Groundwater flow dynamic investigation without drilling boreholes

Similar documents
Groundwater Hydrology

Groundwater Sustainability at Wadi Al Bih Dam, Ras El Khaimah, United Arab Emirates (UAE) using Geophysical methods

Surface Processes Focus on Mass Wasting (Chapter 10)

Vertical electrical sounding (VES) for subsurface geophysical investigation in Kanigiri area, Prakasam district, Andhra Pradesh, India

Impact of the Danube River on the groundwater dynamics in the Kozloduy Lowland

Soils, Hydrogeology, and Aquifer Properties. Philip B. Bedient 2006 Rice University

MICRO LEVEL GEO-RESISTIVITY SURVEY THROUGH V.E.S. TEST FOR GROUNDWATER FEASIBILITY STUDY AND SELECTION OF BORE WELL SITES IN PIPILI BLOCK OF PURI

Integrated Geophysical Interpretation On The Groundwater Aquifer (At The North Western Part of Sinai, Egypt)

DETECTION OF GROUNDWATER POLLUTION USING RESISTIVITY IMAGING AT SERI PETALING LANDFILL, MALAYSIA

DATA ACQUISITION METHODS FOR GROUNDWATER INVESTIGATION AND THE SITING OF WATER SUPPLY WELLS

Vertical Electrical Sounding Survey for Groundwater Exploration in Parts of Anyigba and its Environs, in the Anambra Basin of Nigeria

Groundwater Vulnerability Mapping Eastern Newfoundland Executive Summary

Delineation of Groundwater Prospective Zones by Schlumberger electrode array in Bangriposi block of Odisha

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #5: Groundwater Flow Patterns. Local Flow System. Intermediate Flow System

KANSAS GEOLOGICAL SURVEY Open File Report LAND SUBSIDENCE KIOWA COUNTY, KANSAS. May 2, 2007

Geophysical Investigation of Egbeta, Edo State, Nigeria, Using Electrical Resistivity Survey to Assess the Ground water Potential

Chapter 8 Fetter, Applied Hydrology 4 th Edition, Geology of Groundwater Occurrence

The Use of Vertical Electrical Sounding (VES) for Subsurface Geophysical Investigation around Bomo Area, Kaduna State, Nigeria

Case Study: University of Connecticut (UConn) Landfill

Application of Remote Sensing and Geo-Electrical Method for Groundwater Exploration in Khor Al Alabyad, North Kordofan State, Sudan

Geophysical Investigation: A Case Study of Basement Complex, Nigeria

Evaluation of the hydraulic gradient at an island for low-level nuclear waste disposal

2-D Resistivity Study: The Horizontal Resolution Improvement by Introducing the Enhancing Horizontal Resolution (EHR) Technique

Landslide analysis to estimate probability occurrence of earthquakes by software ArcGIS in central of Iran

A Preliminary Geophysical Reconnaissance Mapping of Emirau Ground Water Resource, Emirau Island, New Ireland Province, PNG

RESISTIVITY IMAGING AND BOREHOLE INVESTIGATION OF THE BANTING AREA AQUIFER, SELANGOR, MALAYSIA. A.N. Ibrahim Z.Z.T. Harith M.N.M.

GEOELECTRICAL INVESTIGATION OF GROUNDWATER CONDITION IN OLEH, NIGERIA

Evaluation of Subsurface Formation of Pabna District, Bangladesh

INTEGRATED INVESTIGATION TO LOCATE A WASTE DISPOSAL AREA

GLG 471; MICHIGAN STATE UNIVERSITY INSTRUCTOR R.L. VAN DAM PROJECT: ELECTRICAL RESISTIVITY

Geoelectrical Investigations at Three Bridge Sites, North Nyala, Southern Darfour State, West-Sudan

Development of geophysical investigation for verifying treatment efficiency of underground cavities

APPLICATION OF ELECTRICAL RESISTIVITY TOMOGRAPHY FOR SAND UNDERWATER EXTRACTION

Groundwater Assessment in Apapa Coast-Line Area of Lagos Using Electrical Resistivity Method

