Introduction to vectors

Similar documents
On the diagram below the displacement is represented by the directed line segment OA.

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES

Matrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24

Lesson Notes: Week 40-Vectors

Linear Inequalities. Work Sheet 1

Vectors , (0,0). 5. A vector is commonly denoted by putting an arrow above its symbol, as in the picture above. Here are some 3-dimensional vectors:

2.4 Linear Inequalities and Interval Notation

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Exponentials - Grade 10 [CAPS] *

Introduction to Algebra - Part 2

Things to Memorize: A Partial List. January 27, 2017

Infinite Geometric Series

Mathematics Number: Logarithms

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.

Simplifying Algebra. Simplifying Algebra. Curriculum Ready.

Section 3.1: Exponent Properties

In this skill we review equations that involve percents. review the meaning of proportion.

378 Relations Solutions for Chapter 16. Section 16.1 Exercises. 3. Let A = {0,1,2,3,4,5}. Write out the relation R that expresses on A.

Introduction To Matrices MCV 4UI Assignment #1

Coordinate geometry and vectors

IMPOSSIBLE NAVIGATION

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

Multiplying integers EXERCISE 2B INDIVIDUAL PATHWAYS. -6 ì 4 = -6 ì 0 = 4 ì 0 = -6 ì 3 = -5 ì -3 = 4 ì 3 = 4 ì 2 = 4 ì 1 = -5 ì -2 = -6 ì 2 = -6 ì 1 =

4 VECTORS. 4.0 Introduction. Objectives. Activity 1

Bases for Vector Spaces

Finite Automata-cont d

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

Chapter 9 Definite Integrals

set is not closed under matrix [ multiplication, ] and does not form a group.

5: The Definite Integral

Bridging the gap: GCSE AS Level

Math 154B Elementary Algebra-2 nd Half Spring 2015

along the vector 5 a) Find the plane s coordinate after 1 hour. b) Find the plane s coordinate after 2 hours. c) Find the plane s coordinate

3. Vectors. Home Page. Title Page. Page 2 of 37. Go Back. Full Screen. Close. Quit

S56 (5.3) Vectors.notebook January 29, 2016

Determinants Chapter 3

Stage 11 Prompt Sheet

Coalgebra, Lecture 15: Equations for Deterministic Automata

AT100 - Introductory Algebra. Section 2.7: Inequalities. x a. x a. x < a

5.2 Exponent Properties Involving Quotients

1.2 What is a vector? (Section 2.2) Two properties (attributes) of a vector are and.

9.4. The Vector Product. Introduction. Prerequisites. Learning Outcomes

Chapter 2. Vectors. 2.1 Vectors Scalars and Vectors

1 ELEMENTARY ALGEBRA and GEOMETRY READINESS DIAGNOSTIC TEST PRACTICE

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Section 3.2: Negative Exponents

Lecture 3: Equivalence Relations

Thomas Whitham Sixth Form

Lecture 3. Introduction digital logic. Notes. Notes. Notes. Representations. February Bern University of Applied Sciences.

A study of Pythagoras Theorem

Is there an easy way to find examples of such triples? Why yes! Just look at an ordinary multiplication table to find them!

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

To Do. Vectors. Motivation and Outline. Vector Addition. Cartesian Coordinates. Foundations of Computer Graphics (Spring 2010) x y

VECTORS, TENSORS, AND MATRICES. 2 + Az. A vector A can be defined by its length A and the direction of a unit

Math Lecture 23

Section 4: Integration ECO4112F 2011

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes

2. VECTORS AND MATRICES IN 3 DIMENSIONS

Chapter 8.2: The Integral

Review of Gaussian Quadrature method

R(3, 8) P( 3, 0) Q( 2, 2) S(5, 3) Q(2, 32) P(0, 8) Higher Mathematics Objective Test Practice Book. 1 The diagram shows a sketch of part of

Section 6.1 INTRO to LAPLACE TRANSFORMS

Week 10: Line Integrals

Line and Surface Integrals: An Intuitive Understanding

EECS 141 Due 04/19/02, 5pm, in 558 Cory

Lecture 6. Notes. Notes. Notes. Representations Z A B and A B R. BTE Electronics Fundamentals August Bern University of Applied Sciences

UNIT 5 QUADRATIC FUNCTIONS Lesson 3: Creating Quadratic Equations in Two or More Variables Instruction

Parse trees, ambiguity, and Chomsky normal form

Chapter 6 Techniques of Integration

p-adic Egyptian Fractions

dy ky, dt where proportionality constant k may be positive or negative

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths

HW3, Math 307. CSUF. Spring 2007.

