ECE-305: Fall 2017 MOS Capacitors and Transistors

Similar documents
ECE-305: Fall 2017 Metal Oxide Semiconductor Devices

ECE 305: Fall MOSFET Energy Bands

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

ECE-305: Spring 2016 MOSFET IV

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Lecture 04 Review of MOSFET

Lecture 11: MOSFET Modeling

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EE 560 MOS TRANSISTOR THEORY

MOSFET: Introduction

MOSFET Physics: The Long Channel Approximation

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Lecture 12: MOS Capacitors, transistors. Context

Chapter 4 Field-Effect Transistors

MOS Transistor I-V Characteristics and Parasitics

The Devices: MOS Transistors

Lecture 11: MOS Transistor

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

MOS Capacitors ECE 2204

MOS CAPACITOR AND MOSFET

ECE 342 Electronic Circuits. 3. MOS Transistors

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Integrated Circuits & Systems

Problem 9.20 Threshold bias for an n-channel MOSFET: In the text we used a criterion that the inversion of the MOSFET channel occurs when V s = ;2 F w

Lecture 3: Transistor as an thermonic switch

Device Models (PN Diode, MOSFET )

Lecture 5: CMOS Transistor Theory

Supporting information

The Devices. Devices

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture #27. The Short Channel Effect (SCE)

Device Models (PN Diode, MOSFET )

Lecture 11: J-FET and MOSFET

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

6.012 Electronic Devices and Circuits

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

FIELD-EFFECT TRANSISTORS

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

Lecture 3: CMOS Transistor Theory

ECE-305: Spring 2018 Final Exam Review

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

MOS Transistor Properties Review

JFET/MESFET. JFET: small gate current (reverse leakage of the gate-to-channel junction) More gate leakage than MOSFET, less than bipolar.

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

VLSI Design The MOS Transistor

Chapter 6: Field-Effect Transistors

Section 12: Intro to Devices

EE105 - Fall 2005 Microelectronic Devices and Circuits

Chapter 13 Small-Signal Modeling and Linear Amplification

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

MOS Transistor Theory

Part 4: Heterojunctions - MOS Devices. MOSFET Current Voltage Characteristics

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Lecture 4: CMOS Transistor Theory

Introduction and Background

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.

EECS130 Integrated Circuit Devices

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

Lecture 12: MOSFET Devices

Lecture 6: 2D FET Electrostatics

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

GaN based transistors

Practice 3: Semiconductors

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

MOS Transistor Theory

Biasing the CE Amplifier

The Gradual Channel Approximation for the MOSFET:

Technische Universität Graz. Institute of Solid State Physics. 11. MOSFETs

Metal-oxide-semiconductor field effect transistors (2 lectures)

The Devices. Jan M. Rabaey

EE105 - Fall 2006 Microelectronic Devices and Circuits

Typical example of the FET: MEtal Semiconductor FET (MESFET)

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

ECE-305: Spring 2018 Exam 2 Review

Microelectronics Part 1: Main CMOS circuits design rules

Bipolar Junction Transistors: Solving Ebers-Moll Problems

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Lecture 18 Field-Effect Transistors 3

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

N Channel MOSFET level 3

ECE315 / ECE515 Lecture-2 Date:

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices

ECE 497 JS Lecture - 12 Device Technologies

6.012 Electronic Devices and Circuits Spring 2005

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

Figure 1: MOSFET symbols.

1. The MOS Transistor. Electrical Conduction in Solids

à FIELD EFFECT TRANSISTORS

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS

Transcription:

ECE-305: Fall 2017 MOS Capacitors and Transistors Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525-530, 563-599) Professor Peter Bermel Electrical and Computer Engineering Purdue University, West Lafayette, IN USA pbermel@purdue.edu 11/2/2017 Bermel ECE 305 F17 1

MOS capacitor 1) Gate voltage 2) Example problem 3) MOS capacitors 4) MOS field-effect transistors metal / heavily doped polysilicon SiO 2 t ox» 1-2 nm p-si 11/2/2017 Bermel ECE 305 F17 2

gate voltage and surface potential DV OX 0 < f S < 2f F = DV OX + f S DV ox = x oe ox DV S E C E i E F E FM Si E V metal =? Gate voltage is surface potential + oxide voltage drop 11/2/2017 3 Bermel ECE 305 F17 3

band banding in p-type MOS = 0 < 0 0 < < V T > V T f S = 0 f S < 0 0 < f S < 2f F f S > 2f F Flat band Accumulation Depletion Inversion 11/2/2017 Bermel ECE 305 F17 Fig. 16.6, Semiconductor Device Fundamentals, R.F. Pierret 4

