... after Norton conversion...

Similar documents
NETWORK ANALYSIS AND NETWORK THEORMS

Notes for course EE1.1 Circuit Analysis TOPIC 4 NODAL ANALYSIS

DC CIRCUIT ANALYSIS. Loop Equations

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS

D C Circuit Analysis and Network Theorems:

ENGG 225. David Ng. Winter January 9, Circuits, Currents, and Voltages... 5

Direct-Current Circuits. Physics 231 Lecture 6-1

Lecture Notes on DC Network Theory

Kirchhoff's Laws and Circuit Analysis (EC 2)

Notes for course EE1.1 Circuit Analysis TOPIC 3 CIRCUIT ANALYSIS USING SUB-CIRCUITS

Discussion Question 6A

September 2013 IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Circuit Analysis

Chapter 10: Sinusoidal Steady-State Analysis

ECE 1311: Electric Circuits. Chapter 2: Basic laws

Chapter 2 Direct Current Circuits

Lecture #3. Review: Power

Chapter 19 Lecture Notes


Basic Electrical Circuits Analysis ECE 221

EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1

E1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13

EXPERIMENT 12 OHM S LAW

DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE

Series/Parallel Circuit Simplification: Kirchoff, Thevenin & Norton

Chapter 10 AC Analysis Using Phasors

DC STEADY STATE CIRCUIT ANALYSIS

Chapter 28. Direct Current Circuits

QUIZ 1 SOLUTION. One way of labeling voltages and currents is shown below.

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Capacitor of capacitance C; Their schematic representations are shown in Figure below.

ELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS. These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly.

ENGR 2405 Class No Electric Circuits I

Tactics Box 23.1 Using Kirchhoff's Loop Law

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS

Electricity & Magnetism

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 11

CHAPTER FOUR CIRCUIT THEOREMS

Chapter 18 Electric Currents

DC NETWORK THEOREMS. Learning Objectives

6. MESH ANALYSIS 6.1 INTRODUCTION

Electric Circuits Part 2: Kirchhoff s Rules

3.1 Superposition theorem

THERE MUST BE 50 WAYS TO FIND YOUR VALUES: AN EXPLORATION OF CIRCUIT ANALYSIS TECHNIQUES FROM OHM S LAW TO EQUIVALENT CIRCUITS

Electrical Engineering Fundamentals for Non-Electrical Engineers

Review of Circuit Analysis

Engineering Fundamentals and Problem Solving, 6e

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34)

Designing Information Devices and Systems I Spring 2015 Note 11

E40M Charge, Current, Voltage and Electrical Circuits KCL, KVL, Power & Energy Flow. M. Horowitz, J. Plummer, R. Howe 1

Chapter 26 Examples : DC Circuits Key concepts:

R 2, R 3, and R 4 are in parallel, R T = R 1 + (R 2 //R 3 //R 4 ) + R 5. C-C Tsai

Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku

The process of analysing a circuit using the Laplace technique can be broken down into a series of straightforward steps:

Circuit Theory I Basic Laws

KIRCHHOFF S LAWS. Learn how to analyze more complicated circuits with more than one voltage source and numerous resistors.

Chapter 6 DIRECT CURRENT CIRCUITS. Recommended Problems: 6,9,11,13,14,15,16,19,20,21,24,25,26,28,29,30,31,33,37,68,71.

Notes on Electricity (Circuits)

Chapter 7. Chapter 7

Capacitors. Chapter How capacitors work Inside a capacitor

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Ch 28-DC Circuits! 1.) EMF & Terminal Voltage! 9.0 V 8.7 V 8.7 V. V =! " Ir. Terminal Open circuit internal! voltage voltage (emf) resistance" 2.

Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer

Electric Current. Note: Current has polarity. EECS 42, Spring 2005 Week 2a 1

ECE2262 Electric Circuits

Tutorial #4: Bias Point Analysis in Multisim

Clicker Session Currents, DC Circuits

Homework 2. Due Friday (5pm), Feb. 8, 2013

CHAPTER 4. Circuit Theorems

R R V I R. Conventional Current. Ohms Law V = IR

Basic Laws. Bởi: Sy Hien Dinh

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws

Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives:

COOKBOOK KVL AND KCL A COMPLETE GUIDE

Notes on Electricity (Circuits)

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.