Introduction to Group Theory

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Topics Covered AP Calculus AB

Vectors. Introduction. Definition. The Two Components of a Vector. Vectors

Trigonometry and Constructive Geometry

Homework 3 Solutions

Linear Systems with Constant Coefficients

Vectors. a Write down the vector AB as a column vector ( x y ). A (3, 2) x point C such that BC = 3. . Go to a OA = a

Advanced Algebra & Trigonometry Midterm Review Packet

CS103 Handout 32 Fall 2016 November 11, 2016 Problem Set 7

An Overview of Integration

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

Lecture 3: Curves in Calculus. Table of contents

10. AREAS BETWEEN CURVES

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT

Similarity and Congruence

Edexcel GCE Core Mathematics (C2) Required Knowledge Information Sheet. Daniel Hammocks

ECON 331 Lecture Notes: Ch 4 and Ch 5

Chapters Five Notes SN AA U1C5

Introduction to Olympiad Inequalities

Polynomials and Division Theory

Torsion in Groups of Integral Triangles

Transcription:

Introduction to vectors mc-ty-introvector-2009-1 Avectorisquntityththsothmgnitude(orsize)nddirection. Bothofthese propertiesmustegiveninordertospecifyvectorcompletely.inthisunitwedescriehowto writedownvectors,howtoddndsutrctthem,ndhowtousethemingeometry. In order to mster the techniques explined here it is vitl tht you undertke plenty of prctice exercises so tht they ecome second nture. Afterredingthistext,nd/orviewingthevideotutorilonthistopic,youshouldeleto: distinguish etween vector nd sclr; understnd how to dd nd sutrct vectors; knowwhenonevectorismultipleofnother; use vectors to solve simple prolems in geometry. Contents 1. Introduction 2 2. Representing vector quntities 2 3. Position vectors 3 4. Some nottion for vectors 3 5. Adding two vectors 4 6. Sutrcting two vectors 5 7. Addingvectortoitself 5 8. Vectors of unit length 6 9. Using vectors in geometry 6 www.mthcentre.c.uk 1 c mthcentre 2009

1. Introduction Vector quntities re extremely useful in physics. The importnt chrcteristic of vector quntityisthtithsothmgnitude(orsize)nddirection. Bothofthesepropertiesmuste given in order to specify vector completely. Anexmpleofvectorquntityisdisplcement.Thistellushowfrwywerefromfixed point,nditlsotellsusourdirectionreltivetothtpoint. P O Another exmple of vector quntity is velocity. This is speed, in prticulr direction. An exmpleofvelocitymighte60mphduenorth. Aquntitywithmgnitudelone,utnodirection,isnotvector. Itisclledsclrinsted. Oneexmpleofsclrisdistnce.Thistellsushowfrwerefromfixedpoint,utdoesnot giveusnyinformtionoutthedirection.anotherexmpleofsclrquntityisthemssof n oject. Key Point A vector hs oth mgnitude nd direction, nd oth these properties must e given in order tospecifyit.aquntitywithmgnitudeutnodirectionisclledsclr. 2. Representing vector quntities Wecnrepresentvectorylinesegment.Thisdigrmshowstwovectors. B A Wehveusedsmllrrowtoindictethtthefirstvectorispointingfrom Ato B.Avector pointing from B to A would e going in the opposite direction. Sometimeswerepresentvectorwithsmlllettersuchs,inoldtypefce. Thisis common in textooks, ut it is inconvenient in hndwriting. In writing, we normlly put r underneth,orsometimesontopof,theletter: or.inspeech,wecllthisthevector -r. www.mthcentre.c.uk 2 c mthcentre 2009

