Basic Calibration of UV/ Visible Spectrophotometer

Similar documents
Investigating Transition Metal Complexes

Experiment 1 (Part A): Plotting the Absorption Spectrum of Iron (II) Complex with 1,10- Phenanthroline

Brooklyn College Department of Chemistry

S2. INTRODUCTION TO ULTRA-VIOLET / VISIBLE SPECTROSCOPY

1. Preliminary qualitative analysis of unknown substances (liquid or solid).

INTRODUCTION The fundamental law of spectrophotometry is known as the Beer-Lambert Law or Beer s Law. It may be stated as: log(po/p) = A

Lab Investigation 4 - How could you make more of this dye?

2 SPECTROSCOPIC ANALYSIS

Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1

EXPERIMENT #3 A Beer's Law Study

Skill Building Activity 2 Determining the Concentration of a Species using a Vernier Spectrometer

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II)

Experiment 13I THE REACTION OF RED FOOD COLOR WITH BLEACH 1

Analysis of Food Dyes in Beverages AP* Chemistry Big Idea 1, Investigation 1 An Advanced Inquiry Lab

FLAME PHOTOMETRY AIM INTRODUCTION

Construction of Absorption Filter for colorimetry and its performance characteristics

Experiment 7. Determining the Rate Law and Activation Energy for the Reaction of Crystal Violet with Hydroxide Ion

Chem 321 Lecture 18 - Spectrophotometry 10/31/13

Lab #12: Determination of a Chemical Equilibrium Constant

Automated determination of the uniformity of dosage in quinine sulfate tablets using a fiber optics autosampler

CHEMISTRY DEPARTMENT

Experiment 11 Beer s Law

Experiment 11 Beer s Law

Beer's- Lambert Law and Standard Curves. BCH 312 [Practical]

Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+

*Author for Correspondence

Chem 310 rd. 3 Homework Set Answers

International Journal of Pharma and Bio Sciences

Concepts, Techniques. Concepts, Techniques 9/11/2012. & Beer s Law. For a simple, transparent, COLORED material, e.g. ROYGBV

Chemistry 213. A KINETIC STUDY: REACTION OF CRYSTAL VIOLET WITH NaOH LEARNING OBJECTIVES

Laboratory Measurements and Procedures

Spectrophotometric Determination of an Equilibrium Constant

BATTERY INDUSTRY STANDARD ANALYTICAL METHOD

A Spectrophotometric Analysis of Calcium in Cereal

CHAPTER - 3 ANALYTICAL PROFILE. 3.1 Estimation of Drug in Pharmaceutical Formulation Estimation of Drugs

AIM To verify Beer - Lambert s law and to determine the dissociation constant (Ka) of methyl red, Spectrophotometrically.

VISIBLE SPECTROSCOPY

Experiment 7A ANALYSIS OF BRASS

Rate law Determination of the Crystal Violet Reaction Using the Isolation Method

Quality Assurance is what we do to get the right answer for our purpose FITNESS FOR PURPOSE

Preparation of Standard Curves. Principle

Kinetics of Crystal Violet Fading AP* Chemistry Big Idea 4, Investigation 11 An Advanced Inquiry Lab

CHEM Lab 7: Determination of an Equilibrium Constant using Spectroscopy

Spectroscopic Method For Estimation of Atorvastatin Calcium in Tablet Dosage Form

International Journal of Chemistry Research Vol 1, Issue 1, 2010

Experiment. Quantification of Ascorbic acid by Fluorescence Spectroscopy1

Exp 03 - Reaction Rate

Questions on Instrumental Methods of Analysis

Spectrophotometric estimation and validation of hydrochlorothiazide in tablet dosage forms by using different solvents

Determining the Concentration of a Solution: Beer s Law

Kinetics of Crystal Violet Fading AP Chemistry Big Idea 4, Investigation 11 An Advanced Inquiry Lab (adapted by Flinn Scientific, Inc.

Nucleic Acid Quantitation in Microplates

Chemistry 118 Laboratory University of Massachusetts Boston Beer s Law

Determining the Concentration of a Solution: Beer s Law. Evaluation copy. Figure 1

EXPERIMENT 12 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of a Commercial Aspirin Tablet

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM

ANALYSIS OF ZINC IN HAIR USING FLAME ATOMIC ABSORPTION SPECTROSCOPY

MOLEBIO LAB #4: Using a Spectrophotometer

Chapter 4: Verification of compendial methods

CHEM 254 EXPERIMENT 9. Chemical Equilibrium-Colorimetric determination of equilibrium constant of a weak acid

Comparative Investigation of Reagent Systems (Powder Pack / Pillow) for Free and Total Chlorine from Lovibond and Hach

Quality Control Procedures for Graphite Furnace AAS using Avanta Software

CHM112 Lab Determination of an Equilibrium Constant Grading Rubric

Method for Nitrite determination on Low-Range Samples

Results. Overlain Spectra. Wavelength

9/28/10. Visible and Ultraviolet Molecular Spectroscopy - (S-H-C Chapters 13-14) Valence Electronic Structure. n σ* transitions

Determining the Concentration of a Solution: Beer s Law

Answers to spectroscopy questions. 1. Consider the spectrum below. Questions a f refer to this spectrum.

