VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

Similar documents
Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Learning Enhancement Team

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods

Module 3: Element Properties Lecture 5: Solid Elements

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

2 a Mythili Publishers, Karaikkudi

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

LECTURE 2 1. THE SPACE RELATED PROPRIETIES OF PHYSICAL QUANTITIES

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j

1.3 SCALARS AND VECTORS

m A 1 1 A ! and AC 6

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

m m m m m m m m P m P m ( ) m m P( ) ( ). The o-ordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r

CHAPTER 5 Vectors and Vector Space

CENTROID (AĞIRLIK MERKEZİ )

COMPLEX NUMBER & QUADRATIC EQUATION

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

VECTOR ALGEBRA. Syllabus :

( ) ( )()4 x 10-6 C) ( ) = 3.6 N ( ) = "0.9 N. ( )ˆ i ' ( ) 2 ( ) 2. q 1 = 4 µc q 2 = -4 µc q 3 = 4 µc. q 1 q 2 q 3

LESSON 11: TRIANGLE FORMULAE

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Review of linear algebra. Nuno Vasconcelos UCSD

Physics for Scientists and Engineers I

H (2a, a) (u 2a) 2 (E) Show that u v 4a. Explain why this implies that u v 4a, with equality if and only u a if u v 2a.

VECTORS AND TENSORS IV.1.1. INTRODUCTION

8.3 THE HYPERBOLA OBJECTIVES

THREE DIMENSIONAL GEOMETRY

4. Eccentric axial loading, cross-section core

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets.

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof

HOMEWORK FOR CLASS XII ( )

" = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction

NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: MTH303

CHENG Chun Chor Litwin The Hong Kong Institute of Education

Charged Particle in a Magnetic Field

Lecture 7 Circuits Ch. 27

Vectors. Chapter14. Syllabus reference: 4.1, 4.2, 4.5 Contents:

Forces on curved surfaces Buoyant force Stability of floating and submerged bodies

Chapter I Vector Analysis

y z A left-handed system can be rotated to look like the following. z

Announcements. Image Formation: Outline. The course. Image Formation and Cameras (cont.)

SIMPLE NONLINEAR GRAPHS

2. There are an infinite number of possible triangles, all similar, with three given angles whose sum is 180.

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

Reflection Property of a Hyperbola

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

3 Angle Geometry. 3.1 Measuring Angles. 1. Using a protractor, measure the marked angles.

Logarithms LOGARITHMS.

Inspiration and formalism

Effects of polarization on the reflected wave

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

The Ellipse. is larger than the other.

Solutions to Assignment 1

MTH 263 Practice Test #1 Spring 1999

PROPERTIES OF TRIANGLES

2. Topic: Summation of Series (Mathematical Induction) When n = 1, L.H.S. = S 1 = u 1 = 3 R.H.S. = 1 (1)(1+1)(4+5) = 3

Vectors. a Write down the vector AB as a column vector ( x y ). A (3, 2) x point C such that BC = 3. . Go to a OA = a

ELG4179: Wireless Communication Fundamentals S.Loyka. Frequency-Selective and Time-Varying Channels

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

, MATHS H.O.D.: SUHAG R.KARIYA, BHOPAL, CONIC SECTION PART 8 OF

Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q.

50 AMC Lectures Problem Book 2 (36) Substitution Method

Rigid body simulation

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors.

Principle Component Analysis

( ) { } [ ] { } [ ) { } ( ] { }

Mathematics. Area under Curve.

QUADRATIC EQUATION. Contents

Things to Memorize: A Partial List. January 27, 2017

Chapter 2. Vectors. 2.1 Vectors Scalars and Vectors

ME 501A Seminar in Engineering Analysis Page 1

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e

INTRODUCTION TO COMPLEX NUMBERS

Kinematics Quantities. Linear Motion. Coordinate System. Kinematics Quantities. Velocity. Position. Don t Forget Units!

