Slepton, Charginos and Neutralinos at the LHC

Similar documents
LHC Studies on the Electroweak Sector of MSSM

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Probing SUSY Contributions to Muon g-2 at LHC and ILC

Stop NLSPs. David Shih Rutgers University. Based on: Kats & DS ( ) Kats, Meade, Reece & DS ( )

Probing SUSY Dark Matter at the LHC

SUSY Phenomenology & Experimental searches

Overview of LHC Searches in Colorless SUSY Sectors

Search for Supersymmetry at CMS in all-hadronic final states

Searching for Supersymmetry at the LHC David Stuart, University of California, Santa Barbara. CMS SUSY Search, D. Stuart, June 2011, Lisbon!

Searches for New Phenomena with Lepton Final States at the Tevatron

SUSY at Accelerators (other than the LHC)

Sho IWAMOTO. 15 Sep Osaka University. Based on [ ] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine)

Search for R-parity violating Supersymmetry. III Phys. Inst. A, RWTH Aachen

SUSY at Accelerators (other than the LHC)

sin(2θ ) t 1 χ o o o

Sho IWAMOTO. 7 Nov HEP phenomenology joint Cavendish DAMTP U. Cambridge

Status of ATLAS+CMS SUSY searches

Beyond the SM: SUSY. Marina Cobal University of Udine

Implication of LHC Higgs Signal for the MSSM Parameter Regions

arxiv:hep-ex/ v1 30 Sep 1997

Search for Charginos and Neutralinos with the DØ Detector

Inclusive searches in ATLAS: How can we discover SUSY in 2009

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia

SUSY searches with ATLAS What did we learn with few fb -1?

Discovery potential for SUGRA/SUSY at CMS

Searches for electroweak production of supersymmetric gauginos and sleptons with the ATLAS detector

Inert Doublet Model:

CMS Search for Supersymmetry at the LHC

Searches for Natural SUSY with RPV. Andrey Katz. C. Brust, AK, R. Sundrum, Z. Han, AK, M. Son, B. Tweedie, 1210.XXXX. Harvard University

Yukawa and Gauge-Yukawa Unification

Search for SUperSYmmetry SUSY

Perspectives on Future Supersymmetry at Colliders

Supersymmetry Searches at ATLAS and CMS UK HEP Forum 2012 Friday 23 rd November, 2012

Searches for Supersymmetry at ATLAS

arxiv: v1 [hep-ph] 31 Oct 2011

Szuperszimmetria keresése az LHC-nál

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Higgs Signals and Implications for MSSM

Radiative natural SUSY with mixed axion-higgsino CDM

Phenomenology of new neutral gauge bosons in an extended MSSM

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Light neutralino dark matter

Supersymmetry at the LHC

Searching for Non-Colored SUSY at CMS. Alfredo Gurrola Vanderbilt University Dark Matter Workshop at Mitchell Institute TAMU, May 25, 2016

Dark Matter Implications for SUSY

Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

SEARCH FOR 4 TH GENERATION QUARKS AT CMS

Search for Supersymmetry at LHC

Fourth Generation and Dark Matter

A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING

Lecture 18 - Beyond the Standard Model

Probing the Connection Between Supersymmetry and Dark Matter

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Supersymmetry at the ILC

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

arxiv:hep-ex/ v1 15 Jun 2006

Interpre'ng a CMS lljjp T Excess With the Golden Cascade of the MSSM

MSSM4G: MOTIVATIONS AND ALLOWED REGIONS

Probing Supersymmetric Connection with Dark Matter

ICHEP 2008 Philadelphia

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF

Supersymmetry at the LHC: Searches, Discovery Windows, and Expected Signatures

SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM

SUSY Multileptons at ATLAS

CMS Searches for New Physics

Fourth Generation and Dark Matter

Search for Supersymmetry at CMS

SUSY at the LHC. Bhaskar Dutta Texas A&M University. LHCP 2018, 4-9 June

Non-Standard Higgs Decays

DM & SUSY Direct Search at ILC. Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK

SUPERSYMMETRY AT THE LHC

Lecture 4 - Beyond the Standard Model (SUSY)