EXPERIMENT 14. ACID DISSOCIATION CONSTANT OF METHYL RED 1

Received: ; Accepted:

Clinical Chemistry (CHE 221) Experiment # 3 Analysis of rare body fluids by UV-Vis Absorption Spectroscopy

Experiment 7: Adsorption Spectroscopy I, Determination of Iron with 1,10 Phenanthroline

Clinical Chemistry (CHE221) Professor Hicks Week 1. Statistics Made Slightly Less Boring and Introduction to Spectrophotometry. Accuracy vs Precision

Cu-Creatinine- Metol system

Instrumental Limitations for High Absorbance Measurements in Noise

Experimental Procedure Overview

UV-Visible Absorption Analysis of a Two Component System

Validated spectrophotometric determination of Fenofibrate in formulation

Direct Determination of Aluminium in Milk by Graphite Furnace Atomic Absorption Spectrometry

DRAFT EAST AFRICAN STANDARD

CHEM 334 Quantitative Analysis Laboratory

1901 Application of Spectrophotometry

A Simple, Sensitive Spectrophotometric Determination of Mosapride in Pharmaceutical Preparations Using Novel Reagent

C H E M I S T R Y DETERMINATION OF AN EQUILIBRIUM CONSTANT

Beers Law Instructor s Guide David T. Harvey

RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION

Reverse Flow Injection Analysis for Determination of Manganese(II) in Natural Water. Jintana Klamtet

Spectroscopy. Page 1 of 8 L.Pillay (2012)

Introduction. The amount of radiation absorbed may be measured in a number of ways: Transmittance, T = P / P 0 % Transmittance, %T = 100 T

World Journal of Pharmaceutical and Life Sciences WJPLS

INSTRUCTIONS FOR WRITING CIPAC METHODS

Spectrophotometry Materials

of nm throughout the experimental work.

Standard Methods for the Examination of Water and Wastewater

Spectrometric Determination of the Acid Dissociation Constant of an Acid-base Indicator

Research Article Spectrophotometric Estimation of Didanosine in Bulk Drug and its Formulation

EXPERIMENTAL PROCEDURE

Studies to develop certified reference material to calibrate spectrophotometer in ultraviolet region

This activity has been password protected to prevent modification. In order to request an unprotected version of this activity, contact

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation

Transcription:

International Journal of Science and Technology Volume 2 No. 3, March, 2013 Basic Calibration of UV/ Visible Spectrophotometer Adeeyinwo, C.E, 1 Okorie, N. N. 2, Idowu, G. O. 3 1,2 Department of Chemistry, Federal University of Technology Akure. 2,3 Engineering Materials Development Institute Akure. ABSTRACT In this work, the calibration of a UV visible spectrophotometer was carried out in order to optimize its performance. A normal calibration method was adopted and Ringbom-Ayre s plot was used to confirm the precision. From the result, it was observed that the curve fitting for the Normal calibration gave the results using calibration model with least square value chosen as performance measure (R 2 ), the linear model gives the least R - squared (0.997) which is minimal comparing the sum of the residual range thus confirming the accuracy of the results thus confirming the functionality of the instrument. Keywords: UV/Vis spectrophotometer, Calibration, Calibration models, performance characteristics, Ringbom-Ayre s plot, Normal calibration, KMnO4 1. INTRODUCTION Correct instrument calibration procedure together with a good instrument and a skillful operator gives accurate and precise determination of an unknown sample concentration. For any instrument used for process analysis in the industry, the precision and accuracy of such instrument must be determined so as to give credibility to the response obtained from it especially in a newly installed instrument using a known sample such as Potassium permanganate (kmno 4) which must be of spectra grade standard (100.00+02). Instrument Calibration is intended to eliminate or reduce bias in an instrument reading over a range for all continuous value. Random errors affect the precision of an instrument. These errors become minimal when a series of signals is averaged and the relative standard deviation estimated. Standard deviation is a measure of the precision of an instrument. Good precision implies small standard deviation and decreasing relative standard deviation [7]. Ultraviolent-visible spectrophotometer investigates the interaction of light radiation with matter in the ultra violet (200-400) and visible (400-800) range. Potassium permanganate absorbs strongly in the visible range of wavelength between 500 and 550nm on different uvvisible spectrophotometers, it has been reported as having its wavelength of maximum absorption (π max ) of normal wavelength as 525nm using spectronic 20, 522nm and Robert Bohman [4] reported his work as 520nm using perkins-elmer. This work studied the calibration of a newly installed UVvisible spectrophotmeter Jenway 6405 using KMnO 4 as a standard with Normal calibration curve and Ringbom Ayre s plot as a confirmation for the level of sprecision. Confirming its readiness and dependability for further work. Ringbom Ayre s Plot Ringbom and Ayres suggested a plot of transmittance against logarithm of the concentration. This gives an S shaped curve with the point of inflexion occurring at 37% transmittance if the system obeys Beer s law. The curve has a region that is relatively linear. The extent of this linear portion indicates directly the optimum range of concentrations and the precision of the determination can be estimated from the slope of the curve [11]. 2. MATERIALS AND METHOD 2.1 Safety The MSDS for detailed information and safety precautions for the standard in addition to the appropriate safety sections in the instrument manual for the necessary requirements was reviewed 2.2 Apparatus UV/Vis. Spectrophotometer: Jenway 6405 with matched 1cm cuvette, 100ml Standard flask, Test tubes, 10ml pipettes, 1ml pipettes, 50ml beakers, 100ml beakers, Gloves, safety goggle. 2.3 Standard Solutions A stock solution for standards was made by 0.072g of potassium permanganate (KMnO 4) in 250.0cm 3 standard flask. Standard working solutions which contain IJST 2013 IJST Publications UK. All rights reserved. 247

