 2,..., r k ) be a list of k row indices, where 1 k < n and 0 r 1 < r 2 < r k < n. The determinant of A is det(a) = ( 1) r c ( 1) c det S(A; r, c) det S (A; r, c) (13) where r = r 1 +r 2 + +r k, c = c 1 +c 2 + +c k, and the summation is over all k-tuples c = (c 1, c 2,..., c k ) for which 1 c 1 < c 2 < < c k < n. For example, consider a 3 3 matrix with r = (0) (that is, k = 1). determinant is Then r = 0, c = (c 0 ), and the det(a) = 2 c 0=0 ( 1)c0 det S(A; (0), (c 0 )) det S (A; (0), (c 0 )) = ( 1) 0 det S(A; (0), (0)) det S (A; (0), (0)) + ( 1) 1 det S(A; (0), (1)) det S (A; (0), (1)) + ( 1) 2 det S(A; (0), (2)) det S (A; (0), (2)) = + det[a 00 ] det which is Equation (10). a 11 a 12 a 21 a 22 det[a 01 ] det a 10 a 12 a 20 a 22 + det[a 02 ] det a 10 a 11 a 20 a 21 5

4 Determinants and Inverses of 4 4 Matrices The Laplace Expansion Theorem may be applied to 4 4 matrices in a couple of ways. The first way uses an expansion by a row or by a column, which is what most people are used to doing. The matrix is a 00 a 01 a 02 a 03 a A = 10 a 11 a 12 a 13 a 20 a 21 a 22 a 23 a 30 a 31 a 32 a 33 Using the visualization as motivated by Figure 1, an expansion by row 0 is visualized in Figure 2: Figure 2. A visualization of the expansion by row 0 of a 4 4 matrix in order to compute the determinant. The algebraic equivalent is a 11 a 12 a 13 a 10 a 12 a 13 det(a) = + det[a 00 ] det a 21 a 22 a 23 det[a 01] det a 20 a 22 a 23 a 31 a 32 a 33 a 30 a 32 a 33 a 10 a 11 a 13 a 10 a 11 a 12 + det[a 02 ] det a 20 a 21 a 23 det[a 03] det a 20 a 21 a 22 a 30 a 31 a 33 a 30 a 31 a 32 (14) 6

It is possible, however, to use the Laplace Expansion Theorem in a different manner. Choose r = (0, 1), an expansion by rows 0 and 1, so to speak; then r = 0 + 1 = 1, c = (c 0, c 1 ), and det(a) = (c 0,c 1) ( 1)c0+c1 det S(A; (0, 1), (c 0, c 1 )) det S (A; (0, 1), (c 0, c 1 )) = + det S(A; (0, 1), (0, 1)) det S (A; (0, 1), (0, 1)) det S(A; (0, 1), (0, 2)) det S (A; (0, 1), (0, 2)) + det S(A; (0, 1), (0, 3)) det S (A; (0, 1), (0, 3)) + det S(A; (0, 1), (1, 2)) det S (A; (0, 1), (1, 2)) det S(A; (0, 1), (1, 3)) det S (A; (0, 1), (1, 3)) + det S(A; (0, 1), (2, 3)) det S (A; (0, 1), (2, 3)) = + det a 00 a 01 a 10 a 11 det a 22 a 23 a 32 a 33 det a 00 a 02 a 10 a 12 det a 21 a 23 a 31 a 33 (15) + det + det det + det a 00 a 03 a 10 a 13 a 01 a 02 a 11 a 12 a 01 a 03 a 11 a 13 a 02 a 03 a 12 a 13 det det det det a 21 a 22 a 31 a 32 a 20 a 23 a 30 a 33 a 20 a 22 a 30 a 32 a 20 a 21 a 30 a 31 The visualization for this approach, similar to that of Figure 2, is shown in Figure 3: 7

Figure 3. A visualization of the expansion by rows 0 and 1 of a 4 4 matrix in order to compute the determinant. Computing the determinant of a 2 2 matrix requires 1 multiplication and 1 addition (or subtraction). The operation count is listed as a 2-tuple, the first component the number of multiplications and the second component the number of additions: Θ 2 = (2, 1) Computing the determinant of a 3 3 matrix, when expanded by the first row according to Equation (8), requires the following number of operations Θ 3 = 3Θ 2 + (3, 2) = (9, 5) Using the row expansion of Equation (14) to compute the determinant of a 4 4 matrix, the operation count is Θ 4 = 4Θ 3 + (4, 3) = (40, 23) However, if you use Equation (15) to compute the determinant, the operation count is Θ 4 = 12Θ 2 + (6, 5) = (30, 17) The total number of operations using Equation (14) is 63 and the total number of operation using Equation (15) is 47, so the latter equation is more efficient in terms of operation count. To compute the inverse of a 4 4 matrix A, construct the adjugate matrix, which is the transpose of the matrix of cofactors for A. The cofactors involve 3 3 determinants. For example, the entry in row 0 and column 0 of adj(a) is a 11 a 12 a 13 + det a 21 a 22 a 23 = +a 11 det a 31 a 32 a 33 a 22 a 23 a 32 a 33 a 12 det a 21 a 23 a 31 a 33 + a 13 det a 21 a 22 a 31 a 32 8

This equation involves determinants of 2 2 submatrices that also occur in the equation for the determinant of the 4 4 matrix. This suggests computing all of the entries of adj(a) using only 2 2 submatrices. Specifically, define s 0 = det a 00 a 01 a 10 a 11, c 5 = det a 22 a 23 a 32 a 33 s 1 = det s 2 = det s 3 = det s 4 = det s 5 = det a 00 a 02 a 10 a 12 a 00 a 03 a 10 a 13 a 01 a 02 a 11 a 12 a 01 a 03 a 11 a 13 a 02 a 03 a 12 a 13, c 4 = det, c 3 = det, c 2 = det, c 1 = det, c 0 = det a 21 a 23 a 31 a 33 a 21 a 22 a 31 a 32 a 20 a 23 a 30 a 33 a 20 a 22 a 30 a 32 a 20 a 21 a 30 a 31 Then and det(a) = s 0 c 5 s 1 c 4 + s 2 c 3 + s 3 c 2 s 4 c 1 + s 5 c 0 adj(a) = +a 11c 5 a 12c 4 + a 13c 3 a 01c 5 + a 02c 4 a 03c 3 +a 31s 5 a 32s 4 + a 33s 3 a 21s 5 + a 22s 4 a 23s 3 a 10c 5 + a 12c 2 a 13c 1 +a 00c 5 a 02c 2 + a 03c 1 a 30s 5 + a 32s 2 a 33s 1 +a 20s 5 a 22s 2 + a 23s 1 +a 10c 4 a 11c 2 + a 13c 0 a 00c 4 + a 01c 2 a 03c 0 +a 30s 4 a 31s 2 + a 33s 0 a 20s 4 + a 21s 2 a 23s 0 a 10c 3 + a 11c 1 a 12c 0 +a 00c 3 a 01c 1 + a 02c 0 a 30s 3 + a 31s 1 a 32s 0 +a 20s 3 a 21s 1 + a 22s 0 If the determinant is not zero, then the inverse of A is computed using Equation (7). 9