Midterm Exam (closed book/notes) Tuesday, February 23, 2010

Sinusoidal Steady State Analysis (AC Analysis) Part I

LABORATORY MODULE ELECTRIC CIRCUIT

Electricity and Light Pre Lab Questions

Lecture 3 BRANCHES AND NODES

Introductory Circuit Analysis

Kirchhoff s laws. Figur 1 An electric network.

Fundamental of Electrical circuits

Basics of Network Theory (Part-I)

Brian Blais Quick Homemade Guide to Circuits

COPYRIGHTED MATERIAL. DC Review and Pre-Test. Current Flow CHAPTER

Agenda for Today. Elements of Physics II. Resistance Resistors Series Parallel Ohm s law Electric Circuits. Current Kirchoff s laws

P1: Basics - Things you now know that you didn t know you knew (25 pts)

Name Date Time to Complete

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback

ECE2262 Electric Circuits. Chapter 5: Circuit Theorems

Chapter 1: Logic systems

Electric Current Unlike static electricity, electric current is a continuous flow of charged particles (electricity). For current to flow, there must

Chapter 4: Techniques of Circuit Analysis

Chapter 5: Circuit Theorems

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Vayu Education of India 2/25, Ansari Road, Darya Ganj, New Delhi

Transcription:

Norton 's Theorem states that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single current source and parallel resistance connected to a load. Just as with Thevenin's Theorem, the qualification of linear is identical to that found in the Superposition Theorem: all.(underlying equations must be linear (no exponents or roots Contrasting our original example circuit against the Norton equivalent: it looks :something like this... after Norton conversion... Remember that a current source is a component whose job is to provide a constant amount of current, outputting as much or as little voltage necessary to maintain that.constant current As with Thevenin's Theorem, everything in the original circuit except the load resistance has been reduced to an equivalent circuit that is simpler to analyze. Also similar to Thevenin's Theorem are the steps used in Norton's Theorem to calculate the.(norton source current (I Norton ) and Norton resistance (R Norton As before, the first step is to identify the load resistance and remove it from the :original circuit

Then, to find the Norton current (for the current source in the Norton equivalent circuit), place a direct wire (short) connection between the load points and determine the resultant current. Note that this step is exactly opposite the respective step in :(Thevenin's Theorem, where we replaced the load resistor with a break (open circuit With zero voltage dropped between the load resistor connection points, the current through R 1 is strictly a function of B 1 's voltage and R 1 's resistance: 7 amps (I=E/R). Likewise, the current through R 3 is now strictly a function of B 2 's voltage and R 3 's resistance: 7 amps (I=E/R). The total current through the short between the load connection points is the sum of these two currents: 7 amps + 7 amps = 14 amps. This :figure of 14 amps becomes the Norton source current (I Norton ) in our equivalent circuit Remember, the arrow notation for a current source points in the direction opposite that of electron flow. Again, apologies for the confusion. For better or for worse, this!is standard electronic symbol notation. Blame Mr. Franklin again

To calculate the Norton resistance (R Norton ), we do the exact same thing as we did for calculating Thevenin resistance (R Thevenin ): take the original circuit (with the load resistor still removed), remove the power sources (in the same style as we did with the Superposition Theorem: voltage sources replaced with wires and current sources replaced with breaks), and figure total resistance from one load connection point to :the other :Now our Norton equivalent circuit looks like this If we re-connect our original load resistance of 2 Ω, we can analyze the Norton circuit :as a simple parallel arrangement Thevenin equivalent circuit, the only useful information from this analysis is the voltage and current values for R 2 ; the rest of the information is irrelevant to the original circuit. However, the same advantages seen with Thevenin's Theorem apply to Norton's as well: if we wish to analyze load resistor voltage and current over several different values of load resistance, we can use the Norton equivalent circuit again and again, applying nothing more complex than simple parallel circuit analysis.to determine what's happening with each trial

