MODEST-8. Introduction to MUSE. Steve McMillan

Similar documents
Forming Intermediate-Mass Black Holes in Dense Clusters Through Collisional Run-away

1. Introduction. **Volume Title** ASP Conference Series, Vol. **Volume Number** **Author** c **Copyright Year** Astronomical Society of the Pacific

Black-hole accretion from stellar winds in star clusters using AMUSE

Blue Straggler Stars Formation Channels

Formation Processes of IMBHs

arxiv:astro-ph/ v2 15 Jan 2007

Massive star clusters

The Maxwell's demon of star clusters

Steve McMillan. Drexel University Philadelphia

arxiv: v2 [astro-ph] 12 Mar 2008

arxiv: v1 [astro-ph] 9 Oct 2007

MOdelling DEnse STellar systems. A personal survey

Stellar collisions and their products

2 Ivanova, Fregeau, & Rasio

Jongsuk Hong (KIAA) MODEST /06/28. Collaborators: E. Vesperini, A. Askar, M. Giersz, M. Szkudlarek & T. Bulik

Monte Carlo Models of Dense Star Clusters

arxiv:astro-ph/ v1 23 Jan 2003

Collisions and Close Encounters within Globular Clusters

Is the Galactic center populated with young star clusters?

Can black holes be formed in dynamic interactions in star clusters?

Massive stellar black holes: formation and dynamics

Coalescing Binary Black Holes Originating from Globular Clusters

Modelling individual globular clusters An Update

FORMATION OF MASSIVE BLACK HOLES IN DENSE STAR CLUSTERS. I. MASS SEGREGATION AND CORE COLLAPSE

Additional on-line material for paper A comprehensive set of simulations of high-velocity collisions between main sequence stars.

Michela Mapelli. N-body techniques for astrophysics: Lecture 1 General Introduction

Dynamical Evolution of Star Clusters with Many Primordial Binaries. Ataru Tanikawa

The dynamics of neutron star and black hole binaries in young star clusters

arxiv:astro-ph/ v1 18 Dec 2003

The evolution of binary fractions in globular clusters

arxiv:astro-ph/ v2 9 May 2003

Stellar-mass black holes in a globular cluster

Pulsars as probes for the existence of IMBHs

The Evolution of Binary Fractions in Globular Clusters

The Many Possible Histories of Globular Cluster Cores. John Fregeau (KITP), with Harvey Richer (UBC), Fred Rasio (NU), Jarrod Hurley (Swinburne)

The formation of massive black holes through collision runaway in dense young star clusters

Monte Carlo Modelling of Globular Clusters

Feedback, AGN and galaxy formation. Debora Sijacki

Open problems in compact object dynamics

2 Frederic A. Rasio. 2. Summary of Recent Results

Stellar collisions during binary binary and binary single star interactions

1. INTRODUCTION. Received 2003 January 30; accepted 2003 April 29

Stellar Black Hole Binary Mergers in Open ClusterS

arxiv: v1 [astro-ph.im] 11 Jul 2013

The Impact of Stellar Collisions in the Galactic Centre

Black Holes in Globular Clusters

Dynamical Models of the Globular Clusters M4 and NGC 6397

The origin of the two populations of blue stragglers in M30

arxiv: v1 [astro-ph.ga] 4 Apr 2013

MASSIVE BLACK HOLES IN STAR CLUSTERS. II. REALISTIC CLUSTER MODELS

Black Hole Subsystems in Galactic Globular Clusters: Unravelling BH Populations in GCs using MOCCA Star Cluster Simulations

Formation and cosmic evolution of supermassive black holes. Debora Sijacki

The Next Generation of Astrophysical Simulations of Compact Objects

The Importance of Realistic Starting Models for Hydrodynamic. Simulations of Stellar Collisions

SUPPLEMENTARY INFORMATION

Black Hole Subsystems in Galactic Globular Clusters: Unravelling BH Populations in GCs using MOCCA Star Cluster Simulations

N-Body Growth of a Bahcall-Wolf Cusp around a Black Hole

Planets in Star Clusters. Sourav Chatterjee Eric B. Ford Frederic A. Rasio

Stellar-mass black holes in a globular cluster. Douglas Heggie. University of Edinburgh, UK

arxiv: v1 [astro-ph] 16 Oct 2007

arxiv:astro-ph/ v1 31 Jan 2007

On the mass radius relation of hot stellar systems

arxiv: v2 [astro-ph] 15 Jan 2009

Prospects for observing dynamically formed stellar mass black hole binaries with gravitational waves

arxiv: v2 [astro-ph.ga] 13 Aug 2017

New Scenario for IMBH Formation in Globular Clusters - Recent Developm. Observational Imprints

arxiv: v1 [astro-ph] 5 May 2007

Formation of Binary Pulsars in Globular Clusters 3

The Evolution of Stellar Triples

EVOLUTION OF COLLISIONALLY MERGED MASSIVE STARS

Star cluster ecology V: Dissection of an open star cluster spectroscopy

arxiv:astro-ph/ v3 26 Jan 2001

Supermassive Black Hole Formation in Galactic Nuclei

Formation and evolution of compact binaries in globular clusters I. Binaries with white dwarfs