Final Exam Review. [Top Bottom]dx =

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

Two Triads of Congruent Circles from Reflections

8 THREE PHASE A.C. CIRCUITS

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

Homework Math 180: Introduction to GR Temple-Winter (3) Summarize the article:

Lecture 4: Piecewise Cubic Interpolation

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

Haddow s Experiment:

Least squares. Václav Hlaváč. Czech Technical University in Prague

6 Roots of Equations: Open Methods

a = Acceleration Linear Motion Acceleration Changing Velocity All these Velocities? Acceleration and Freefall Physics 114

Multiple view geometry

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Exercise sheet 6: Solutions

INTERPOLATION(1) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek

ragsdale (zdr82) HW6 ditmire (58335) 1 the direction of the current in the figure. Using the lower circuit in the figure, we get

Ellipse. 1. Defini t ions. FREE Download Study Package from website: 11 of 91CONIC SECTION

Trigonometry Revision Sheet Q5 of Paper 2

Geometry of the Circle - Chords and Angles. Geometry of the Circle. Chord and Angles. Curriculum Ready ACMMG: 272.

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

LINEAR ALGEBRA APPLIED

Transcription:

1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude of the vetor nd the rrowhed shows the dreton of the vetor. B Emple 1.1 A fore tng on od s vetor. Suh vetor represents oth the mgntude nd the dreton of ton. A The ove vetor s referred to s: AB or The mgntude s referred to s: AB, or, or smpl AB, or 3. Tpes of Vetors poston vetor AB (pont A s fed) lne vetor (t n slde long ts lne of ton) free vetor (not restrted n movement) Dr. E. Mlonds EX11/ 1 Dr. E. Mlonds EX11/ 4. Equl nd pposte Vetors Equl Vetors 5. Vetor pertons I 5.1 Addton the hn method drw the vetors strtng the seond where the frst ends (for two vetors). The sum s the vetor from the strt of the frst to the end of the seond. = { = nd nd hve the sme dreton} = + pposte Vetors In smlr w, for more thn two vetors = - { = nd nd hve opposte dreton} d d = + + Dr. E. Mlonds EX11/ 3 Dr. E. Mlonds EX11/ 4

5.1.1 Bs Propertes of Vetor Addton the prllelogrm method drw prllelogrm wth the two vetors s two dent edges hvng ommon strtng pont. The dgonl of the prllelogrm s the sum of the two vetors. + = + ( u+ v) + w = u+ ( v+ w) + = + = + ( ) = (5.1) 5. Sutrton θ - = + = + osθ = - Dr. E. Mlonds EX11/ 5 Dr. E. Mlonds EX11/ 6 5.3 Multplton Slr The produt of vetor slr s vetor wth mgntude nd dreton the dreton of f > or the opposte dreton of f <. 6. Components of Vetor An vetors whose sum gves ertn vetor re the omponents of vetor -,, d re the omponents of vetor ( = + + d) d 7. Unt Vetors 5.3.1 Propertes of Multplton Slr ( + ) = + ( + ) = + ( ) = ( ) 1 = = ( 1) = (5.) A vetor wth unt mgntude s unt vetor = = 1 Then = = - nd - re the oordntes of vetors nd wth respet to Dr. E. Mlonds EX11/ 7 Dr. E. Mlonds EX11/ 8