Thevenin's Theorem states that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single voltage source and series resistance connected to a load. The qualification of linear is identical to that found in the Superposition Theorem, where all the underlying equations must be linear (no exponents or roots). If we're dealing with passive components (such as resistors, and later, inductors and capacitors), this is true. However, there are some components (especially certain gas-discharge and semiconductor components) which are nonlinear: that is, their opposition to current changes with voltage and/or current. As.such, we would call circuits containing these types of components, nonlinear circuits Thevenin's Theorem is especially useful in analyzing power systems and other circuits where one particular resistor in the circuit (called the load resistor) is subject to change, and re-calculation of the circuit is necessary with each trial value of load resistance, to determine voltage across it and current through it. Let's take another :look at our example circuit Let's suppose that we decide to designate R 2 as the load resistor in this circuit. We already have four methods of analysis at our disposal (Branch Current, Mesh Current, Millman's Theorem, and Superposition Theorem) to use in determining voltage across R 2 and current through R 2, but each of these methods are time-consuming. Imagine repeating any of these methods over and over again to find what would happen if the load resistance changed (changing load resistance is very common in power systems, as multiple loads get switched on and off as needed. the total resistance of their parallel connections changing depending on how many are connected at a time). This!could potentially involve a lot of work Thevenin's Theorem makes this easy by temporarily removing the load resistance from the original circuit and reducing what's left to an equivalent circuit composed of a single voltage source and series resistance. The load resistance can then be reconnected to this Thevenin equivalent circuit and calculations carried out as if the :whole network were nothing but a simple series circuit

... after Thevenin conversion... The Thevenin Equivalent Circuit is the electrical equivalent of B 1, R 1, R 3, and B 2 as.seen from the two points where our load resistor (R 2 ) connects The Thevenin equivalent circuit, if correctly derived, will behave exactly the same as the original circuit formed by B 1, R 1, R 3, and B 2. In other words, the load resistor (R 2 ) voltage and current should be exactly the same for the same value of load resistance in the two circuits. The load resistor R 2 cannot tell the difference between the original network of B 1, R 1, R 3, and B 2, and the Thevenin equivalent circuit of E Thevenin, and R Thevenin, provided that the values for E Thevenin and R Thevenin have been calculated.correctly The advantage in performing the Thevenin conversion to the simpler circuit, of course, is that it makes load voltage and load current so much easier to solve than in the original network. Calculating the equivalent Thevenin source voltage and series resistance is actually quite easy. First, the chosen load resistor is removed from the :(original circuit, replaced with a break (open circuit

Next, the voltage between the two points where the load resistor used to be attached is determined. Use whatever analysis methods are at your disposal to do this. In this case, the original circuit with the load resistor removed is nothing more than a simple series circuit with opposing batteries, and so we can determine the voltage across the open load terminals by applying the rules of series circuits, Ohm's Law, and :Kirchhoff's Voltage Law The voltage between the two load connection points can be figured from the one of the battery's voltage and one of the resistor's voltage drops, and comes out to 11.2 :volts. This is our Thevenin voltage (E Thevenin ) in the equivalent circuit

To find the Thevenin series resistance for our equivalent circuit, we need to take the original circuit (with the load resistor still removed), remove the power sources (in the same style as we did with the Superposition Theorem: voltage sources replaced with wires and current sources replaced with breaks), and figure the resistance from one :load terminal to the other With the removal of the two batteries, the total resistance measured at this location is equal to R 1 and R 3 in parallel: 0.8 Ω. This is our Thevenin resistance (R Thevenin ) for :the equivalent circuit

