Cooperative atom-light interaction in a blockaded Rydberg ensemble

Similar documents
Microwave Control of the Interaction Between Two Optical Photons. David Szwer 09/09/ / 40

Joint Quantum Centre Durham/Newcastle. Durham

arxiv: v1 [quant-ph] 22 May 2012

Slow and stored light using Rydberg atoms

Chapter 2: Interacting Rydberg atoms

Kevin J. Weatherill. Joint Quantum Centre (Durham-Newcastle) Department of Physics Durham University

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

9 Atomic Coherence in Three-Level Atoms

Rydberg excited Calcium Ions for quantum interactions. Innsbruck Mainz Nottingham

Okinawa School in Physics 2017 Coherent Quantum Dynamics. Cold Rydberg gases

RYDBERG BLOCKADE IN AN ARRAY OF OPTICAL TWEEZERS

Atom trifft Photon. Rydberg blockade. July 10th 2013 Michael Rips

Experimental Demonstration of Spinor Slow Light

Quantum Computation with Neutral Atoms

Comparison between optical bistabilities versus power and frequency in a composite cavity-atom system

Quantum Simulation with Rydberg Atoms

Rydberg excited Calcium Ions for quantum interactions

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Interacting Cold Rydberg Atoms: a Toy Many-Body System

Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers

arxiv: v3 [quant-ph] 22 Dec 2012

Quantum computation and quantum information

Andy Schwarzkopf Raithel Lab 1/20/2010

JQI summer school. Aug 12, 2013 Mohammad Hafezi

Rydberg atoms: excitation, interactions, trapping

Pulsed Rydberg four wave mixing with motion induced dephasing in a thermal vapor

Distributing Quantum Information with Microwave Resonators in Circuit QED

Resonant energy transport in aggregates of ultracold Rydberg-Atoms

Quantum enhanced magnetometer and squeezed state of light tunable filter

Generation of maximally entangled GHZ (Greenberger-Horne-Zeilinger) states of divalent atoms

Observation of the nonlinear phase shift due to single post-selected photons

Generation of squeezed vacuum with hot and ultra-cold Rb atoms

High-resolution hyperfine spectroscopy of excited states using electromagnetically induced transparency

Microwave control of the interaction between two optical photons

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Lecture 11, May 11, 2017

Motion and motional qubit

Population Dynamics and Emission Spectrum of a Cascade Three-Level Jaynes Cummings Model with Intensity-Dependent Coupling in a Kerr-like Medium

Non-equilibrium spin systems - from quantum soft-matter to nuclear magnetic resonance

Single Photon Nonlinear Optics with Cavity enhanced Quantum Electrodynamics

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Computation with Neutral Atoms Lectures 14-15

Hong-Ou-Mandel effect with matter waves

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK

7 Three-level systems

Quantum Networks with Atomic Ensembles

Vacuum-Induced Transparency

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Electromagnetically Induced Transparency and Absorption of A Monochromatic Light Controlled by a Radio Frequency Field

arxiv:quant-ph/ v1 2 Oct 2003

Transit time broadening contribution to the linear evanescent susceptibility

Elements of Quantum Optics

Cavity QED with quantum dots in microcavities

Quantum non-demolition measurements:

Single-photon Rydberg excitation spectra of cesium atomic vapor with a 319nm ultra-violet laser

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Applications of Atomic Ensembles In Distributed Quantum Computing

Mesoscopic field state superpositions in Cavity QED: present status and perspectives

arxiv:quant-ph/ v1 24 Jun 2005

Cavity decay rate in presence of a Slow-Light medium

arxiv:quant-ph/ v1 16 Mar 2007

Quantum non-demolition measurements: a new resource for making linear logic scalable

Quantum superpositions and correlations in coupled atomic-molecular BECs

Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium

Matter wave interferometry beyond classical limits

ORGANIC MOLECULES in photonics

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

arxiv: v1 [physics.optics] 3 Apr 2016

arxiv:quant-ph/ v3 17 Nov 2003

Single Atom wants to meet Single Photon Controlled Processes with Neutral Atoms

Observation of the four wave mixing photonic band gap signal in electromagnetically induced grating

Interference effects on the probe absorption in a driven three-level atomic system. by a coherent pumping field

Photon Pair Production using non-linear waveguides

ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85. Amrozia Shaheen

Introduction to Nonlinear Optics

Ion trap quantum processor

Experimental demonstration of optical switching and routing via four-wave mixing spatial shift

Supplementary Figure 1: Reflectivity under continuous wave excitation.

A laser system for the excitation of rubidium Rydberg states using second harmonic generation in a PPLN waveguide crystal

Exploring long-range interacting quantum many-body systems with Rydberg atoms

Quantum gates in rare-earth-ion doped crystals

Crossover from Electromagnetically Induced Transparency to Autler-Townes Splitting in Open Ladder Systems with Doppler Broadening.

Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction

10.5 Circuit quantum electrodynamics

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion

Squeezing manipulation with atoms

Golden chain of strongly interacting Rydberg atoms

A Stern-Gerlach experiment for slow light

Gain without inversion in a V-type system with low coherence decay rate for the upper levels. arxiv:physics/ v1 [physics.atom-ph] 15 May 2004

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates

QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Narrow and contrast resonance of increased absorption in Λ-system observed in Rb cell with buffer gas

Quantum Computing with neutral atoms and artificial ions

Controlling the Interaction of Light and Matter...

Quantum nonlinear four-wave mixing with a single atom in an optical cavity

Introduction to Cavity QED

Coherent population trapping (CPT) versus electromagnetically induced transparency (EIT)

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

Transcription:

Cooperative atom-light interaction in a blockaded Rydberg ensemble α 1 Jonathan Pritchard University of Durham, UK

Overview 1. Cooperative optical non-linearity due to dipole-dipole interactions 2. Observation of cooperativity in an ultra-cold Rydberg ensemble 3. Towards single photon non-linearities

Photonic Quantum Computer Photon Source Single Photon Gate λ 2 Photon Detector Two Photon Gate No free-space photonphoton interaction KLM Linear Optics E. Knill et al. Nature 409, 46 (2001) Nonlinear atom-light interaction Rydberg atoms I. Freidler et al. PRA 72, 043803 (2005)

Optical Non-linearity Optical response expressed in terms of complex susceptibility: χ = χ (1) + χ (2) E + χ (3) E 2 + l k =2π/λ Observe back-action on light : Transmission T = exp{ kχ I l} Dispersion φ = kχ R l/2

Electromagnetically Induced Transparency Consider a three level atom in ladder EIT scheme r On resonance eigenstate is: p Γ r e Ψ = (Ω2 p + Γ 2 e) 1/2 g Ω p e 2(Ω 2 p/2+γ 2 e/4) 1/2 Ψ = Ω p Γ e g Susceptibility:! "#$ "#' χi/χ0 "#& "#% Γ e χr/χ0 " "#$ "!! "!!"#$!! "! p /Γ e p /Γ e

Electromagnetically Induced Transparency Consider a three level atom in ladder EIT scheme Ω c > Ω p c p Ω c r Γ r e On two-photon resonance populate dark state: Ψ D = Ω c g Ω p r (Ω 2 p + Ω 2 c) 1/2 Ψ D = Ω p Γ e g χi/χ0 Susceptibility:! "#' "#& "#% "#$ "!! "! p /Γ e M. Fleischhauer et al., RMP 77, 633 (2005). χr/χ0 "#$ "!"#$!! "! p /Γ e Intensity dependent Giant Kerr χ (3) H. Schmidt and A. Imamo!lu Opt. Lett. 21, 1936 (1996) A. Mohapatra et al. Nature Phys. 4, 890 (2008)

Single photon Kerr non-linearities Apply Kerr effect to two photon gate: χ (3) Phase shift changes across envelope - destroys fidelity Single-photon Kerr non-linearities do not help quantum computation, J. H. Shapiro, PRA 76, 062305 (2006) Impossibility of large phase shift via the giant Kerr effect with single photon wavepackets, J. Gea-Banacloche, PRA 81, 043823 (2010). Require novel non-linearity

Cooperative Non-linearity Ordinary Non-linearity Single dipole χ 1 Two dipoles + Dipoles Independent χ =2χ 1 From single dipole response derive response of ensemble χ = Nχ 1 Cooperative non-linearity Introduce strong dipole-dipole interactions Two dipoles + Dipoles Correlated χ 2χ 1 Optical response of single dipole modified by neighbouring dipoles

Rydberg Atoms Cooperativity requires strong dipole-dipole interactions Rydberg Atoms Dipole moment µ n 2 Interaction V (R) = C 6 R 6 n11 Strong dipole-dipole interactions Blockade V (R) > Ω c W rr Blockade radius gr R b = 6 C6 Ω c 5 µm (60S 1/2, Ω c 4 MHz) gg Average Number of atoms / blockade R N b =4/3πR 3 bρ

Rydberg EIT without interactions Consider a pair of atoms R R b rr r 1 r 2 er re Ω c e 1 Ω c e 2 gr ee rg Ω p Ω p ge eg g 1 g 2 Atom 1 Atom 2 gg Coupled Basis Large separation : Observe ordinary dark state Ψ D = ψ D 1 ψ D 2 Ψ D =, + = χ 1 + χ 2 = χ