3. Position vectors Sometimesvectorsrereferredtofixedpoint,norigin. Suchvectorisclledposition vector. Sowemightrefertothepositionvectorofpoint P withrespecttonorigin O. In writing, might put OP for this vector. Alterntively, we could write it s r. These two expressions refer to the sme vector. P O r 4. Some nottion for vectors Whtdoesitmenif,fortwovectors, =?Thismensfirstthtthelengthof equlsthe lengthof,sothtthetwovectorshvethesmemgnitude.butitlsomenstht nd reinthesmedirection.howcnwewritethisdownmoresuccinctly? Iftwovectorsre inthesmedirection,thentheyreprllel.wewritethisdowns //. Forlength,ifwehvevector AB,wecnwriteitslengths ABwithoutther.Alterntively, wecnwriteits AB.Thetwoverticllinesgiveusthemodulus,orsizeof,thevector.Ifwe hvevectorwrittens,wecnwriteitslengthseither withtwoverticllines,ors inordinrytype(orwithoutther).thisiswhyitisveryimportnttokeeptotheconvention ththseendoptedinordertodistinguishetweenvectornditslength. Key Point Thelengthofvector ABiswrittens ABor AB, ndthelengthofvector iswrittens (inordinrytype,orwithoutther)ors. Iftwovectors nd reprllel,wewrite // www.mthcentre.c.uk 3 c mthcentre 2009

5. Adding two vectors Oneofthethingswecndowithvectorsistoddthemtogether. Weshllstrtydding twovectorstogether. Oncewehvedonetht,wecnddnynumerofvectorstogethery ddingthefirsttwo,thenddingtheresulttothethird,ndsoon. Inordertoddtwovectors,wethinkofthemsdisplcements. Wecrryoutthefirstdisplcement, nd then the second. So the second displcement must strt where the first one finishes. + Thesumofthevectors, + (ortheresultnt,sitissometimesclled)iswhtwegetwhen wejoinupthetringle.thisisclledthetringlelwforddingvectors. There is nother wy of dding two vectors. Insted of mking the second vector strt where thefirstonefinishes,wemkethemothstrttthesmeplce,ndcompleteprllelogrm. This is clled the prllelogrm lw for dding vectors. It gives the sme result s the tringle lw,ecuseoneofthepropertiesofprllelogrmisthtoppositesidesreequlndinthe smedirection,sotht isrepetedtthetopoftheprllelogrm. + Key Point Wecnddtwovectors nd ymking strtwhere finishes, ndcompletingthe tringle.alterntively,wecnmke nd strttthesmeplce,ndtkethedigonlof the prllelogrm. www.mthcentre.c.uk 4 c mthcentre 2009

6. Sutrcting two vectors Whtis?Wethinkofthiss + ( ),ndthenweskwht mightmen.thiswill evectorequlinmgnitudeto,utinthereversedirection. Nowwecnsutrcttwovectors.Sutrcting from willethesmesdding to. Key Point mens + ( ) 7. Adding vector to itself Wht hppens when you dd vector to itself, perhps severl times? We write, for exmple, + + = 3. Inthesmewy,wewouldwrite n = } + {{... + }. ncopies www.mthcentre.c.uk 5 c mthcentre 2009

Key Point Avector nisinthesmedirectionsthevector,ut ntimesslong. 8. Vectors of unit length Thereisonemorepieceofnottionweshllusewhenwritingvectors.If isnyvector,weshll write âtorepresentunitvectorinthedirectionof.auntvectorisvectorwhoselengthis 1,sotht â = 1. Thisnottiongivesusnotherwyofwritingthevector :wecnwriteits â,sothtitis the length multiplied y the unit vector â. Key Point Aunitvectorinthedirectionofthevector iswrittens â,sotht = â. 9. Using vectors in geometry Exmple There is useful theorem in geometry clled the mid-point theorem. In this theorem, we tke twopoints And B,definedwithrespecttonorigin O.Letuswrite forthepositionvector of A,nd forthepositionvectorof B.Wecnjoin And Bwithline,togivetringle. Nowtkethemid-point Moftheline OA,ndthemid-point Noftheline OB,ndjoin Mto Nwithline. Cnwesynythingoutthereltionshipetweentheline MN ndtheline AB? www.mthcentre.c.uk 6 c mthcentre 2009