Geophysical Surveys for Groundwater Modelling of Coastal Golf Courses

Lima Project: Seismic Refraction and Resistivity Survey. Alten du Plessis Global Geophysical

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March ISSN

Hydrologic factors controlling groundwater salinity in northwestern coastal zone, Egypt

The Geology and Hydrogeology of the Spyhill Area

Morenikeji P. Anjorin, B.Tech. 1 and Martins O. Olorunfemi, Ph.D. 2*

RESISTIVITY IMAGING IN EASTERN NEVADA USING THE AUDIOMAGNETOTELLURIC METHOD FOR HYDROGEOLOGIC FRAMEWORK STUDIES. Abstract.

2-D RESISTIVITY IMAGING SURVEY FOR WATER-SUPPLY TUBE WELLS IN A BASEMENT COMPLEX: A CASE STUDY OF OOU CAMPUS, AGO-IWOYE SW NIGERIA

THE MINISTRY OF ENERGY AND ENERGY INDUSTRIES MINERALS DIVISION MINE DESIGN TEMPLATE OPERATOR NAME: OPERATOR ADDRESS: PHONE NUMBER: FACSIMILE:

A High Resolution Vertical Gradient Approach for Delineation of Hydrogeologic Units at a Contaminated Sedimentary Rock Field Site

Preliminary Investigation of the Groundwater Occurrence in Parts of Ede Metropolis

Groundwater Level Monitoring of the Quaternary Aquifer at Al Ain City, United Arab Emirates (UAE) using Geophysical Methods

Groundwater Exploration In Parts Of Mangu- Halle North-Central Nigeria.

Azimuthal Resistivity to Characterize Fractures in a Glacial Till. Mark Boris, University of Saskatchewan Jim Merriam, University of Saskatchewan

Determination of Thickness of Aquifer with Vertical Electrical Sounding

Relevance of 2D Electrical Imaging in Subsurface Mapping: Case Study of National Animal Production Research Institute (NAPRI), Zaria.

GEOLOGY (GEOL) Geology (GEOL) 1. GEOL 118 Societal Issues in Earth Science (4 crs)

Electrical imaging techniques for hydrological and risk assessment studies

Study of Hydrometeorology in a Hard Rock Terrain, Kadirischist Belt Area, Anantapur District, Andhra Pradesh

GM 1.4. SEG/Houston 2005 Annual Meeting 639

LECTURE 10. Module 3 : Field Tests in Rock 3.6 GEOPHYSICAL INVESTIGATION

Geophysical Investigation of the Precambrian Marble Occurrence in Itobe Area, Central Nigeria

The impact of geologic setting on the groundwater occurrence in the Eocene limestone of El Minia-East Nile-Egypt, using geoelectrical technique

NOA ASSESSMENT HARRIS QUARRY MENDOCINO COUNTY, CALIFORNIA TABLE OF CONTENTS

2D Resistivity Imaging Investigation of Solid Waste Landfill Sites in Ikhueniro Municipality, Ikpoba Okha Local Government Area,Edo State, Nigeria.

GOVERNMENT OF NEPAL MINISTRY OF IRRIGATION GROUND WATER RESOURCES DEVELOPMENT BOARD BABARMAHAL, KATHMANDU, NEPAL

A Short Course in Contaminated Fractured Rock Hydrogeology and Geophysics

Groundwater Modeling for Flow Systems with Complex Geological and Hydrogeological Conditions

Geophysical Investigation of Ground Water Using Vertical Electrical Sounding and Seismic Refraction Methods

EVALUATION OF SOIL AND WATER RESOURCES IN WADI WARDAN, SINAI, EGYPT, USING ELECTRICAL RESISTIVITY METHOD

POTASH DRAGON CHILE GEOPHYSICAL SURVEY TRANSIENT ELECTROMAGNETIC (TEM) METHOD. LLAMARA and SOLIDA PROJECTS SALAR DE LLAMARA, IQUIQUE, REGION I, CHILE

Senior Thesis. BY Calliope A. Voiklis 2000

Structural Geology Lab. The Objectives are to gain experience

Re: Steep Slope Assessment for 2465 Waverly Drive, Blind Bay, BC; Legal Address: Lot 39, Section 18, Township 22, Range 10, Plan 25579, W6M, KDYD.