Rydberg EIT with interactions Move atoms closer R < R b V (R) rr r 1 V (R) r 2 er re Ω c e 1 Ω c e 2 gr ee rg Ω p Ω p ge eg Atom 1 g 1 Atom 2 g 2 gg Coupled Basis V (R) Ω c : Blockade creates new state Ψ D. Møller et al. PRL 100, 170504 (2008), Ψ = +, Tuneable cooperative atom-light interaction + = χ 1 + χ 2 = χ Ω c, Ω p,v(r)

Overview 1. Cooperative optical non-linearity due to dipole-dipole interactions 2. Observation of cooperativity in an ultra-cold Rydberg ensemble 3. Towards single photon non-linearities

Experiment Setup EIT Locking Scheme ns np Choice of Rydberg State V (R) > Ω c > Ω p C 6 n 11 Ω c n 3/2 n = 50-60 Coupling Laser 480 nm Experimental Setup 87 Rb atoms prepared in 5S1/2 F =2,m F =2 Probe Laser 780 nm 5s 5p R. P. Abel et al., Appl. Phys. Lett. 94, 071107 (2009) P 780 1 pw 3 nw w 0 = 12 µm σ 2G Bias P 480 50 mw w 0 = 66 µm σ + Single Photon Counter Scan probe p /2π = 20 20 MHz in 500 µs K. J. Weatherill et al., J. Phys. B 41, 201002 (2008).

5S1/2! 5P3/2! 60S1/2 Transmi ssi on Record transmission for 60S1/2 at ρ 1.2 10 10 cm 3 Ω c /2π =0 4.8 MHz "$* Ω p /2π Data recorded from 100 averages "$) (MHz ) 0.3 Weak probe : "$( "$# "$' "$& "$% "$! "!!"!# " #!" p /2π (MHz) J. D. Pritchard et al. arxiv:1006.4087 (2010)

5S1/2! 5P3/2! 60S1/2 Transmi ssi on Record transmission for 60S1/2 at Ω c /2π 4.8 MHz "$* "$) "$( "$# "$' "$& "$% "$! Ω p /2π (MHz ) 0.3 Weak probe : "!!"!# " #!" p /2π (MHz) J. D. Pritchard et al. arxiv:1006.4087 (2010) ρ 1.2 10 10 cm 3 Data recorded from 100 averages No Rydberg population Narrow probe of Rydberg state frequency

5S1/2! 5P3/2! 60S1/2 Transmi ssi on Record transmission for 60S1/2 at Ω c /2π 4.8 MHz "$* "$) "$( "$# "$' "$& "$% Ω p /2π (MHz ) 0.3 1.0 2.0 > 50 % ρ 1.2 10 10 cm 3 + Suppression "$! "!!"!# " #!" p /2π (MHz) J. D. Pritchard et al. arxiv:1006.4087 (2010)

5S1/2! 5P3/2! 60S1/2 Transmi ssi on Record transmission for 60S1/2 at Ω c /2π 4.8 MHz "$* "$) "$( "$# "$' "$& "$% Ω p /2π (MHz ) 0.3 1.0 2.0 γ ρ 1.2 10 10 cm 3 + Suppression + No broadening "$! "!!"!# " #!" p /2π (MHz) J. D. Pritchard et al. arxiv:1006.4087 (2010)

5S1/2! 5P3/2! 60S1/2 Transmi ssi on Record transmission for 60S1/2 at Ω c /2π 4.8 MHz "$* δ "$) "$( "$# "$' "$& "$% Ω p /2π (MHz ) 0.3 1.0 2.0 ρ 1.2 10 10 cm 3 + Suppression + No broadening + No shift "$! "!!"!# " #!" p /2π (MHz) J. D. Pritchard et al. arxiv:1006.4087 (2010)

Mechanisms for suppression Observations: Suppression No Shift No Broadening Mechanisms: Ion Creation Mean-field interaction Van der Waals dephasing Cooperative Nonlinearity

Mechanisms for suppression Observations: Suppression No Shift No Broadening Mechanisms: Ion Creation Mean-field interaction Van der Waals dephasing ion Ω c Ω p r e Stark shift of atom i i ion = 1 2 α 0 N ion j E 2 (R ij ) Cooperative Nonlinearity g "$+ "$* Ion Density 0 % 5 % 10 % 20 % Ions cause red shift and broadening Transmi ssi on "$) "$( "$# "$' "$& "$% "$! "!!"!# " #!" p /2π (MHz)

Mechanisms for suppression Observations: Suppression No Shift No Broadening Mechanisms: Ion Creation Mean-field interaction Van der Waals dephasing dd r Dipole-dipole shift of atom i Ω c N i dd = C 6 e Rij 6 Ω p i j Cooperative Nonlinearity g "$+ "$* Rydberg Density 0 % 0.25 % 0.5 % 1% Mean-field causes blue shift and broadening H. Schempp et al. PRL 104, 173602 (2010) Transmi ssi on "$) "$( "$# "$' "$& "$% "$! "!!"!# " #!" p /2π (MHz)