M A O N B Wecnnswerthisveryesilywithvectors. Wecnwritethevectorforthelinesegment AB s AO + OB.Now AOisthereverseofthevector,soitis. And OBisthesmesthe vector. Therefore AB = AO + OB = ( ) + =. Whtout MN?Followingthesmeresoning,thisis MO +ON.Butwhtis MO?Thisis vectorhlfthelengthof AO,ndinthesmedirection,soitmuste 1 2 ( ).Inthesmewy, ONisinthesmedirections OB,utishlfthelength,soitmuste 1 2.Therefore MN = MO + ON = 1 2 ( ) + 1 2 = 1 ( ). 2 Nowwecncompre ABnd MN. Fromourclcultion,wecnseetht MNis 1 AB. So, 2 sthisisvectoreqution,ittellsustwothings. First,ittellsusoutmgnitude,sotht MN = 1 AB.Also,ittellsustht MNnd ABmusteinthesmedirection,sotht MN//AB. 2 Thisisclledthemid-pointtheoremfortringle. Itsttesthtifyoujointhemid-pointsof twosidesoftringlethentheresultinglineisequltohlfofthethirdsideofthetringle,nd isprlleltoit. Exmple Wecnpplythemid-pointtheoremtoqudrilterl,orindeedtonyfourpointsinspce,to giveninterestinggeometriclresult. Weshllcllthefourpoints A, B, Cnd D. Weshll lsogivelelstothemid-pointsofthefoursides:weshllcllthemid-points P, Q, Rnd S. Nowletusjointhefourmid-points,tomkenewshpe PQRS.Whtkindofshpeisthis? B Q C R P D A S www.mthcentre.c.uk 7 c mthcentre 2009

Wecnidentifytheshpeyjoiningthepoints And C. Ifwepplythemid-pointtheoremtotringle ABC,weseetht PQ = 1 2 AC. Butifwepplythemid-pointtheoremtothetringle ADC,welsoseetht RS = 1 2 AC. If we comine these two equtions, we then otin PQ = RS. Nowthisisvectoreqution,ndsoittellsustwothings. First,ittellsusthtthelengthof PQisthesmesthelengthof RS. Andsecondly,ittellsusthtthedirectionof PQisthe smesthedirectionof RS,sotht PQnd RSreprllel. Buthvingtwoprllelsidesof equllengthispropertywhichdefinesprllelogrm,ndsotheshpe PQRSmuste prllelogrm. Exmple Weshllnowusevectorstoproveonemoretheorem. Tketwopoints And B,hvingpositionvectors, withrespecttonorigin O. Drwthe line AB,ndtkepoint P onthtlinewhichdividesitinthertioof mto n. Whtisthe positionvectorof Pwithrespectto O?. A m P r n B O Wecnusethesmemethodthtweusedefore.Weknowtht ndwelsoknowtht OA =.Butwhtis AP? OP = OA + AP, (1) Now APisinthesmedirections AB,ndtheirlengthsreinthertioof mto m + n.so Welsoknowtht AP = m AB. (2) m + n AB = AO + OB =. www.mthcentre.c.uk 8 c mthcentre 2009

Now we cn put these three sttements together, replcing AP in eqution(1) y using eqution(2),ndreplcing ABineqution(2)yusingtheeqution(3),sothteverythingwille writtenintermsof nd.thisgivesus OP = + m ( ). m + n Putting ll this over common denomintor then gives OP = (m + n) + m( ). m + n Ifweexpndtherckets,theterm mwillcncelwiththeterm m( ),ndsofinllywehve OP = n + m m + n. Thisformulgivesuswyofclcultingthepositionvectorofthepoint P.Forinstnce,if m nd nwereoth 1then Pwouldethemid-pointof AB. Thepositionvectorofthemidpoint woulde ( + )/2.Asnotherexmple,if m = 2nd n = 1,sotht Pwstwo-thirdsofthe wylongtheline,thenthepositionvectorof Pwoulde ( + 2)/3. Exercises 1.Thevector isshownelow. Sketchthevectors 2, 3, 1 nd 2. 2 2.In OAB, OA = nd OB =.Intermsof nd, () Wht is AB? () Wht is BA? (c) Whtis OP,where Pisthemidpointof AB? (d) Whtis AP? (e) Whtis BP? (f) Whtis OQ,where Qdivides ABinthertio2:3? 3.Whtismentyunitvector? 4.If eisunitvector,whtisthelengthof 3e? 5.In ABC, AB =, BC =, CA = c.whtis + + c? www.mthcentre.c.uk 9 c mthcentre 2009

Answers 1. 2 1 2 3 2 2. () () (c) 1 1 (e) ( ) (f) 3 + 2 2 5 5 3.Avectorwithlength1 4.3 5.0 ( + )(d) 1( ) 2 2 www.mthcentre.c.uk 10 c mthcentre 2009