With the load resistor (2 Ω) attached between the connection points, we can determine voltage across it and current through it as though the whole network were nothing :more than a simple series circuit Notice that the voltage and current figures for R 2 (8 volts, 4 amps) are identical to those found using other methods of analysis. Also notice that the voltage and current figures for the Thevenin series resistance and the Thevenin source (total) do not apply to any component in the original, complex circuit. Thevenin's Theorem is only useful.for determining what happens to a single resistor in a network: the load The advantage, of course, is that you can quickly determine what would happen to that single resistor if it were of a value other than 2 Ω without having to go through a lot of analysis again. Just plug in that other value for the load resistor into the Thevenin equivalent circuit and a little bit of series circuit calculation will give you.the result Tutorial: 7 of 10 Thevenins Theorem In the previous 3 tutorials we have looked at solving complex electrical circuits using Kirchoff's Circuit Laws, Mesh Analysis and finally Nodal Analysis but there are many more "Circuit Analysis Theorems" available to calculate the currents and voltages at any point in a circuit. In this tutorial we will look at one of the more common circuit.analysis theorems (next to Kirchoff s) that has been developed, Thevenins Theorem Thevenins Theorem states that "Any linear circuit containing several voltages and resistances can be replaced by just a Single Voltage in series with a Single Resistor". In other words, it is possible to simplify any "Linear" circuit, no matter how complex, to an equivalent circuit with just a single voltage source in series with a resistance connected to a load as shown below. Thevenins Theorem is especially useful in analyzing power or battery systems and other interconnected circuits where it will.have an effect on the adjoining part of the circuit.thevenins equivalent circuit

As far as the load resistor R L is concerned, any "one-port" network consisting of resistive circuit elements and energy sources can be replaced by one single equivalent resistance Rs and equivalent voltage Vs, where Rs is the source resistance value.looking back into the circuit and Vs is the open circuit voltage at the terminals.for example, consider the circuit from the previous section Firstly, we have to remove the centre 40Ω resistor and short out (not physically as this would be dangerous) all the emf s connected to the circuit, or open circuit any current sources. The value of resistor Rs is found by calculating the total resistance at the terminals A and B with all the emf s removed, and the value of the voltage required Vs is the total voltage across terminals A and B with an open circuit and no load.resistor Rs connected. Then, we get the following circuit (Find the Equivalent Resistance (Rs

(Find the Equivalent Voltage (Vs We now need to reconnect the two voltages back into the circuit, and as V S = V AB :the current flowing around the loop is calculated as :so the voltage drop across the 20Ω resistor can be calculated as.v AB = 20 - (20Ω x 0.33amps) = 13.33 volts Then the Thevenins Equivalent circuit is shown below with the 40Ω resistor.connected :and from this the current flowing in the circuit is given as

which again, is the same value of 0.286 amps, we found using Kirchoff s circuit law.in the previous tutorial Thevenins theorem can be used as a circuit analysis method and is particularly useful if the load is to take a series of different values. It is not as powerful as Mesh or Nodal analysis in larger networks because the use of Mesh or Nodal analysis is usually necessary in any Thevenin exercise, so it might as well be used from the start. However, Thevenins equivalent circuits of Transistors, Voltage Sources such as.batteries etc, are very useful in circuit design Thevenins Theorem Summary :The basic procedure for solving a circuit using Thevenins Theorem is as follows.remove the load resistor R L or component concerned.1 Find R S by shorting all voltage sources or by open circuiting all the current.2.sources.find V S by the usual circuit analysis methods.3.find the current flowing through the load resistor R L.4 In the next tutorial we will look at Nortons Theorem which allows a network consisting of linear resistors and sources to be represented by an equivalent circuit.with a single current source in parallel with a single source resistance The node voltage method of analysis solves for unknown voltages at circuit nodes in terms of a system of KCL equations. This analysis looks strange because it involves replacing voltage sources with equivalent current sources. Also, resistor values in ohms are replaced by equivalent conductances in siemens, G = 1/R. The siemens (S) is the unit of conductance, having replaced the mho unit. In any event S =.(Ω -1. And S = mho (obsolete We start with a circuit having conventional voltage sources. A common node E 0 is chosen as a reference point. The node voltages E 1 and E 2 are calculated with respect to.this point A voltage source in series with a resistance must be replaced by an equivalent current source in parallel with the resistance. We will write KCL equations for each node. The.right hand side of the equation is the value of the current source feeding the node