Mechanisms for suppression Observations: Suppression No Shift No Broadening Mechanisms: Ion Creation Mean-field interaction Van der Waals dephasing Cooperative Nonlinearity γ Ω c Ω p r e g Dephasing Rate γ = γ vdw N r Fit 60S data: γ vdw 7Γ e γ /Γ e!"#( "#& "#% "#$ " ( $ ) %! Ω p /2π (MHz) vdw predicts significant broadening M. Gross and S. Haroche Phys. Rep. 93, 301 (1982) Transmi ssi on Ω p /2π: 0.1 MHz "!! "! "#' "#& "#% "#$ "#( 2 MHz!! "!!! "! p /2π (MHz) 4 MHz

Mechanisms for suppression Observations: Suppression No Shift No Broadening Mechanisms: Ion Creation Mean-field interaction Van der Waals dephasing Cooperative Nonlinearity Require model for all atoms in blockade ρ 1.2 10 10 cm 3 N b 9 Transmi ssi on "$* "$) "$( "$# "$' "$& "$% "$! Ω p /2π (MHz ) 0.3 1.0 2.0 Too big to model! "!!"!# " #!" p /2π (MHz)

5S1/2! 5P3/2! 60S1/2 Reduce atomic density ρ 0.35 10 10 cm 3 N b 3 Require 3-atom model Ω p /2π (MHz) : 1.1 2.0 3.2 ) Transmi ssi on "#( "#' "#& "#% "#! "#$!! "!!! "!!! "! p /2π (MHz)

Three Atom Model (1) Three Atom Coupled Basis Ω p Ω c Blockaded States Entangled state on two-photon resonance: Ψ = +,,,,,, + Model transmission using Liouville eq. σ = i [σ, H ] γσ

Parameters: weak-probe data Ω c /2π =3.8 MHz γ gr /2π = 110 khz Interaction strength: 1 Three Atom Model (2) V/2π = 15 MHz Ω p /2π (MHz) : 1.1 2.0 3.2 Transmi ssi on ) "#( "#' "#& "#% "#! "#$!! "!!! "!!! "! p /2π (MHz) Transmi ssi on 0.9 0.8 0.7 Data 1 Atom 2 Atoms 3 Atoms 0.6 0 0.5 1 1.5 2 2.5 3 3.5 Ω p /2π (MHz) Cooperative Nonlinearity :! Suppression! No Shift! No Broadening J. D. Pritchard et al. arxiv:1006.4087(2010)

Blockade Dephasing Rate Cooperative model: Transmi ssi on ) "#( "#' "#& "#% "#! "#$!! "!!! "!!! "! p /2π (MHz) Model single blockade to reproduce ensemble No additional broadening EIT width limited by relative laser linewidth γ gr Blockade dephasing rate γ b /2π < 100 khz

Nb-Scaling Non-linear density scaling: 1 N b (N b 1) + N = b 0.6 0.5 Ω p /2π (MHz) 0.1 2.0 60S 1/2 Number of atoms / blockade: 0.4 N b ρr 3 b n 6.25 χ EIT I χ ABS I 0.3 0.2 54S 1/2 N b 60 Nb 54 =2.0 0.1 Measured ratio 2.6 ± 0.7 0 0 0.5 1 ρ ( 10 10 cm 3 ) J. D. Pritchard et al. arxiv:1006.4087(2010) N b

Overview 1. Cooperative optical non-linearity due to dipole-dipole interactions 2. Observation of cooperativity in an ultra-cold Rydberg ensemble 3. Towards single photon non-linearities

Photon Blockade α Input light in coherent state α P (n) 0.25 0.2 0.15 0.1 0.05 n =2 Ensemble transparent to single photon,, 0 0 1 2 3 4 5 6 Ψ = + n,, +,, Measure changes in photon statistics due to cooperative interaction

Blockaded Ensemble " Single Photon source M. Saffman and T. Walker, PRA 66, 065403 (2002) " Cooperative emission of a single photon D. Porras and J. I. Cirac, PRL 78, 053816 (2009) L. H. Pedersen and K. Mølmer, PRA 79, 012320 (2009)

Single Photon Non-linearities Requirements: + Large single photon Rabi frequency + All atoms confined within single blockade sphere R < R b 5 µm Solution: Microscopic Dipole Trap 915 nm dipole trap 780 nm probe beam Transverse trap w =6µm

Vacuum Chamber

Outlook Cooperative atom-light interaction due to dipole-dipole interactions! Done Transmission "$* "$) "$( "$# "$' "$& "$% "$! Ω p /2π (MHz ) 0.3 1.0 2.0 "!!"!# " #!" p /2π (MHz) Require single blockade sphere! Built Explore photon statistics! In progress

Acknowledgements Dan Maxwell Dr. Alex Gauguet Dr. Kevin Weatherill Dr. Matt Jones Prof. Charles Adams