Top Quark Physics at the LHC

Introducing SModelS - with an application to light neutralino DM

Physics at the Tevatron. Lecture IV

SUSY Searches : lessons from the first LHC Run

Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv:

Supersymmetry, Baryon Number Violation and a Hidden Higgs. David E Kaplan Johns Hopkins University

Identifying the NMSSM by combined LHC-ILC analyses

Emerging the 7 TeV LHC & the LC

Probing SUSY Dark Matter with Vector Boson Fusion at the LHC

Searching for sneutrinos at the bottom of the MSSM spectrum

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor

Overall CMS SUSY search strategy

Status of Supersymmetric Models

Contributions by M. Peskin, E. Baltz, B. Sadoulet, T. Wizansky

K. Cheung 1. Collider Phenomenology on Supersymmetry

SUSY & Non SM Higgs Searches

Search for SUSY at CMS in lepton or photon final states. PANIC 2011 K. Theofilatos (on behalf of CMS)

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

Lecture 12: SUSY3. 1

SUPERSYMETRY FOR ASTROPHYSICISTS

Approaching SUSY searches at CMS. Frédéric Ronga (ETH Zurich) LPHE seminar November 15, 2010

Supersymmetry at the LHC

Search for Resonant Slepton Production with DØ

SUSY searches at LHC and HL-LHC perspectives

The study of the properties of the extended Higgs boson sector within hmssm model

SUSY Experimental Results from CMS and ATLAS

Transcription:

Slepton, Charginos and Neutralinos at the LHC Shufang Su U. of Arizona, UC Irvine S. Su In collaboration with J. Eckel, W. Shepherd, arxiv:.xxxx; T. Han, S. Padhi, arxiv:.xxxx;

Outline Limitation of current LHC SUSY searches Current exp search limits on MSSM EW sector MSSM electroweak sector Neutralinos/Charginos: production and decay Two analyses: Gauginos and Higgsinos (in slepton decoupling limit) Sleptons via gaugino decays Conclusion S. Su

Current LHC SUSY searches: limitations 3 =<ST ) (GeV/c m / 7 6 5 4 CMS Preliminary & % = LSP Limits q ~ (5)GeV Limits tan# =, A q~ ()GeV q ~ (75)GeV Lepton =, µ > MT SS Dilepton s = 7 TeV, Ldt =. fb! T CDF g~, ~ q, tan#=5, µ< D g~, ~ q, tan#=3, µ< ± LEP % $ ~ ± LEP l g ~ (5)GeV Jets+MHT g ~ ()GeV 3 OS Dilepton g ~ (75)GeV!#$%&'() *'+',./ +'**'% ' q ~ (5)GeV g ~ (5)GeV 4 6 8 m (GeV/c ) =<ST S. Su 3

Current LHC SUSY searches: limitations 4 =<ST msugra mm/ plane? ) (GeV/c m / 7 6 5 3 CMS Preliminary q ~ (5)GeV tan# =, A q~ ()GeV 4 Lepton large HT cuts: less sensitive to light particles SS Dilepton & % = LSP Limits Limits starting from gluino/squark production q ~ (75)GeV =, µ > MT OS Dilepton s = 7 TeV, Ldt =. fb! T CDF g~, ~ q, tan#=5, µ< D g~, ~ q, tan#=3, µ< ± LEP % $ ~ ± LEP l g ~ (5)GeV Jets+MHT g ~ ()GeV g ~ (75)GeV!#$%&'() *'+',./ +'**'% ' q ~ (5)GeV g ~ (5)GeV 4 6 8 m (GeV/c ) =<ST S. Su 4