Replacing voltage sources and associated series resistors with equivalent current sources and parallel resistors yields the modified circuit. Substitute resistor.conductances in siemens for resistance in ohms I 1 = E 1 /R 1 = 10/2 = 5 A I 2 = E 2 /R 5 = 4/1 = 4 A G 1 = 1/R 1 = 1/2 Ω = 0.5 S G 2 = 1/R 2 = 1/4 Ω = 0.25 S G 3 = 1/R 3 = 1/2.5 Ω = 0.4 S G 4 = 1/R 4 = 1/5 Ω = 0.2 S G 5 = 1/R 5 = 1/1 Ω = 1.0 S The Parallel conductances (resistors) may be combined by addition of the conductances. Though, we will not redraw the circuit. The circuit is ready for.application of the node voltage method G A = G 1 + G 2 = 0.5 S + 0.25 S = 0.75 S G B = G 4 + G 5 = 0.2 S + 1 S = 1.2 S Deriving a general node voltage method, we write a pair of KCL equations in terms of unknown node voltages V 1 and V 2 this one time. We do this to illustrate a pattern for.writing equations by inspection (G A E 1 + G 3 (E 1 - E 2 ) = I 1 (1 (G B E 2 - G 3 (E 1 - E 2 ) = I 2 (2 (G A + G 3 )E 1 -G 3 E 2 = I 1 (1) (G 3 E 1 + (G B + G 3 )E 2 = I 2 (2- The coefficients of the last pair of equations above have been rearranged to show a pattern. The sum of conductances connected to the first node is the positive coefficient of the first voltage in equation (1). The sum of conductances connected to the second node is the positive coefficient of the second voltage in equation (2). The other coefficients are negative, representing conductances between nodes. For both

equations, the right hand side is equal to the respective current source connected to the node. This pattern allows us to quickly write the equations by inspection. This.leads to a set of rules for the node voltage method of analysis :Node voltage rules Convert voltage sources in series with a resistor to an equivalent current.source with the resistor in parallel.change resistor values to conductances (Select a reference node(e 0.Assign unknown voltages (E 1 )(E 2 )... (E N )to remaining nodes Write a KCL equation for each node 1,2,... N. The positive coefficient of the first voltage in the first equation is the sum of conductances connected to the node. The coefficient for the second voltage in the second equation is the sum of conductances connected to that node. Repeat for coefficient of third voltage,.third equation, and other equations. These coefficients fall on a diagonal All other coefficients for all equations are negative, representing conductances between nodes. The first equation, second coefficient is the conductance from node 1 to node 2, the third coefficient is the conductance from node 1 to node.3. Fill in negative coefficients for other equations The right hand side of the equations is the current source connected to the.respective nodes.solve system of equations for unknown node voltages Example: Set up the equations and solve for the node voltages using the numerical.values in the above figure :Solution E 1 -(0.4)E 2 = 5(0.5+0.25+0.4) E 1 +(0.4+0.2+1.0)E 2 = -4(0.4)- E 1 -(0.4)E 2 = 5(1.15) E 1 +(1.6)E 2 = -4(0.4)- E 1 = 3.8095 E 2 = -1.5476 The solution of two equations can be performed with a calculator, or with octave (not shown).[octav] The solution is verified with SPICE based on the original schematic diagram with voltage sources. [spi] Though, the circuit with the current sources could.have been simulated V1 11 0 DC 10 V2 22 0 DC -4 r1 11 1 2 r2 1 0 4 r3 1 2 2.5 r4 2 0 5 r5 2 22 1 DC V1 10 10 1 V2-4 -4 1. (print DC V(1) V(2. end. (v(1) v(2 3.809524e+00-1.547619e+00 One more example. This one has three nodes. We do not list the conductances on the.schematic diagram. However, G 1 = 1/R 1, etc