respectively 1, 2, 3, 4, 5, 6,7, 8, 9, 10, 20, 40 mgdm -3 of potassium permanganate were made by dilution of appropriate aliquots of the stock solution to 100.0cm 3 with deionized water. 2.4 Procedures In accordance with the operational manual of the spectrophotometer [14], adjustments of the instrument parameter gave optimized conditions for the research work. The absorbance was measured for each solution at 480, 526 and 580nm using the spectrophotometer. The Spectrum of KMnO 4 was done to determine the wavelength of maximum absorption at the different concentration by plotting the data for absorbance against wavelength. The data was fitted using Grand Optimizer (GO) software. The calibration curve was done by fitting the absorbance against concentration at the wavelength of maximum absorption. This was repeated 5 times. Ringbom Ayre s plot was done by fitting transmittance against concentration and transmittance against the logarithm of concentration. 3. RESULT AND DISSCUSION The absorption spectrum for KMnO 4 showed maximum absorption (λ max) at 525nm (fig1). The scanning of the spectrophotometer gave data (Table 1) with performance characteristics: Beer s law validity range of sensitivity 0.039 AUmg -1 dm 3, with molar absorptivity of 2.468x10-7 AUmol -1 dm 3 cm -1 and a limit of detection (LOD to 3s.d) 0.002mgdm -3 Repeatability and level of precision was tested by analyzing 5 replicate samples as was shown by their standard deviation. Standard deviation (SD) (5ppm from the Table 3) = 0.001%Relative standard deviation = 0.0402 < 1% The curve fitting for the Normal calibration (fig.2) gave a linear model with the least R -squared (R 2 ) of 0.997 and a correlation coefficient of 0.998. The result of the study agreed with literature [3,8]. Analysis from the Ringbom- Ayres Plot A fit of Transmittance Vs Concentration curve follow an Exponential graph (fig.3) and a fit of Transmittance Vs Logarithm of Concentration has a fairly S shaped curve with point of inflexion occurring at 37.5% Transmittance thus obeying Beer s law (fig.4),corresponding to a precision of -3.469x10 2 (230/S) relative error [2] [11]. IJST 2013 IJST Publications UK. All rights reserved. 248

CONC (mgdm -3 ) Table 1: Data for the Normal Calibration Curve for KMnO4 at 525nm Absorbance Abs (AU)+ S.d %Transmittance (%T) Transmittance (T) Log C 1 0.053+ 0.001 88.51 0.8851 0.0000 2 0.092+ 0.000 80.91 0.8091 0.3010 3 0.130+ 0.001 74.13 0.7413 0.4771 4 0.180+0.001 66.07 0.6607 0.6021 5 0.209+0.001 61.80 0.6180 0.6990 6 0.265+0.001 54.32 0.5432 0.7782 7 0.324+0.000 47.43 0.4743 0.8451 8 0.354+ 0.001 44.26 0.4426 0.9031 9 0.381+0.001 41.59 0.4159 0.9542 10 0.430+0.000 37.15 0.3715 1.0000 20 0.881+0.000 13.15 0.1315 1.3010 40 1.576+0.000 2.66 0.0266 1.6021 IJST 2013 IJST Publications UK. All rights reserved. 249