MOS electrostatics: depletion (results from last time) W = E S = 2k Se 0 f S qn A 2qN Af S k s e 0 Q B = -qn A W f S cm V/cm ( ) C/cm 2 E ( x) E S E S = qn A W k S e 0 1 SW = f S 2 E P Q B = - 2qk s e 0 N A f S C/cm 2 = - Q B ( f S ) + f S W x 0 < f S < 2f F 11/2/2017 Bermel ECE 305 F17 5

MOS electrostatics: inversion f ( x) f ( 0) E C f F E i f S» 2f F ff Si E F E V W T é W T = 2K Se 0 ù ê 2f F ë qn ú A û 11/2/2017 Bermel ECE 305 F17 1/2 Maximum depletion region depth 6 x

delta-depletion approximation r metal W T = 2k Se 0 2f F qn A -x o W T Q B = -qn A W T x r = -qn A Q 11/2/2017 n Bermel ECE 305 F17 7

delta-depletion approximation E ( x) E S E ( 0) = - Q S K S e 0 E ( 0 + ) = - Q B K S e 0 P 11/2/2017 Bermel ECE 305 F17 W x 8

MOS electrostatics: inversion f S» 2f F f ( x) f ( 0) = - Q S + 2f F E C = - Q B V T = - Q B ( 2f F ) + Q n ( 2f F ) + 2f F + 2f F f F Si f F E i E F E V Q n = - - 11/2/2017 ( ) V T W T é W T = 2K Se 0 ù ê 2f F ë qn ú A û Bermel ECE 305 F17 1/2 9 x

MOS capacitor 1) Gate voltage 2) Example problem 3) MOS capacitors 4) MOS field-effect transistors metal / heavily doped polysilicon SiO 2 t ox» 1-2 nm p-si 11/2/2017 Bermel ECE 305 F17 10

example Assume n+ poly Si gate 10 18 channel doping t ox = 1.5 nm S G D What is V T? e-field in oxide at = 1V? source silicon drain SiO 2 11/2/2017 Bermel ECE 305 F17 11

example (cont.) = - Q S ( f S ) + f S f F = k BT q ln æ è ç N A n i ö ø f F = 0.48 V V T = - Q B ( 2f F ) V T = f ms - Q B + 2f F ( 2f F ) + 2f F = K O e 0 x o Q B = -qn A W ( 2f F ) Q B = - 2qk s e 0 N A 2f F = 2.36 10-6 F/cm 2 Q B = -5.71 10-7 C/cm 2 V T = 0.14 V f ms = - k T B q ln æ è ç N A N D n i 2 ö ø f ms = -1.06 V 11/2/2017 Bermel ECE 305 F17 12

example (cont) Q n = - ( - V T ) Q n = -2.06 10-6 C/cm 2 Q n q = -1.3 1013 C/cm 2 E OX = - Q S = - Q + Q n B k ox e 0 k ox e 0 ( 2f B ) E OX = 7.3 10 6 V/cm 11/2/2017 Bermel ECE 305 F17 13

MOS capacitor 1) Gate voltage 2) Example problem 3) MOS capacitors 4) MOS field-effect transistors metal / heavily doped polysilicon SiO 2 t ox» 1-2 nm p-si 11/2/2017 Bermel ECE 305 F17 14

MOS capacitor + v S sinwt v S sinwt + - ~ + - p-si 11/2/2017 Bermel ECE 305 F17 15

MOS capacitor in depletion W ( f S ) W ( ) p-si 11/2/2017 Bermel ECE 305 F17 16

MOS capacitor in depletion Gate x o K O W ( f S ) K S C =? Undepleted P-type semiconductor 11/2/2017 Bermel ECE 305 F17 17

a simpler problem x o K O = K Oe 0 x o W ( f S ) K S C S = K Se 0 W ( f S ) 18 1 C = 1 + 1 C = C C S ox C = C S C S + 11/2/2017 Bermel ECE 305 F17 C = 1 + C S ( ) 1+ K OW f S K S x o

result x o k ox W ( f S ) k Si f S C S C = ( ) 1+ K OW f S K S x o 11/2/2017 Bermel ECE 305 F17 19

s.s. gate capacitance vs. d.c. gate bias accumulation C depletion C = ( ) 1+ K W f O S K S x o flat band inversion V T 11/2/2017 Bermel ECE 305 F17 20

s.s. gate capacitance vs. d.c. gate bias C flat band accumulation depletion C = ( ) 1+ K OW f S K S x o inversion V T 11/2/2017 Bermel ECE 305 F17 21

capacitance vs. gate voltage C flat band C = accumulation ( ) 1+ K OW f S K S x o depletion inversion V T 11/2/2017 Bermel ECE 305 F17 22

high frequency vs. low frequency C flat band low frequency C = accumulation ( ) 1+ K OW f S K S x o depletion inversion high frequency V T 11/2/2017 Bermel ECE 305 F17 23

high frequency vs. low frequency C low frequency high frequency V T 11/2/2017 Bermel ECE 305 F17 24

high frequency vs. low frequency n + -Si n + -Si MOS capacitor p-si 11/2/2017 Bermel ECE 305 F17 25