8. Crtesn Coordnte Sstem In three-dmensonl spe vetor v n e represented three omponents the most. ne w to do tht s to use set of three es of referene orthogonl to eh other so the omponents of vetor v le ross these es. Ths sstem of es s lled Crtesn oordnte sstem 8.1 Mgntude of Vetor 1 3 1 3 = + + or = 1 3 1 3 where,, re the unt vetors long the es of referene 1,, 3 re the oordntes of vetor wth respet to the gven sstem of referene = + + 1 3 (8.1) Dr. E. Mlonds EX11/ 9 Dr. E. Mlonds EX11/ 1 8.1 Dreton Cosnes of Vetor Emple 8.1 Let two vetors = + 3 nd = + 3 5 The mgntudes of nd re 1 α γ β 3 = + ( 1) + 3 = 14 = 374. = ( ) + 3 + ( 5) = 38= 616. The dreton osnes of re l = = m= 1 3 53., = 7., n= = 8. 374. 374. 374. The dreton osnes l m n re the osnes of the ngles etween the vetor nd the es of referene. l m 1 3 =, =, n = l + m + n = 1 (8.) The sum of nd s + = + 3 + 3 5 = ( ) + ( 1+ 3) + ( 3 5) = + Dr. E. Mlonds EX11/ 11 Dr. E. Mlonds EX11/ 1

9. Vetor pertons II 9.1 Slr or Dot Produt The dot produt of two vetors nd s slr quntt epressed s nd gven =osθ (9.1) 9.1.1 Propertes of Slr Produts q+ q = q + q 1 1 = = ff = ( + ) = + (9.) 9.1. Slr Produts of the Unt Vetors n n rthogonl Sstem θ If θ = 9,.e. the two vetors re perpendulr, then osθ = nd =. Vetors nd re lled orthogonl. Emple 9.1 Wor of fore. It s es to prove from (9.1) nd (9.) tht = = = 1 = = = = = = (9.3) Dr. E. Mlonds EX11/ 13 Dr. E. Mlonds EX11/ 14 9.1.3 Slr Produts n Crtesn Coordntes If = + + nd = + +, then 1 3 1 3 = ( + + ) ( + + ) 1 3 1 3 9.1.5 Proeton of Vetor on to Another Vetor Usng propertes (9.) nd (9.3) we hve = + + 1 1 3 3 (9.4) 9.1.4 Mgntude nd Angle n Terms of Slr Produt Aordng to (9.1) = os( ) =. Therefore θ p = (9.5) Also from (9.1) nd (9.5) the ngle etween two vetors nd s p= osθ U p = V W = osθ (9.8) osθ = = (9.6) If l1, m1, n1 nd l, m, n re the dreton osnes of nd respetvel t n e esl shown from (8.) nd (9.6) tht osθ = ll 1+ mm 1 + nn (9.7) 1 Dr. E. Mlonds EX11/ 15 Dr. E. Mlonds EX11/ 16

Emple 9. Consder the two vetors from emple 8.1 = + 3 nd = + 3 5 Then = ( ) + ( 1) 3+ 3( 5) = 9. Vetor or Cross Produt The ross produt of two vetors nd s vetor v epressed s suh tht v = = snθ (9.9) nd the dreton of v s perpendulr to oth nd usng the rghthnd rule. From emple 8.1 = 3. 74 nd = 616.. The ngle etween the two vetors s v osθ= = = 96. θ= 16. 73 374. 616. θ The proeton of to s p = = = 357. 616. Also, f = + + nd = + +, then 1 3 1 3 = 1 3 1 3 (9.1) Dr. E. Mlonds EX11/ 17 Dr. E. Mlonds EX11/ 18 Emple 9.3 9..1 Propertes of Vetor Produts Moment of fore Emple 9.4 Consder gn the two vetors from emple 8.1 = + 3 nd = + 3 5 Then ( l) = l( ) = ( l) ( + ) = ( ) + ( ) ( + ) = ( ) + ( ) = ( ) 9.3 Slr Trple Produt The slr trple produt of three vetors,, s the slr (9.11) Note tht v = = = 1 3 3 5 = 1 3 3 + 1 3 5 5 3 = 4+ 4+ 4 It n e shown tht v = ( ) (9.1) ( ) = 1 3 1 3 1 3 (9.13) v = v = It n e shown tht the slr trple produt s the volume of the prllelepped wth,, s edge vetors. Dr. E. Mlonds EX11/ 19 Dr. E. Mlonds EX11/