LHC vs. Tevatron 5 ) (GeV/c m / 4 35 3 5 CMS $# = LSP 95% C.L. Limits: CMS LO observed CMS NLO observed CMS NLO expected ± % CMS NLO expected ± % L int = 35 pb, q ~ (65)GeV/c tan! = 3, A q ~ (5)GeV/c D g~, ~ q, LEP # ~ ± LEP l ± D #, # 5 5 5 5 3 m s = 7 TeV ± g ~ (65)GeV/c =, µ < µ > g ~ (5)GeV/c (GeV/c ) % $ B( # 3l) (pb) 9 8 7 6 5 4 3 CMS = 35 pb, s = 7 TeV LEP direct Limit D Limiṯ L=.3fb L int 4 6 8 tan&=3, A =, µ>, 95% C.L. Limits: CMS observed CMS expected ± % CMS expected ± % Theory % NLO $ B( # 3l) m! ± m =6 GeV/c (GeV/c ) RunII: EW χ ± χ production LHC: gluino/squark pair production not a direct limit on mχ ± derived from mgluino not msugra? colored particles are heavy? gaugino masses do not unify? very likely likely S. Su 5 likely

Motivation 6 Exploring LHC reach for the electroweak sector of MSSM gauginos, Higgsinos and sleptons. DM connection neutralinos: DM candidate sleptons: relevant for DM annihilation process Superpartners of gauge bosons, Higgses, and leptons suffer from small electroweak production more work needs to be done regarding collider searches current SUSY search strategy is not sensitive to lighter EW interacting particles (large HT cuts reduce the signal efficiency) Colored superparticle might be very heavy no indication from current LHC search EW sector (+stop/sbottoms) might be the only particles accessible at the LHC Connection to Lepton Collider S. Su 6

Current limits: neutralino/chargino 7 5 4 canonical case tan$= #= GeV ADLO!s! 6.5 GeV degenerate case 7 8 9 ADLO preliminary Gaugino M# ~! 5 GeV mχ > 47/5 GeV (CMSSM, msugra) No mass limit in general M# + (GeV) 3 99 Excluded at 95 C.L. 4 6 8 M ~ (GeV) mχ ± > 3.5 GeV for msnue > 3 GeV LEPSUSYWG/3. M (GeV) expected limit 7 8 9 M! ~ + (GeV) mχ ± > 9.9 /9.4 GeV LEPSUSYWG/4. M! (GeV/c ) 8 6 4 #s = 838 GeV ADLO + ẽ RẽR + R R + R R M l! M! R mse > 99.6 GeV, msmu > 94.9 GeV, mstau > 85.9 (85.) GeV Observed Expected Excluded at 95# CL (= GeV/c, tan$=.5) 5 6 7 8 9 M l (GeV/c ) R S. Su 7 LEPSUSYWG/4.

Current limits: neutralino/chargino 8 M# + (GeV) 5 4 3 99 canonical case tan$= ADLO #= GeV!s! 6.5 GeV Excluded at 95 C.L. 4 6 8 M ~ (GeV) mχ ± > 3.5 GeV for msnue > 3 GeV LEPSUSYWG/3. M (GeV) degenerate case 7 8 9 ADLO preliminary Gaugino M# ~! 5 GeV expected limit Have at least one of these assumptions: gaugino mass unification: M= (5/3) tan θw M = / M sfermion mass unification decouple sfermions msugra particular benchmark point 7 8 9 M! ~ + (GeV)... mχ ± > 9.9 /9.4 GeV LEPSUSYWG/4. S. Su 8 LEPSUSYWG/4. M! (GeV/c ) 8 6 4 mχ > 47/5 GeV (CMSSM, msugra) No mass limit in general #s = 838 GeV ADLO + ẽ RẽR + R R + R R M l! M! R mse > 99.6 GeV, msmu > 94.9 GeV, mstau > 85.9 (85.) GeV Observed Expected Excluded at 95# CL (= GeV/c, tan$=.5) 5 6 7 8 9 M l (GeV/c ) R

MSSM Electroweak sector 9 Gauginos and Higgsinos ~ ~ Neutral ones: Bino, Wino, Hu, Hd ~ charged ones: Winos, Hu + ~, Hd Neutralinos and charginos Parameters: M, M, µ, tanβ Sleptons: sll, slr, three generations No flavor mixing No LR mixing for the st, nd generations sel, ser, smul, smur, stau, stau Parameters: MslL, MslR, (LR for stau? universality?) S. Su 9