The Effects of Stellar Collisions in Dense Environments

Dancing in the dark: spotting BHS & IMBH in GC

INTERMEDIATE-MASS BLACK HOLE INDUCED QUENCHING OF MASS SEGREGATION IN STAR CLUSTERS

Numerical Investigations of a New N-Body Simulation Method

N-body simulations tutorial

Dynamics of Stars and Black Holes in Dense Stellar Systems:

Searching for intermediate-mass black holes in Galactic globular clusters

The effect of primordial mass segregation on the size scale of the star clusters

Evolution of Binaries in Dense Stellar Systems

Gravitational Radiation from Coalescing SMBH Binaries in a Hierarchical Galaxy Formation Model

The Gravitational Million-Body Problem

Initial conditions for N-body/SPH simulations

arxiv:astro-ph/ v1 10 Dec 1996

Evolution of SMBH-SMBH and SMBH-IMBH Binaries: Effect of Large Mass Ratio

Evolution of Multiple Blackhole Systems in Galactic Centers

arxiv:astro-ph/ v1 11 Jan 2007

Stellar mass black holes in young massive and open clusters and their role in gravitational-wave generation

Clocks and Scales to understand the physics of BSS

MASS SEGREGATION IN GLOBULAR CLUSTERS J. M. Fregeau, 1 K. J. Joshi, 2 S. F. Portegies Zwart, 3,4 and F. A. Rasio 5

arxiv: v1 [astro-ph.im] 27 Jan 2012

Relativistic Astrophysics Neutron Stars, Black Holes & Grav. W. ... A brief description of the course

Outline. Astronomy: The Big Picture. Galaxies are the Fundamental Ecosystems of the Universe

AST 301, Introduction to Astronomy Course Description and Syllabus Fall 2012

Nucleosynthesis in white dwarf close encounters and collisions

The impact of metallicity on the demographics of ULXs

Testing astrophysical black holes. Cosimo Bambi Fudan University

Transcription:

MODEST-8 Introduction to MUSE Steve McMillan

MODEST Research dense stellar systems many physical processes star clusters, galactic nuclei stellar dynamics on large and small scales stellar evolution stellar encounters and collisions gas dynamics large dynamic range physical interactions among stars

MODEST-1 no agenda, no speakers! recognition of basic issues breakout groups and software modules integration of live stellar evolution? integration of live stellar collisions? MODEST name!

Early Successes first general discussion of software interfaces definition of an elementary stellar interface toy stellar evolution/collision implementation (Makino & Hut, in the proceedings )

MODEST-2 no agenda, a few speakers! hands-on workshop integration of dynamics, stellar evolution, hydrodynamics runaway mergers blue stragglers application to specific clusters MMAS/Triptych/Tripletych (Lombardi) working groups!

A MODEST Problem... runaway mergers in clusters dynamics high densities collisions mergers ~no mass loss (?) supermassive stars evolution (?) intermediate-mass black holes

Freitag, Gürkan, & Rasio (2006) A MODEST Problem... runaway mergers in clusters dynamics high densities collisions mergers ~no mass loss (?) supermassive stars evolution (?) intermediate-mass black holes simulation issues many-body dynamics stellar hydrodynamics exotic stellar evolution mass loss from massive stars Portegies Zwart et al. (2004)

Kitchen Sink Codes very successful for MODEST problems limited physics menu detailed dynamics approximate SE heuristic BE cartoon hydrodynamics hard to expand functionality wish list...

The State of the Art NBODY4/6 + BSE + sticky spheres (?) kira + seba + sticky spheres MC + startrack + sticky spheres SPH/MMAS after the fact (Lombardi) how to include more/better physics? hard-wiring legacy codes is not the answer

MODEST begets MUSE MODEST 6a: Lund, December 2005 live stellar evolution (Church) evolution of MMAS products (Pols/Glebbeek/Lombardi) renewed discussion of software frameworks MODEST 6d: Amsterdam, April 2006 first framework workshop modules, interfaces, and C++ glue name MUSE coined: Multiscale Multiphysics Scientific Environment

What is MUSE?