There are three nodes to write equations for by inspection. Note that the coefficients are positive for equation (1) E 1, equation (2) E 2, and equation (3) E 3. These are the sums of all conductances connected to the nodes. All other coefficients are negative, representing a conductance between nodes. The right hand side of the equations is the associated current source, 0.136092 A for the only current source at node 1. The other equations are zero on the right hand side for lack of current sources. We are too lazy to calculate the conductances for the resistors on the diagram. Thus, the subscripted.g's are the coefficients G 1 + G 2 )E 1 -G 1 E 2 -G 2 E 3 =) 0.136092 G 1 E 1 +(G 1 + G 3 + G 4 )E 2 -G 3 E 3 = 0- G 2 E 1 -G 3 E 2 +(G 2 + G 3 + G 5 )E 3 = 0- We are so lazy that we enter reciprocal resistances and sums of reciprocal resistances into the octave A matrix, letting octave compute the matrix of conductances after A=.[octav] The initial entry line was so long that it was split into three rows. This is different than previous examples. The entered A matrix is delineated by starting and ending square brackets. Column elements are space separated. Rows are new line separated. Commas and semicolons are not need as separators. Though, the current.vector at b is semicolon separated to yield a column vector of currents octave:12> A = [1/150+1/50-1/150-1/50 1/100-1/150+1/100+1/300 1/150- < [1/50+1/100+1/250 1/100-1/50- < = A 0.0200000-0.0066667-0.0266667 0.0100000-0.0200000 0.0066667-0.0340000 0.0100000-0.0200000- [octave:13> b = [0.136092;0;0 = b 0.13609 0.00000 0.00000 octave:14> x=a\b = x 24.000 17.655

19.310 Note that the A matrix diagonal coefficients are positive, That all other coefficients.are negative The solution as a voltage vector is at x. E 1 = 24.000 V, E 2 = 17.655 V, E 3 = 19.310 V. These three voltages compare to the previous mesh current and SPICE solutions to the unbalanced bridge problem. This is no coincidence, for the 0.13609 A current source was purposely chosen to yield the 24 V used as a voltage source in that.problem Summary Given a network of conductances and current sources, the node voltage method of circuit analysis solves for unknown node voltages from KCL.equations.See rules above for details in writing the equations by inspection The unit of conductance G is the siemens S. Conductance is the reciprocal of resistance: G = 1/R In many circuit applications, we encounter components connected together in one of two ways to form a three-terminal network: the Delta, or Δ (also known as the Pi,.or π) configuration, and the Y (also known as the T ) configuration It is possible to calculate the proper values of resistors necessary to form one kind of network (Δ or Y) that behaves identically to the other kind, as analyzed from the

terminal connections alone. That is, if we had two separate resistor networks, one Δ and one Y, each with its resistors hidden from view, with nothing but the three terminals (A, B, and C) exposed for testing, the resistors could be sized for the two networks so that there would be no way to electrically determine one network apart.from the other. In other words, equivalent Δ and Y networks behave identically :There are several equations used to convert one network to the other Δ and Y networks are seen frequently in 3-phase AC power systems (a topic covered in volume II of this book series), but even then they're usually balanced networks (all resistors equal in value) and conversion from one to the other need not involve such complex calculations. When would the average technician ever need to use these?equations A prime application for Δ-Y conversion is in the solution of unbalanced bridge :circuits, such as the one below Solution of this circuit with Branch Current or Mesh Current analysis is fairly involved, and neither the Millman nor Superposition Theorems are of any help, since there's only one source of power. We could use Thevenin's or Norton's Theorem,?treating R 3 as our load, but what fun would that be If we were to treat resistors R 1, R 2, and R 3 as being connected in a Δ configuration (R ab, R ac, and R bc, respectively) and generate an equivalent Y network to replace them, :we could turn this bridge circuit into a (simpler) series/parallel combination circuit

... After the Δ-Y conversion If we perform our calculations correctly, the voltages between points A, B, and C will be the same in the converted circuit as in the original circuit, and we can transfer.those values back to the original bridge configuration