*S.d (5 data points) Table 2. Regression Analysis Output Summary for Linear Calibration Model Regression Statistics Fitted No. of Residual Sum Durbin- Bias of Model Observations of Squares Std. Error R 2 Adj. R 2 Watson Estimator Calibration (Linear) 12 0.0065 0.0809 0.9968 0.9964 2.0698-5.55112E-16 Analysis of Variance (ANOVA) Source DF SS MS F Stat p-value Regression 1 2.0078 0.2008 337.7691 0 Residual Error 10 0.0065 0.0006 - - Total 11 2.0143 - - - Regression Table Variable Y X p-value Constant Y 1 0.9983756 0.5506 X 0.99837564 1 0.0363 Correlation Matrix Y X Y 1 0.9983756 X 0.99837564 1 Table: 3. Absorbance Readings for potassium permanganate at 525nm CONC (mgdm -3 ) ABSORBANCE (AU) MEAN A B C D E STANDARD DEVIATION (SD) %RSD = SD/M*100 0 0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.0000 1 0.053 0.053 0.054 0.054 0.055 0.054 0.001 1.55513 2 0.092 0.092 0.092 0.092 0.092 0.092 0.000 0.00000 3 0.13 0.13 0.129 0.129 0.128 0.129 0.001 0.64757 4 0.181 0.181 0.181 0.179 0.18 0.180 0.001 0.4958 5 0.209 0.208 0.208 0.207 0.207 0.208 0.001 0.40263 6 0.265 0.265 0.264 0.262 0.264 0.264 0.001 0.46392 7 0.324 0.324 0.324 0.324 0.324 0.324 0.000 0.00000 8 0.354 0.352 0.352 0.352 0.354 0.353 0.001 0.31050 9 0.381 0.379 0.381 0.379 0.381 0.380 0.001 0.28812 10 0.43 0.43 0.43 0.43 0.43 0.430 0.000 0.00000 20 0.881 0.88 0.88 0.88 0.882 0.881 0.000 0.10157 40 1.576 1.575 1.576 1.576 1.576 1.576 0.000 0.02838 60 2.062 2.062 2.062 2.060 2.062 2.061 0.000 0.0.0049 4. CONCLUSION In this work, the calibration of a UV visible spectrophotometer was carried out in order to optimized its performance. A normal calibration method was adopted and Ringbom-Ayre s plot was used to confirm the precision. From the result, it was observed that the curve fitting for the Normal calibration gave the results using calibration model with least square value chosen as performance measure (R 2 ), the linear model gives the IJST 2013 IJST Publications UK. All rights reserved. 250

least R - squared (0.997) which is minimal comparing the sum of the residual range thus confirming the accuracy of the results thus confirming the functionality of the instrument. REFERENCES [1] Fundamentals, instrumentation and Technologies of UV/Vis spectroscopy AG/Konrad- Zuse Strabe 1/07745 Jena / Germay/ info@ analytick-jena.com/ [2] Ayres,G. H. Anal. Chem.,21, 652 (1949) [3] Bohman Robert (2006) Ultraviolet/Visible (UV Vis) Spectroscopy of potassium permanganate November 4th CH EN 4903. [4] Adeeyinwo C.E and Adesina K. (2002), Performance characterization of Visible Spectroscophotometer in Analysing Silicon. Journal of applied science 5(4): pg 3139 3147 [5] Adeeyinwo C.E, (1982) Flow Injection Atomic Absorbtion Spectrometry: The use of FIA Dispersions in Normal Calibration Methods in flame AAS [6] Engineering Statistics Handbook Measurement process Characterization http://www.itl.nist.gov/div 898/handbook/mpc/mpc.htm [7] Barman B. and Baris S. (2009) Spectrsophotometric determination of Zinc in blood serum of diabetic patients using bis-[2,6-(2-hydroxyl-4-sulpho-1- napthylazo) pyridine disodium salt Archives of Applied Science Research, 1 (1):pg 74-83. [8] Calibration Model Stat Point Technologies, inc 2009 www.statgrahics.com [9] Geoigian Thomas (2009): Evaluating goodness of fit for linear instrument calibration through the origin international Journal of Environmental Analytical Chemistry Volume 89, Issue 5, pages 383 388. [10] Models 6400/6405 Spectrophotometers operating manual. 64050/REV B /11-99. [11] Ringbom, A. Z. Anal. Chem., 115, 332 (1939) IJST 2013 IJST Publications UK. All rights reserved. 251