Order of M, M and µ Bino LSP M < M, µ Wino LSP M < M, µ Higgsino LSP µ < M, M Bino Wino Higgsino e.g.: sugra, CMSSM, gaugino mass unification,... canonical case e.g.: AMSB,... Chen et. al., hepph/953 Moroi et. al., hepph/9945 Gherghetta et. al., hepph/994378 Bear et. al., hepph/773 Moroi et. al., ArXiv: 8.375 e.g.: Higgsinoworld,... Baer, Barger and Huang, ArXiv: 7.558 S. Su

Bino LSP case light wino M < M < µ light Higgsino M < µ < M Higgsino Wino Wino Higgsino Bino χ χ ± χ χ ± Bino S. Su

Productions: Neutralinos and Charginos light wino M < M < µ! (pb) tan =,! = TeV M = GeV, LO M = GeV, NLO M = 3 GeV, LO M = 3 GeV, NLO! (pb) 3 tan# =, = TeV, M = GeV χ + χ χ ± χ! +!! 3 3 3 3 3 4 5 3 6 3 4 5 6 7 M (GeV) 3 4 5 6 7 M (GeV) cross section has little dependence on M S. Su

χ ± decay with decoupled slepton 3! light wino M < M < µ!! (?!! (@@ $ onshell h! # #!! '( χ!! (9# 9./(()!!!!! (# 34''.5!!!!! ',,!! ')!! '** offshell W* onshell W!! '##!! '!!# χ ±! # $ % & ' # (()*+,!!#!!! '$! '++! # $ % & # ''./ offshell Z* onshell Z S. Su 3

LHC searches 4 Collider signatures jets + MET l + jets + MET OSl + jets + MET SSl + jets + MET: include trilepton Validation of MonteCarlo: compare with CMS analyses for Luminosity up to fb LM, event field from CMS single lepton study: 8.7 ±. Our simulation: 8.77 Upper limit at 95% CL on event yield using existing CMS searches L observed BG 95%CL jets + MET. fb 8 channels......... l + jets + MET 36 pb 9 7 ± 7. 4 OSl + jets + MET.98 fb high MET 8 4. ±.3 high HT 4 5. ±.7 5.3 SSl + jets + MET.98 fb 7 channels......... S. Su 4

95% CL upper limit on cross sections 5 SSl+jets + MET M (GeV) 9 8 # BR (pb) SS / dileptons (MET >, H T tan! =, µ = TeV > 8 GeV) 9 8 M (GeV) 9 8 # BR (pb) SS / dileptons (MET > 5, H T tan! =, µ = TeV > 4 GeV) 9 8 7 7 7 7 6 6 6 6 5 5 5 5 4 4 4 4 3 3 3 3 3 4 5 6 7 8 9 M (GeV) 3 4 5 6 7 8 9 M (GeV) low HT cut has better reach! probably best exclusion channel among four searches S. Su 5

95% CL upper limit on cross sections 6 SSl+jets + MET M (GeV) 9 8 7 # BR (pb) SS / dileptons (MET >, H T tan! =, µ = TeV > 8 GeV) 9 8 7! (pb) tan =,! = TeV M = GeV, LO M = GeV, NLO M = 3 GeV, LO M = 3 GeV, NLO 6 6 5 5 4 4 3 3 3 3 4 5 6 7 8 9 M (GeV) 3 4 5 6 7 M (GeV) low HT cut has better reach! probably best exclusion channel among four searches S. Su 6

M (GeV) 95% CL upper limit on cross sections SSl+jets + MET 9 8 # BR (pb) SS / dileptons (MET >, H T tan! =, µ = TeV > 8 GeV) 9 8! (pb) tan =,! = TeV 7 M = GeV, LO M = GeV, NLO M = 3 GeV, LO M = 3 GeV, NLO 7 7 6 6 upper limit fb 5 9 5 SS / dileptons (MET >, H 3 > 8 GeV) 4 T 5 6 9 7 4 8 4tan! =, µ = TeV 8 3 7 3 Nj requirements 7 6 too strong. 6 5 need jet veto. 5 3 4 5 6 7 8 9 4 4 M (GeV) low HT cut has better reach! probably best exclusion channel among four searches M (GeV) 3 3 3 M (GeV) S. Su 7 M (GeV) 3 4 5 6 7 8 9