URBAN HYDROLOGY: WATER IN THE CITY OF TSHWANE Plant Sciences Auditorium, University of Pretoria January 2014 URBAN HYDROGEOLOGY

Analysis of electrical resistivity data for the determination of aquifer depth at Sapele RD in Benin city

Freshwater. 1. The diagram below is a cross-sectional view of rain falling on a farm field and then moving to the water table.

Nature and Science 2010;8(8)

Groundwater Exploration using Integration of Electrical Resistivity Data with Remote Sensing and GIS Data, Northern State Sudan

Application of Vertical Electrical Sounding (VES) In Delineating Ground Water Potential in Some Part of Jalingo, Taraba State North Eastern Nigeria

Subsurface Characterization using Electrical Resistivity(Dipole-Dipole) method at Lagos State University (LASU) Foundation School, Badagry

Essentials of Geology, 11e

Determination of Incompressibility, Elasticity and the Rigidity of Surface Soils and Shallow Sediments from Seismic Wave Velocities

Delineation of Zones at Risk from Groundwater Inflows at an Underground Platinum Mine in South Africa

Geophysical Study of Limestone Attributes At Abudu Area of Edo State, Nigeria

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B)

' International Institute for Land Reclamation and Improvement. 2 Groundwater Investigations. N.A. de Ridder'? 2.1 Introduction. 2.

Geophysical Investigation of Foundation Condition of A Site in Ikere- Ekiti, Ekiti State, South-Western Nigeria

Integrated GIS based approach in mapping the groundwater potential zones in Kota Kinabalu, Sabah, Malaysia

K. A. Murana, P. Sule, A.L. Ahmed, E.M. Abraham and E.G. Obande. 1. Introduction

Application of Vertical Electrical Sounding to Delineate and Evaluate the Hydrological Conditions in Baiji Tikrit Basin

fregonruleco. 1 U.S.A. 2

1. Resistivity of rocks

Seismic Reflection Imaging across the Johnson Ranch, Valley County, Idaho

Influence of Paleochannels on Seepage

Assessment of Ground Water in a Part of Coastal West Bengal using Geo-Electrical Method

11/22/2010. Groundwater in Unconsolidated Deposits. Alluvial (fluvial) deposits. - consist of gravel, sand, silt and clay

Geophysical Study of the Sedimentary Cover in Darb El-Arbeen, South Western Desert, Egypt

Groundwater Resource Evaluation in Support of Dewatering a South Carolina Limestone Quarry

S.I. Fadele, M.Sc. 1 ; P.O. Sule, Ph.D. 1 ; and B.B.M. Dewu, Ph.D * ABSTRACT

the Quarrying Industry Dewatering and the Quarrying Industry the Quarrying Industry

Vertical Electrical Sounding (Ves) For The Determination Of Under Ground Resistivity In Part Of Nigeria Wilberforce Island,Amassoma, Bayelsa State

[Penumaka, 7(1): January-March 2017] ISSN Impact Factor

Pit Slope Optimization Based on Hydrogeologic Inputs

Derived Relations between Geoelectric and Hydraulic Parameters in Bara Basin, Sudan

Evolution of the conceptual hydrogeologic and ground-water flow model for Las Vegas Valley, Clark County, Nevada

Transcription:

Appl Water Sci (2017) 7:481 488 DOI 10.1007/s1320101502671 ORIGINAL ARTICLE Groundwater flow dynamic investigation without drilling boreholes Mahmoud Moustafa Received: 16 March 2014 / Accepted: 5 February 2015 / Published online: 20 February 2015 The Author(s) 2015. This article is published with open access at Springerlink.com Abstract The flow net map is a basic tool for groundwater flow dynamics investigation. In areas where there are no boreholes or piezometers are not available, constructing flow net map may be difficult. This work proposes a simple methodology to construct flow net map without drilling boreholes. The flow net map constructed using the proposed approach represents an expected flow net map, which can draw conceptual flow model of the site. The major benefit from constructing the expected flow net map is it gives guidance for locating new boreholes for site investigation, carrying out investigation of the groundwater flow directions and estimating recharge/discharge from the site boundary. An illustrative example for the proposed approach was presented to show how the data required to construct the expected flow net map can be collected. The constructed, expected flow net map using the proposed methodology was compared with actual flow net map constructed from measured water levels. Both maps give consistent hydrological information about the site. The suggested approach represents a simple and cheap way to carry out investigation of groundwater flow dynamics in areas where there are no boreholes are available. Keywords Groundwater Flow direction Flow net construction No boreholes Introduction Constructing flow net map is a wellaccepted practice in investigation of groundwater flow directions. A flow net is a 2D M. Moustafa (&) Faculty of Petroleum and Mining Engineering, Suez University, Suez, Egypt email: m.h.moustafa@gmail.com diagram of equipotential and flow lines (Braja 2013; Casagrande 1940; Driscoll 1986; Freeze and Witherspoon 1967). The flow net map can be used to estimate the quantity of recharge across site feeding front boundary, and contaminant load can be estimated from flow net map (Harr 1962; Domenico and Schwartz 1990). Flow net can show the topographic control of groundwater flow (Fetter 1988). To construct a flow net map, water levels are measured in a network of boreholes and their surfaces are interpolated between measuring points (Fels and Matson 1996). Water table surface is a representation of the surface of saturated zone, below which all the geological formation voids are fully filled with water (Heath 1988). Position of the water table is a result of natural processes controlling the rate at which water enters and leaves the saturated zone. If the rate of water enters the saturated zone (recharge) exceeds the rate of water leaving (discharge) the aquifer, the water table rises and vice versa. The water table surface is not static, nor flat, but reflects the climatic, vegetative and geomorphic conditions. The groundwater water table could be subdued replica of the land surface (King 1899; Domenico and Schwartz, 1990). Groundwater aquifer investigation in an area requires drilling boreholes to know the water depth to determine water level and construct flow net map. Having constructed a flow net map, groundwater flow dynamics such as pressure head distribution throughout the aquifer, flow direction, hydraulic gradient and definition of discharge/recharge areas can be studied (Freeze and Cherry 1979; Fitts 2012). All above benefits from flow net map cannot be obtained if there are no boreholes at the study site. Resistivity measurements with Schlumberger array configurations (Zohdy et al. 1974) are considered one of the best configurations for water depth sounding to explore the groundwater aquifer occurrences. In this configuration, the center point of the electrode array remains fixed; however, the spacing between the electrodes

482 Appl Water Sci (2017) 7:481 488 Fig. 1 Study site location at Naama Bay, Egypt Table 1 Estimated water depth from geoelectric survey and calculated water level Point Longitude (decimal) from GPS a Latitude (decimal) from GPS a Height above sea level (m) from Google Earth b Estimated depth to water (m) from geoelectric survey Water level above sea level (m) without wells c 1 34.33156729 27.925 28.485 18 10.485 2 34.33098793 27.9248 28.864 19 9.864 3 34.3322432 27.9244 25.804 21 4.804 4 34.33167458 27.9243 24.756 20 4.756 a Coordinates obtained from GPS b Height of points estimated from Google Earth c Calculated water level using water depth from geoelectric survey and Eq. (1) is increased in a progressive way to obtain more information about the subsurface layers. This work proposes a simple nondestructive methodology to construct water level and flow net maps in regions where there are no boreholes. The methodology was applied to a site to show how the required data for the methodology can be collected. Study site The study site is located in Naama Bay, Egypt (Fig. 1). Naama Bay lies in the region which extends from Ras Mohamed in the south and Taba in the north. South Sinai has many watercourses (wadies) some of which run in the north south direction and extend to Suez Gulf and Naama