What is MUSE? collaborative programming effort software interface designed to connect independent codes interoperability: plug and play easy incorporation of new physics facilitate code integration and comparison don't mandate a programming style or language

Stellar Dynamics Stellar Evolution Hydrodynamics

Stellar Dynamics Stellar Evolution Scheduler Hydrodynamics

Stellar Dynamics Stellar Evolution Scheduler global dynamical data detailed stellar data Hydrodynamics

Stellar Dynamics Stellar Evolution Scheduler Hydrodynamics detailed stellar data

Top-level Structure... while (t <= t_end) { get_nodes_to_move(b, next_nodes, n_next, t); if (t > t_log) log_output(b); if (t > t_snap) snap_output(b); if (t > t_end) return; if (t > t_esc) check_and_remove_escapers(b); integrate_list(b, next_nodes, n_next, t); } if (t >= dt_sstar) evolve_stars(b);

...and MUSE Modules particle pushing binary and multiple systems stellar evolution recipes binary evolution recipes stellar collision recipes (live stellar and binary evolution) (MMAS recipes) (live SPH)...

Stellar and Binary Evolution Stellar Dynamics Scheduler Multiples Hydrodynamics detailed stellar data

MUSE Components wiki: http://muse.li modules for stars, dynamics, collisions, etc. implemented as black boxes with wrappers well defined interfaces all modules provide prediction time scales coordinated by blind scheduler top level glue python (+swig/f2py)

Star Module initialization toy model analytic calculation lookup table heuristic recipe full simulation (real star...)... mass, composition stellar data INTERFACE star ID ID, time query mass radius temperature (structure)... ID t scheduling

lookup R(M, t), L(M, t),... stellar module EFT89 star 1, initial mass M1 star 2, initial mass M2 star 3, initial mass M3 star 4, initial mass M4 INTERFACE

lookup R(M, t), L(M, t),... stellar module EFT89 star 1, initial mass M1 star 2, initial mass M2 star 3, initial mass M3 star 4, initial mass M4 INTERFACE ID = 3, t R3(t), L3(t), etc.

stellar module EV (star) model r(m), L(m), (m)... star 1, t1, r1(m), L1(m), 1(m) star 2, t2, r2(m), L2(m), 2(m) star 3, t3, r3(m), L3(m), 3(m) star 4, t4, r4(m), L4(m), 4(m) INTERFACE

stellar module EV (star) model r(m), L(m), (m)... star 1, t1, r1(m), L1(m), 1(m) star 2, t2, r2(m), L2(m), 2(m) star 3, t3, r3(m), L3(m), 3(m) star 4, t4, r4(m), L4(m), 4(m) INTERFACE ID = 4, t R4(t), L4(t), etc.

from gravity.hermite0.muse_dynamics import Hermite as dyn from stellar.eft89.muse_stellar import EFT89 as star from collisions.sticky_spheres.muse_collisions import StickySpheres as coll.. (initialization). while time < t_max: time += dtime while dyn.get_time() < time: id1 = dyn.evolve(time) if id1 > 0: id2 = dyn.find_colliding_secondary(id1) evolve_stars(dyn.get_time()) collide_stellar_pair(id1, id2) evolve_stars(time) print "end at t = ", time, ", Nstars= ", star.get_number()

Current Stellar Interface int add_star(int id, double mass, double time_of_birth = Current, double metallicity = Default); int remove_star(int id); int get_number(); double get_time_of_birth(int id); double get_time_step(int id); int evolve(int id, double time); double get_current_time(); double get_model_time(id); double get_previous_model_time(id); double get_initial_mass(int id); double get_mass(int id); double get_radius(int id); double get_effective_temperature(int id); double get_luminosity(int id);

MUSE Functionality initial conditions: random numbers, standard models, etc. gravity modules hermite0: shared time step Hermite integrator (MMH) nbody1h: GRAPE-enabled Hermite NBODY1 (Heggie) BHTree: parallel/grape/gpu BH tree code (Makino) CMC: Monte-Carlo (Fregeau) all softened; emphasis on diversity! multiples smalln (from Starlab): standalone small-n integrator, with automatic termination and classification of outcomes

MUSE Functionality stellar evolution modules stellar collision modules EFT89 HPT00 other tracks (Gaburov) TWIN (soon Glebbeek) EZ (soon Justham) sticky spheres MMAS (Lombardi) grid enabled, in principle (Groen)

Other MUSE Issues programming culture legacy codes legacy programmers code sharing pros and cons high-performance applications comparison of simulations with observations

MUSE Summary interchangeable modules with standardized interfaces allows experimentation and comparison individual modules clean implementations of specific pieces of physics parallel, GRAPE/GPU accelerated, grid enabled, etc. top-level code leverages python functionality easy to add new modules interface specifications still evolving

Time to replace NBODY and kira? - maybe not quite yet...

MUSE Sessions at MODEST-8 Friday: discussion/demonstration/tutorial Saturday: hands-on DISCUSSION OF MODEST-9 @ KITP AFTER THE AFTERNOON SESSION TODAY