1. Lnes nd Plnes 1.1 Lnes n 3-d Spe (Prmetr Epresson) Emple 1.1 () l r r n r t The strght lne tht psses through nd s prllel to the unt vetor r = 3 1 n = 1 s gven r() t = ( 3+ t) + Gven re one pont r of the lne nd the dreton of the lne through the unt vetor n. Then, for ever pont r r = r + r = r + tn t = ( r + tn ) + ( r + tn ) + ( r + tn ) 1 1 3 3 (1.1) where t s free prmeter. Dr. E. Mlonds EX11/ 1 Dr. E. Mlonds EX11/ 1. Plnes 1..1 Plne Defned ts Dstne from the rgn 1.. Plne Defned ts Dreton nd Pont n r r r If = 1+ + 3 s the dstne of the plne from the orgn, then ever vetor r = + + tht ponts to the plne hs the sme proeton = n the dreton of. Aordng to (9.8) = r r = = 1 Hene + + = = (1.) 1 3 1 Suppose tht the plne psses through the pont r = r + r + r nd t s perpendulr to the unt vetor n= n+ n + n. Then for ever pont r = + + on the plne.e. Hene r r s perpendulr to n ( r r ) n= r n= r n= n + n + n = r n= (1.3) Dr. E. Mlonds EX11/ 3 Dr. E. Mlonds EX11/ 4

Emple 1. Fnd the equton of the plne tht psses through the pont r = r + r + r = + 3 1 nd s perpendulr to the unt vetor 11. Curves, Tngents, Velot nd Aelerton 11.1 Curves (prmetr epresson) C 1 1 n= n+ n+ n = + 6 6 6 For ever pont r = + + s vld n + n + n = r n e.. 1 1 1 F + = 3 + 6 6 6 6 6 1 1 H 6 or 1 1 8 + = 6 6 6 6 I K r( t) Hene the plne equton s + = 8 A urve C n e represented prmetrll vetor funton r() t = () t + () t + () t The end of r(t) moves long C s the slr prmeter t hnges. Dr. E. Mlonds EX11/ 5 Dr. E. Mlonds EX11/ 6 Emple 11.1 11.1 Tngent to Curve The vetor funton u( t) Q r() t = Rosωt+ Rsnω t P r r( t + t) hs mgntude r( t) = R os ωt + R sn ω t = R r( t) Hene r(t) represents rle of rdus R nd entre t the orgn of the plne. C r = r( t + t) r( t ) r( t) Then the vetor dr r r + r r ( ) = = lm = lm ( t t t ) ( t ) (11.1) dt t t t t s the dervtve of r(t) wth respet to t nd s the tngent to the urve C t the pont P. u(t) s the unt vetor n the dreton of r () t nd s lled the unt tngent vetor to the urve C t the pont P. Hene 1 u() t = r () t r ( t) (11.) Dr. E. Mlonds EX11/ 7 Dr. E. Mlonds EX11/ 8

Emple 11. 11. Velot Consder the poston vetor r() t = () t + () t + () t tht defnes urve C. If t s the tme then the dervtve r () t s the velot of prtle tht moves long C. Aordng to (11.1) r () t s tngent to the urve C nd ponts to the dreton of moton. The vetor funton r() t = Rosωt+ Rsnω t defnes the movement of prtle long rle of rdus R nd entre t the orgn of the -plne wth onstnt ngulr velot ω. The velot s gven nd v() t = r () t = Rω snωt+ Rω osω t dr d d d v() t = r () t = = + + (11.3) dt dt dt dt The elerton then s v = v = v v = Rω () t = v () t = Rω osωt Rω snωt= ω r 11.3 Aelerton Usng smlr rguments the elerton vetor (t) s gven v( t) d r d d d () t = v () t = = + + (11.4) dt dt dt dt ( t) Dr. E. Mlonds EX11/ 9 Dr. E. Mlonds EX11/ 3