DC & Transient Responses

Similar documents
Lecture 5: DC & Transient Response

Lecture 6: DC & Transient Response

Lecture 5: DC & Transient Response

EE5780 Advanced VLSI CAD

Lecture 4: DC & Transient Response

EEE 421 VLSI Circuits

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

5. CMOS Gate Characteristics CS755

DC and Transient Responses (i.e. delay) (some comments on power too!)

MOS Transistor Theory

MOS Transistor Theory

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

4.10 The CMOS Digital Logic Inverter

Based on slides/material by. Topic 3-4. Combinational Logic. Outline. The CMOS Inverter: A First Glance

CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

ECE 546 Lecture 10 MOS Transistors

ECE321 Electronics I

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation

Topic 4. The CMOS Inverter

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

Integrated Circuits & Systems

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

CMOS Inverter (static view)

ECE 342 Solid State Devices & Circuits 4. CMOS

VLSI Design and Simulation

THE INVERTER. Inverter

Lecture 12 Circuits numériques (II)

EE5311- Digital IC Design

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

The CMOS Inverter: A First Glance

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Lecture 12 CMOS Delay & Transient Response

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.

The CMOS Inverter: A First Glance

MOSFET and CMOS Gate. Copy Right by Wentai Liu

Digital Integrated Circuits

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Chapter 2 MOS Transistor theory

Digital Integrated Circuits A Design Perspective

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EE5311- Digital IC Design

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

9/18/2008 GMU, ECE 680 Physical VLSI Design

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

EE115C Digital Electronic Circuits Homework #3

Static CMOS Circuits. Example 1

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

Properties of CMOS Gates Snapshot

Digital Integrated Circuits A Design Perspective

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

EE 434 Lecture 34. Logic Design

VLSI Design I; A. Milenkovic 1

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

The Physical Structure (NMOS)

EE 330 Lecture 36. Digital Circuits. Transfer Characteristics of the Inverter Pair One device sizing strategy Multiple-input gates

Homework Assignment #3 EE 477 Spring 2017 Professor Parker , -.. = 1.8 -, 345 = 0 -

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

CMOS Technology for Computer Architects

EE 434 Lecture 33. Logic Design

CMOS Logic Gates. University of Connecticut 181

Integrated Circuits & Systems

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Electronic Devices and Circuits Lecture 16 - Digital Circuits: CMOS - Outline Announcements (= I ON V DD

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic

Delay and Power Estimation

ECE 342 Electronic Circuits. Lecture 34 CMOS Logic

MOS Inverters. Digital Electronics - INEL Prof. Manuel Jiménez. With contributions by: Rafael A. Arce Nazario

CMOS Logic Gates. University of Connecticut 172

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

High-to-Low Propagation Delay t PHL

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

EE115C Digital Electronic Circuits Homework #4

Elad Alon Homework #2 EECS141 Due Thursday, September 9, 5pm, box in 240 Cory

Digital Integrated Circuits 2nd Inverter

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC

Digital Integrated Circuits A Design Perspective

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences

EE 330 Lecture 37. Digital Circuits. Other Logic Families. Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates)

COMBINATIONAL LOGIC. Combinational Logic

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

Lecture 8: Combinational Circuits

Integrated Circuit Design ELCT 701 (Winter 2017) Lecture 2: Resistive Load Inverter

Very Large Scale Integration (VLSI)

Name: Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

Designing Information Devices and Systems II Fall 2017 Miki Lustig and Michel Maharbiz Homework 1. This homework is due September 5, 2017, at 11:59AM.

Transcription:

ECEN454 Digital Integrated Circuit Design DC & Transient Responses ECEN 454 DC Response DC Response: vs. for a gate Ex: Inverter When = -> = When = -> = In between, depends on transistor size and current By KCL, must settle such that = I dsp We could solve equations But graphical solution gives more insight I dsp ECEN 454 5. 1

Transistor Operation Current depends on region of transistor behavior For what and are nmos and pmos in Cutoff? Linear? Saturation? ECEN 454 5.3 nmos Operation Cutoff Linear Saturated gsn < gsn > gsn > dsn < dsn > I dsp ECEN 454 5.4

nmos Operation Cutoff Linear Saturated gsn < tn gsn > tn gsn > tn dsn < gsn tn dsn > gsn tn I dsp ECEN 454 5.5 nmos Operation Cutoff Linear Saturated gsn < tn gsn > tn gsn > tn dsn < gsn tn dsn > gsn tn gsn = dsn = I dsp ECEN 454 5.6 3

nmos Operation Cutoff Linear Saturated gsn < tn < tn gsn > tn > tn dsn < gsn tn < - tn gsn > tn > tn dsn > gsn tn > - tn gsn = I dsp dsn = ECEN 454 5.7 pmos Operation Cutoff Linear Saturated gsp > gsp < gsp < dsp > dsp < I dsp ECEN 454 5.8 4

pmos Operation Cutoff Linear Saturated gsp > tp gsp < tp gsp < tp dsp > gsp tp dsp < gsp tp I dsp ECEN 454 5.9 pmos Operation Cutoff Linear Saturated gsp > tp gsp < tp gsp < tp dsp > gsp tp dsp < gsp tp gsp = - tp < dsp = - I dsp ECEN 454 5.1 5

pmos Operation Cutoff Linear Saturated gsp > tp > + tp gsp < tp < + tp dsp > gsp tp > - tp gsp < tp < + tp dsp < gsp tp < - tp gsp = - tp < dsp = - I dsp ECEN 454 5.11 I- Characteristics Make pmos is wider than nmos such that β n = β p gsn5 gsn4 gsn3 - dsp gsp1 gsp - gsn gsn1 gsp3 dsn gsp4 -I dsp gsp5 ECEN 454 5.1 6