Appl Water Sci (2017) 7:481 488 483 Fig. 4 Positions of electrical polars during investigation Water depth inside the well Casing height above ground surface Ground surface Ground surface height above see level Water height above see level See level Fig. 2 Sketch of site location with borehole location Fig. 5 Layout to estimate water level above sea level from measured depth to water in four boreholes Fig. 3 Schlumberger array used to detect water depth at each of the selected points where A and B are electrical current polars, M and N are electrical potential polars Bay. Sinai consists of three main sections. Northern section consists of sandstone, middle one consists of limestone, and the southern section where study site located consists of granitic rocks coved in some parts with limestone, sandstone and quaternary deposits (Hume 1906). Materials and methods To construct a flow net map without drilling boreholes, three approaches were applied. 1. GPS (Global Positioning System) (NUS, 1995): GPS was used to define the coordinates of four points selected in the site (Table 1; Fig. 2). 2. Google Earth: Using the coordinates of the four points and Google Earth, the height of the selected points above sea level was measured (Table 1). 3. Geoelectric survey was applied to estimate water depth at the four selected points. Geoelectric technique with Schlumberger layout (Fig. 3) was applied. The method is based on the estimation of resistivity of the medium. An apparent resistivity is calculated from a resistance value and geometric factors that account for the electrode spacing configuration. Estimation is performed based on the measurement of voltage of electrical field induced by the distant grounded electrodes (current electrodes). The interpretation of the measurements can be performed based on the apparent resistivity values. The depth of investigation depends on the distance between the current electrodes. In order to obtain the apparent resistivity as the function of depth, the measurements for each position are performed with several different distances between current electrodes. The measurements were taken using 200 m distance between polars A and B to know the subsurface layers till 70 m depth (Fig. 4). Resistivity curves were plotted on logarithmic scale between resistivity value and distance AB/2. RESIST software was used to analyze the data. Estimated water depth values are indicated in Table 1. 4. Geoelectric cross section for the site in the west east direction.

484 Appl Water Sci (2017) 7:481 488 Table 2 Data used in constructing actual flow net map using measured water depth values Point Longitude (decimal) from GPS Latitude (decimal) from GPS Height above sea level (m) from Google Earth Measured water depth (m) in drilled boreholes Water levels above sea level (m) in drilled boreholes above sea level (m) a 1 34.33156729 27.925 28.485 19.8 8.685 2 34.33098793 27.9248 28.864 19.95 7.964 3 34.3322432 27.9244 25.804 22.6 2.704 4 34.33167458 27.9243 24.756 21.89 2.756 a Water level calculated using Eq. (1) and water depth measured in drilled wells Fig. 6 Vertical apparent resistivity curve Fig. 7 Interpretative geological cross section through the study site (personal communication) 5. The water level above sea level at the four selected points was calculated based on Eq. (1) (Table 1). Water level above sea level ¼ Height of point above sea level Water depth at same point ð1þ Four boreholes were drilled at same locations of the four points, the water depth was measured, and the water level was calculated according to Eq. (1) and Fig. 5. The measured water depth and calculated water levels are indicated in Table 2. Measured water depth values (Table 2) at the selected points were collected from the boreholes drilled at same