Reach in MM and Mmu plane 8 with optimized cuts... M (GeV) 9 8 7 $# Acceptance fb T : H T (GeV) > 875 tan! =, µ = TeV 5 fb M (GeV) 9 8 7 $# Acceptance T : H T (GeV) > 875 tan! =, M = TeV 6 6 5 4 3 5 Results will come 4 (very soon)... 3 3 4 5 6 7 8 9 M (GeV) 3 4 5 6 7 8 9 µ S. Su 8

Slepton studies 9 DrellYan production cross section small 3 s = 4 TeV SM BG large: W, WW, WZ, ttbar, etc. % (pb)!! e ~ ~ R e R e ~ ~ L e L = solid $ ~ ~ L $ L = dotdash W ± # ~ e ~ L $ L usually done in msugra framework Limited reach: L=3 fb, GeV for slr, 3 GeV for sll!3!4 3 4 5 ~ (GeV) m l Y.M.Andreev, S.I.Bityukov, N.V.Krasnikov, hepph/49; H.Baer, C.h.Chen, F.Paige, X.Tata,hepph/ 9348, hepph/95383 S. Su 9

Slepton from Neutralino/Chargino decay For MseL < M, light Wino case larger cross sections!! 4 TeV l l +!*+**#!! *## /***+/!!!! χ χ + l + l ν ν χ χ!!#! # $ % & ' ( ) # **+,./ S. Su

Slepton from Neutralino/Chargino decay large branching ratios 35 M=5 GeV, M=4 GeV trilepton + MET signal, less SM BG Events/.5 GeV/ fb 4 3 5.7 / 97 P 9. P 8.7 P3.9 5 5 M ll (GeV) 5 5 5 3 35 4 m slepton (GeV) distinctive triangle shape for mll obvioustoeye spectral shape How to use it to enhance our signal significance? enhanced by only plotting the signal How about BG? : l + Bachacou, l mass S. Su distribution Hinchliffe, showing and Paige, the χhepph/99758 MINUIT fit using PAW. m cutoff (GeV) 3 5 5 5 m (m ) cutoff = m m χ χ m m χ mz

Cross section reach given mcut, marginalizing over other fitting parameters Nsig required for 5 sigma required sigma*br*acc l l + 4 TeV fb X X Y Y Z Z l + ν Model independent result! Can be applied to other model with similar topology background fitting: any process give a Z peak results only sensitive to mcut given model mx, my, mz mcut sigma*br*acc S. Su

MSSM Slepton: 4 TeV Reach 3 Apply to MSSM case, slepton from χ ± χ decay Luminosity [fb ] Slepton Mass [GeV] 6 5 L=3 fb, reach sll up to 5 GeV for M up to 65 GeV. 4 3 3 4 5 6 7 Wino Mass [GeV] S. Su 3

Conclusions 4 LHC has great reach for colored particles, but more studies needed to explore LHC potential for EW particles. Current LHC search already set strong bounds (TeV) on the mass of colored object, however, the search strategy is not optimized for EW particles. Existing study on EW particles make simple assumptions, e.g., msugra or gaugino mass unification relation MSSM EW sector: neutralinos, charginos and sleptons with general parametrization S. Su 4

Conclusions 5 Neutralinos/charginos: light wino and light Higgsino cases decay pattern depends on the slepton masses LHC reach of neutralinos/charginos with decoupled slepton MM, Mµ light slepton: slepton via neutralino/chargino decay utilize the triangle shape in mll distribution model independent approach: results can be applied to other models, and various mass spectrum MSSM: 4 TeV with 3 fb, M up to 65 GeV, MseL up to 5 GeV S. Su 5

Regions to be explored 6 neutralino/chargino reach for slepton heavier than χ /χ ±, but accessible through offshell slepton decay lepton rich final state, but no triangle feature slepton DY, direct decay, for nonsugra spectrum slepton DY with cascade decay... Stay tuned... S. Su 6