Current vs., 5, I dsp 1 4 3 3 4 1 ECEN 454 5.13 Load Line Analysis For a given : Plot, I dsp vs. must be where currents are equal in 5, I dsp 1 4 3 3 4 1 I dsp ECEN 454 5.14 7

Load Line Analysis =, I dsp ECEN 454 5.15 Load Line Analysis =., I dsp 1 1 ECEN 454 5.16 8

Load Line Analysis =.4, I dsp ECEN 454 5.17 Load Line Analysis =.6, I dsp 3 3 ECEN 454 5.18 9

Load Line Analysis =.8, I dsp 4 4 ECEN 454 5.19 Load Line Analysis = 5, I dsp 1 3 4 ECEN 454 5. 1

Load Line Summary 5, I dsp 1 4 3 3 4 1 ECEN 454 5.1 DC Transfer Curve Transcribe points onto vs. plot A B 5 1 4 C 3 3 4 1 D E tn / + tp ECEN 454 5. 11

Operating Regions Revisit transistor operating regions Region nmos pmos A B C D E A B C D E tn / + tp ECEN 454 5.3 Operating Regions Revisit transistor operating regions Region nmos pmos A Cutoff Linear B Saturation Linear C Saturation Saturation D Linear Saturation E Linear Cutoff A B C D E tn / + tp ECEN 454 5.4 1

Beta Ratio If β p / β n 1, switching point will move from / Called skewed gate Other gates: collapse into equivalent inverter β p.1 β = n β p 1 β = n 1.5 ECEN 454 5.5 Noise Margins How much noise can a gate input see before it does not recognize the input? Logical High Output Range Logical Low Output Range Output Characteristics OH OL NM H NM L GND IH IL Input Characteristics Indeterminate Region Logical High Input Range Logical Low Input Range ECEN 454 5.6 13

Logic Levels To maximize noise margins, select logic levels at β p /β n > 1 ECEN 454 5.7 Logic Levels To maximize noise margins, select logic levels at unity gain point of DC transfer characteristic Unity Gain Points Slope = -1 OH β p /β n > 1 OL tn IL IH - tp ECEN 454 5.8 14

Pass Transistors We have assumed source is grounded What if source >? e.g. pass transistor passing ECEN 454 5.9 Pass Transistors We have assumed source is grounded What if source >? e.g. pass transistor passing g = If s > - t, gs < t Hence transistor would turn itself off nmos pass transistors pull no higher than - tn Called a degraded 1 Approach degraded value slowly (low I ds ) pmos pass transistors pull no lower than tp ECEN 454 5.3 15

Pass Transistor Ckts SS ECEN 454 5.31 Pass Transistor Ckts s = - tn -tn -tn - tn s = tp - tn - tn SS ECEN 454 5.3 16

Transient Response DC analysis tells us if is constant Transient analysis tells us if changes Requires solving differential equations Input is usually considered to be a step or ramp From to or vice versa ECEN 454 5.33 Inverter Step Response Ex: find step response of inverter driving load cap in = ( t < t ) = d = dt C load ECEN 454 5.34 17

Inverter Step Response Ex: find step response of inverter driving load cap in () t = u( t t ) ( t< t ) = d () t = dt C load ECEN 454 5.35 Inverter Step Response Ex: find step response of inverter driving load cap in = u( t t ) dot u = dt ( t< t ) = C load ECEN 454 5.36 18

Inverter Step Response Ex: find step response of inverter driving load cap in () t = u( t t ) ( t< t ) = do ut Id = dt C sn () t load C load t t dsn () = > t I t < t ECEN 454 5.37 Inverter Step Response Ex: find step response of inverter driving load cap I in () t = u( t t ) ( t< t ) = do ut Id = dt C sn () t load ( ) t t β dsn = > t β t () t < t C load ECEN 454 5.38 19

Inverter Step Response Ex: find step response of inverter driving load cap I in () t = u( t t ) ( t< t ) = do ut Id = dt C sn () t load ( ) t t β dsn = > t β t () t < t t C load t ECEN 454 5.39 Delay Definitions t pdr : rising propagation delay From input to rising put crossing / t pdf : falling propagation delay From input to falling put crossing / t pd : average propagation delay t pd = (t pdr + t pdf )/ t r : rise time From put crossing.1 to.9 t f : fall time From put crossing.9 to.1 ECEN 454 5.4

Simulated Inverter Delay Solving differential equations by hand is too hard SPICE simulator solves the equations numerically Uses more accurate I- models too! But simulations take time to write. 1.5 1. () t pdf = 66ps t pdr = 83ps.5.. p 4p 6p 8p 1n t(s) ECEN 454 5.41 Inverter Fall Time ds = gs t C load t t I ( ) t t β dsn = > t β t () t < t t f1 :.9 => ( t ) t f : ( t ) =>.1 ECEN 454 5.4 1

Fall Time: Saturation Region pmos nmos C load d dt β ( + t ) = C load t f 1.9 = Cload d β( t) t = Cload( β( t.1 t) ) ECEN 454 5.43 Fall Time: Linear Region pmos nmos C load t f = Cload = β( t). 1 β Cload t (1 t d ( t) t ln(19 ) ) ECEN 454 5.44

t f Overall Fall Time Cload n.1 1 = [ + ln(19 n)] β(1 n) 1 n C k β load n = t / ECEN 454 5.45 Approximately t dr = t r / t df = t f / Rise/Fall Time and Delay ECEN 454 5.46 3