Appl Water Sci (2017) 7:481 488 485 Main Formation Design Depth in meter To from Where casing height above ground surface = 10 cm Weathered Rock Casing 20 Ground surface Results and discussion Sandy limestone Sandy limestone with high clay content Sandy limestone Sandy limestone Filter Casing Filter Gravel Fig. 8 Lithology of borehole drilled in the site water table 20 points by private sector. The water levels at drilled boreholes above sea level (Fig. 4) were calculated from Eq. (2). 30 33 60 70 30 33 60 Water depth estimation and subsurface characterization From geoelectric survey, Figs. 6 and 7 revealed that there are four layers. Top surface layers have 0.7 m thickness with resistivity 29.4 Ohm/m followed by unsaturated layer from limestone with resistivity 83.6 Ohm/m, with thickness 2.3 m. This layer, underlined by unsaturated sandy limestone intercalated with clay, has 8.2 Ohm/m resistivity and 10 m thickness. Finally, a saturated sandy limestone layer extends to 40 m with low resistivity (1.1 Ohm/m) maybe due to saline water. The transition of resistivity values from 83.6 Ohm/m at 3.3 m depth from ground surface to resistivity of 8.2 Ohm/m in the unsaturated layer at 20 m depth is interpreted to represent the water depth ranges from 18 to 20 m below ground surface. This may be consistent with depth to water measured in boreholes drilled at the site (Table 2). The lithology of the drilled borehole is indicated in Fig. 8. Water level inside borehole above sea level ¼ ðground surface level þ casing heightþ Depth to water inside the borehole ð2þ Site topography characterization From four selected points, coordinates obtained from GPS technique topography map was constructed. It indicates Fig. 9 Topographic map of the site based on data columns 2,3 and 4 in table (1)

486 Appl Water Sci (2017) 7:481 488 Fig. 10 Expected distribution map for water depth in the site using depth to water inferred from geoelectrical survey data from Table 1 m Borehole location Fig. 11 Expected flow net map constructed using estimated water depth from geoelectric survey data from Table 1 North m Boreholes locations that the site has gentle slope from all sides running toward Naama Bay shoreline (Fig. 9). Groundwater dynamics investigation Construction of depth to water map Water depth information is important in locating and designing water wells. Water depth distribution map in the study site was constructed using water depth collected from geoelectric survey (Table 1). water depth in the site (Fig. 10) is deep by (18 m) in high topographic areas on the left side of the area and deep by (20 m) in low topographic land in the south and southeast of the site. water depth lines in the area suggest subdued replica of ground surface topography (King 1899; Daniel 1989). Although Todd (2005) suggested that surface geoelectric survey could not give an accurate water surface, many authors such as Nigm (2013), Sabet (1975) and Douglas (2013) indicated that inferred depth of water from resistivity survey could be consistent with the values measured in boreholes. The measured values of water depth in four boreholes (Table 2) could be consistent with that estimated from geoelectric surface taking into account borehole diameter may have an effect on the final position of water surface inside the well (Lohman 1972). Water depth map

Appl Water Sci (2017) 7:481 488 487 Fig. 12 Actual flow net map from measured water depth in four boreholes m from measured values is consistent with water depth distribution map with that obtained from estimated water depth as shown in Fig. 10. Expected and actual flow net map The expected flow net map (Figs. 11, 12) was constructed based on data collected from the suggested methodology (Table 1), where the water level was calculated from depth to water estimated from geoelectric survey and elevations of points above sea level obtained from digital elevations from Google Earth with GPS (longitude, latitude) coordinates. This map indicates that the groundwater moves from north to south and southeast of the site toward Naama Bay shoreline. Groundwater in the area discharges into the south end of the site (shoreline of Naama Bay). Recharge to the site comes from the around highlands, from the north, northeast and northwest side. This may be consistent with watercourses (wadies with alluvial deposits) which are running in north south direction. The inflow or outflow quantities can be estimated by applying the Darcy law (Braja 2013). The expected flow net map was compared with actual flow net map constructed using measured depth to water values in four boreholes drilled by private sector (Table 2). Although the measured depth to water is slightly different from that estimated from geoelectric survey, the expected flow net map gives consistent hydrological information about groundwater flow direction in the site. The general groundwater flow direction was nearly the same at both flow net maps (expected and actual map). A sensitivity analysis for the accuracy of the expected flow net map was carried out, where the measured water depth values were changed by varying percentages from the estimated values. It was found that if the error percentage between the estimated and measured water depth is constant at all measuring points (wells), both the expected and actual flow net maps are giving same hydrological information about groundwater flow direction regardless of the error value. Conclusion In areas where there are no boreholes or information about groundwater level and direction, expected flow net map of the site can be constructed without drilling boreholes, using the suggested simple nondestructive methodology to study groundwater flow dynamics and contaminate migration. Comparing the flow net map using water levels estimated from the suggested approach to that constructed from measured water depth values gives same hydrological groundwater flow information concerning flow direction and recharge/discharge areas. If the errors between estimated water depth from resistivity survey and that measured in boreholes were constant at all measuring points, both actual and expected flow net map have the same hydrological conclusion. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. References Braja M (2013) Principles of geotechnical engineering, 7th edn