MOS capacitor 1) Gate voltage 2) Example problem 3) MOS capacitors 4) MOS field-effect transistors metal / heavily doped polysilicon SiO 2 t ox» 1-2 nm p-si 11/2/2017 Bermel ECE 305 F17 26

side and top views of a MOSFET Metal Oxide Semiconductor Field Effect Transistor V S = 0 V D n-si S L D n-si W L p-type silicon SiO 2 source gate drain side view Bermel ECE 305 F17 top view 27

transistors 11/2/2017 Bermel ECE 305 F17 28

transistor as a black box terminal 1 There are many kinds of transistors: control black box I 1 terminal 2 terminal 4 MOSFET SOI MOSFET SB FET FinFET MODFET (HEMT) bipolar transistor JFET heterojunction bipolar transistor BTBT FET SpinFET 11/2/2017 Bermel ECE 305 F17 29

the bulk MOSFET S G D circuit symbol Gate source silicon drain SiO 2 Source I D Drain Body B (Texas Instruments, ~ 2000) 11/2/2017 Bermel ECE 305 F17 30

the MOSFET as a 2-port device MOSFET circuit symbol common source Drain Gate I D G D I D output V DS Source S input S current vs. voltage (IV) characteristics I D (,V S,V ) D I D I D ( V ) GS at a fixed V DS ( V ) DS at a fixed S transfer output 31

IV characteristics: resistor I + I less resistance I = V R R V more resistance V - I = V R Ohm s Law 11/2/2017 Bermel ECE 305 F17 32

IV characteristics: ideal current source I + I I = I 0 I 0 V - V I = I 0 11/2/2017 Bermel ECE 305 F17 33

IV characteristics: transistors D I D I D G S1 S n-channel enhancement mode MOSFET gate voltage controlled resistor linear region V DS gate voltage controlled current source saturation region 34

IV characteristics: real current sources I + I I 0 I = I 0 + V R 0 R 0 I 0 V V - 11/2/2017 Bermel ECE 305 F17 35

IV characteristics: transistors D I D I D G S1 S n-channel enhancement mode MOSFET V DS 11/2/2017 Bermel ECE 305 F17 36

MIOSFET IV: output characteristics D I D I D G S S n-channel enhancement mode MOSFET subthreshold region V DS linear region saturation region 11/2/2017 Bermel ECE 305 F17 37

output vs. transfer characteristics output characteristics transfer characteristics I D low V DS high V DS D I I D V DS2 > V DS1 G S V DS1 V DSAT V DS V T S saturation voltage threshold voltage Bermel ECE 305 F17 38

applications of MOSFETs symbo l switch amplifier D D D G S G S G input signal S output signal 11/2/2017 Bermel ECE 305 F17 39

n-channel vs. p-channel MOSFET n-mosfet p-mosfet I D I D V S = 0 > V T V D > 0 V S = 0 < V T V D < 0 n-si S channel D n-si p-si S channel D p-si L L p-type silicon n-type silicon side view side view 11/2/2017 Bermel ECE 305 F17 40

MOSFET device metrics I D ( ma mm) on-resistance R ON ( W - mm) output resistance: r d ( W - mm) on-current (ma/μm) I D ( S = V DS = V DD ) S transconductance V DD V DS g m º DI D DS V DS ( ms mm) 11/2/2017 Bermel ECE 305 F17 41

MOSFET device metrics (ii) transfer characteristics: I D ( ma mm) I ON V DS = V DD off-current V DS = 0.05 V S V TSAT V TLIN V DD threshold voltage 11/2/2017 42

MOSFET device metrics (iii) log 10 I D ( ma mm) off-current transfer characteristics: V DS = V DD subthreshold swing: ( mv decade) I ON V DS = 0.05 V DIBL (drain-induced barrier lowering) ( mv V) S V T V DD 11/2/2017 Bermel ECE 305 F17 43

summary Given the measured characteristics of a MOSFET, you should be able to determine: 1. on-current: I ON 2. off-current: I OFF 3. subthreshold swing, S 4. drain induced barrier lowering: DIBL 5. threshold voltage: V T (lin) and V T (sat) 6. on resistance: R ON 7. drain saturation voltage: V DSAT 8. output resistance: r o 9. transconductance: g m Our goal is to understand these device metrics. 11/2/2017 Bermel ECE 305 F17 44

Example: 32 nm N-MOS technology 11/2/2017 Bermel ECE 305 F17 45

conclusions Can calculate the charge distribution, surface potentials, and gate voltage ranges for each MOS regime Can then calculate capacitance as a function of frequency and gate voltage The MOS capacitor is the foundation for MOS field effect transistors, characterized by many device metrics Next time, we will use band structures to estimate the device metrics for MOSFETs 11/2/2017 Bermel ECE 305 F17 46