Resistors R 4 and R 5, of course, remain the same at 18 Ω and 12 Ω, respectively. Analyzing the circuit now as a series/parallel combination, we arrive at the following :figures We must use the voltage drops figures from the table above to determine the voltages between points A, B, and C, seeing how the add up (or subtract, as is the case with :(voltage between points B and C

Now that we know these voltages, we can transfer them to the same points A, B, and :C in the original bridge circuit Voltage drops across R 4 and R 5, of course, are exactly the same as they were in the.converted circuit At this point, we could take these voltages and determine resistor currents through the :(repeated use of Ohm's Law (I=E/R

[A quick simulation with SPICE will serve to verify our work:[spi unbalanced bridge circuit v1 1 0 r1 1 2 12 r2 1 3 18 r3 2 3 6 r4 2 0 18 r5 3 0 12 dc v1 10 10 1. (print dc v(1,2) v(1,3) v(2,3) v(2,0) v(3,0. end. (v1 v(1,2) v(1,3) v(2,3) v(2) v(3 1.000E+01 4.706E+00 5.294E+00 5.882E-01 5.294E+00 4.706E+00 The voltage figures, as read from left to right, represent voltage drops across the five respective resistors, R 1 through R 5. I could have shown currents as well, but since that

would have required insertion of dummy voltage sources in the SPICE netlist, and since we're primarily interested in validating the Δ-Y conversion equations and not.ohm's Law, this will suffice Nodal Analysis of Electric Circuits In this method, we set up and solve a system of equations in which the unknowns are the voltages at the principal nodes of the circuit. From these nodal voltages the.currents in the various branches of the circuit are easily determined :The steps in the nodal analysis method are Count the number of principal nodes or junctions in the circuit. Call this number n. (A principal node or junction is a point where 3 or more branches join. We will indicate them in a circuit diagram with a red dot. Note that if a branch contains no voltage sources or loads then that entire branch (.can be considered to be one node Number the nodes N 1, N 2,..., N n and draw them on the circuit diagram. Call.the voltages at these nodes V 1, V 2,..., V n, respectively Choose one of the nodes to be the reference node or ground and assign it a.voltage of zero For each node except the reference node write down Kirchoff's Current Law in the form "the algebraic sum of the currents flowing out of a node equals zero". (By algebraic sum we mean that a current flowing into a node is to be (.considered a negative current flowing out of the node For example, for the node to the right KCL yields the :equation I a + I b + I c = 0 Express the current in each branch in terms of the nodal voltages at each end of the branch using Ohm's Law (I = V / R). Here are :some examples The current downward out of node 1 depends on the voltage difference V1 -.V3 and the resistance in the branch In this case the voltage difference across the resistance is V1 - V2 minus the voltage across the voltage source. Thus the downward current is as.shown

In this case the voltage difference across the resistance must be 100 volts.greater than the difference V1 - V2. Thus the downward current is as shown The result, after simplification, is a system of m linear equations in the m unknown nodal voltages (where m is one less than the number of nodes; m = :n - 1). The equations are of this form.where G 11, G 12,..., G mm and I 1, I 2,..., I m are constants Alternatively, the system of equations can be gotten (already in simplified.form) by using the inspection method Solve the system of equations for the m node voltages V 1, V 2,..., V m using.gaussian elimination or some other method.example 1: Use nodal analysis to find the voltage at each node of this circuit :Solution Note that the "pair of nodes" at the bottom is actually 1 extended node. Thus the number.of nodes is 3 We will number the nodes as shown to.the right We will choose node 2 as the reference node and assign it a.voltage of zero

Write down Kirchoff's Current Law for each node. Call V 1 the voltage at node 1, V 3 the voltage at node 3, and remember that V 2 = 0. The result is the :following system of equations The first equation results from KCL applied at node 1 and the second :equation results from KCL applied at node 3. Collecting terms this becomes This form for the system of equations could have been gotten immediately by.using the inspection method Solving the system of equations using Gaussian elimination or some other :method gives the following voltages V 1=68.2 volts and V 3=27.3 volts