488 Appl Water Sci (2017) 7:481 488 Casagrande A (1940) Seepage through dams in contributions to soil mechanics: 1925 1940, Boston Soc. Civil Engineers Daniel CC (1989) Statistical Analysis Relating Well Yield to Construction Practices and Siting of Wells in the Piedmont and Blue Ridge Provinces of North Carolina (US Geological Survey watersupply paper 2341A). US Government Printing Office, Washington, DC Domenico PA, Schwartz FW (1990) Physical and Chemical Hydrogeology. Wiley, New York Douglas HA (2013) Geoelectrical detection of water table depth at two locations in the Los Osos groundwater basin. A Senior Project, Faculty of the Natural Resource Management and Environmental Science Department. California Polytechnic State University, San Luis Obispo Driscoll FD (ed) (1986) Groundwater and wells. Johnson Screens, St Paul Fels JE, Matson KC (1996) A cognitivelybased approach for hydrogeomorphic land classification using digital terrain models. In: Proceedings, Third International Conference on Integrating GIS and Environmental Modeling, National Center for Geographic Information and Analysis, Santa Barbara (WWW, CD) Fetter CW (1988) Applied hydrogeology. Nerrill Pub Co., A well and Howell information Co., Columbia, p 529 Fitts C (2012) Groundwater science. 2nd edn, Hardbound Freeze RA, Cherry JA (1979) Groundwater: PrenticeHall. Englewood Cliffs, NJ, pp 174 178 Freeze RA, Witherspoon PA (1967) Theoretical analysis of regional groundwater flow, 2. Effect of watertable configuration and subsurface permeability variation: Water Resour Res 3:623 634 Harr ME (1962) Groundwater and seepage, McGrawHill, New York, p 315 Heath RC (1988) Hydrogeologic Settings of Regions. In: Back W, Rosenshein JS, Seaber PR (eds) Hydrogeology. Geological Society of America, Boulder Hume WF (1906) The topography and geology of Peninsula of Sinai. Southeastern portion, Cairo King FH (1899) Principles and conditions of the movements of groundwater. US Geological Survey 19th Annual Report, Part 2, pp 59 294 Lohman SW (1972) Groundwater hydraulics. Geological Survey Professional (708) National Research Council (N.U.S.) (1995) Committee on the Future of the Global Positioning System; National Academy of Public Administration. The global positioning system: a shared national asset: recommendations for technical improvements and enhancements. National Academies Press, Chapter 1, p 16 (ISBN 0309052831. Retrieved 20130816) Nigm A (2013) Geoelectric study for water well location in the campus of Taif University, Taif, Saudi Arabia. Int J Water Resour Arid Environ. 2(4):195 204 (ISSN 20797079) Sabet MA (1975) Vertical electrical resistivity soundings to locate ground water resources: a feasibility study. Department of Geophysical Sciences, Old Dominion University, Norfolk, pp 329 346 Todd DK, Mays LW (2005) Groundwater hydrology, 3rd edn. Wiley, NewYork, p 636 Zohdy A, Eaton GP, Mabey DR (1974) Application of surface geophysics to groundwater a correlation between the different models of investigations: U.S. Geological Survey Waterresistivity sounding data to discover new fresh resources Investigations, Book 2, Chapter D1, p 86