Improving the stability of longitudinal and transverse laser modes

Similar documents
Suppression of thermal lensing effects in intra-cavity coherent combining of lasers

Efficient mode transformations of degenerate Laguerre Gaussian beams

An alternative method to specify the degree of resonator stability

Quantum Electronics Laser Physics PS Theory of the Laser Oscillation

3.1 The Plane Mirror Resonator 3.2 The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Stimulated Emission Devices: LASERS

OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19

Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

Chapter-4 Stimulated emission devices LASERS

A microring multimode laser using hollow polymer optical fibre

24. Advanced Topic: Laser resonators

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

Multibeam-waist modes in an end-pumped Nd:YVO 4 laser

Computational Physics Approaches to Model Solid-State Laser Resonators

Coherent Combining and Phase Locking of Fiber Lasers

1 Longitudinal modes of a laser cavity

Effects of resonator input power on Kerr lens mode-locked lasers

Optics for Engineers Chapter 9

Comparison of different composite Nd:YAG rods thermal properties under diode pumping

Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber

LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES

A tunable corner-pumped Nd:YAG/YAG composite slab CW laser

Optics for Engineers Chapter 9

Intracavity generation of longitudinal dependant Bessel like beams

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE426F Optical Engineering. Final Exam. Dec. 17, 2003.

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light

Efficient Generation of Second Harmonic Wave with Periodically. Poled MgO:LiNbO 3

Efficient generation of blue light by intracavity frequency doubling of a cw Nd:YAG laser with LBO

A novel scheme for measuring the relative phase difference between S and P polarization in optically denser medium

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

The Generation of Ultrashort Laser Pulses

Operational characteristics and power scaling of a transverse flow transversely excited CW CO 2

Step index planar waveguide

Lecture 5 Op+cal resonators *

Modern optics Lasers

S. Blair September 27,

Theory of the unstable Bessel resonator

EE485 Introduction to Photonics

Coupled-Cavity Bottom-Emitting VCSELs a New Laser Design for Increased Single-Transverse-Mode Output Power

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Numerical calculations of diffraction losses in advanced interferometric gravitational wave detectors

Two-Dimensional simulation of thermal blooming effects in ring pattern laser beam propagating into absorbing CO2 gas

FREE-ELECTRON LASER FACILITY(U) NATIONAL BUREAU OF STANDARDS GAITHERSBURG NO P H DEBENHdAN ET AL UNCLASSIFIED F/G 14/2 NI

MODERN OPTICS. P47 Optics: Unit 9

Benefits of cryogenic cooling on the operation of a pulsed CO 2 laser

Chapter9. Amplification of light. Lasers Part 2

Poling pattern for efficient frequency doubling of Gaussian beams

Dispersion and how to control it

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References

The Generation of Ultrashort Laser Pulses II

Miniaturization of an Optical Parametric Oscillator with a Bow-Tie. Configuration for Broadening a Spectrum of Squeezed Light

Sintec Optronics Pte Ltd

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Spectral broadening in continuous-wave intracavity Raman lasers

Observation of transverse modes in a microchip laser with combined gain and index guiding

CHAPTER FIVE. Optical Resonators Containing Amplifying Media

Shift and broadening of emission lines in Nd 3+ :YAG laser crystal influenced by input energy

Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti:Sapphire Laser Cavities by Using Nonlinear ABCD Matrices

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz

Ho:YLF pumped HBr laser

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz

Lasers & Holography. Ulrich Heintz Brown University. 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1

Focal shift in vector beams

VERTICAL-CAVITY surface-emitting lasers (VCSEL s)

Unstable optical resonators. Laser Physics course SK3410 Aleksandrs Marinins KTH ICT OFO

Generation of vortex beams by an image-rotating optical parametric oscillator

Experimental confirmation of the negentropic character of the diffraction polarization of diffuse radiation

Bragg-induced orbital angular-momentum mixing in paraxial high-finesse cavities

Supplementary for Disorder Dependent Valley Properties in Monolayer WSe 2

Long- and short-term average intensity for multi-gaussian beam with a common axis in turbulence

Optimisation using measured Green s function for improving spatial coherence in acoustic measurements

Intracavity generation of radially polarized CO 2 laser beams based on a simple binary dielectric diffraction grating

Investigation of nanoprecursors threshold distribution in laser-damage testing

Neodymium Laser Q-Switched with a Cr 4+ : YAG Crystal: Control over Polarization State by Exterior Weak Resonant Radiation

Measurement of orbital angular momentum of a single photon: a noninterferrometric

Theoretical study of left-handed behavior of composite metamaterials

B 2 P 2, which implies that g B should be

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Diffuse reflection BBSFG optical layout

4 FEL Physics. Technical Synopsis

Theory and simulation of transverse supermode evolution in a free-electron laser oscillator

The first results of the 3-D experiment for investigating a dependence of spatial light dragging in a rotating medium on speed of rotation

Advances in the Micro-Hole & Strip Plate gaseous detector

ECE 484 Semiconductor Lasers

Intra cavity flat top beam generation

Designs of One-Element Refracting System for Gaussian and Annular-Gaussian Beams Transformations

Electron Density Measurements of Argon Surface-Wave Discharges

Ultra-narrow-band tunable laserline notch filter

Blue-green Emitting Semiconductor Disk Lasers with Intra-Cavity Frequency Doubling

Free-Electron Lasers

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015

LASERS. Amplifiers: Broad-band communications (avoid down-conversion)

Analysis of a large-mode neodymium laser passively Q switched with a saturable absorber and a stimulated-brillouin-scattering mirror

Efficient sorting of orbital angular momentum states of light

Lasers... the optical cavity

Transcription:

Optics Communications 239 (24) 147 151 www.elsevier.com/locate/optcom Improving the stability of longitudinal and transverse laser modes G. Machavariani *, N. Davidson, A.A. Ishaaya, A.A. Friesem Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 761, Israel Received 13 April 24; received in revised form 1 May 24; accepted 1 May 24 Abstract We show that laser mode stability can be improved with an intracavity mode selecting phase element. Without the phase element, a sub-wavelength change of the distance between the mirrors of a CO 2 laser leads to a substantial change of the transverse mode distribution, whereas with it the distribution remains essentially the same. Ó 24 Elsevier B.V. All rights reserved. PACS: 42.6.Lh; 42.6.Jf; 42.6.Mi; 42.55.Ah; 42.55.Lt Keywords: Laser mode stability; Longitudinal and transverse modes; Optical phase elements In general, the modal content in a multimode laser depends on the laser resonator length. This leads to significant variations of the output intensity distribution from lasers where the separation between the frequencies of adjacent longitudinal modes is of the order of the laser gain bandwidth. In such lasers, e.g., CO 2 lasers, the effective gain of each transverse mode strongly depends on the exact position of its longitudinal mode frequencies with respect to the maximal gain frequency [1]. * Corresponding author. Tel.: +9-728-934-3428; fax: +9-728- 934-419. E-mail address: galina@wisemail.weizmann.ac.il (G. Machavariani). Hence, the transverse modal content becomes extremely sensitive to sub-wavelength changes of the laser resonator length. In principle, this strong coupling between longitudinal and transverse modes can be used for the selection of a single longitudinal and transverse mode by sub-wavelength adjustment the resonator length L, as we demonstrate below with an infra-red CO 2 lasers. Unfortunately, as the laser resonator length changes spontaneously on such sub-wavelength scale due to mechanical vibrations and thermal drifts, the selected transverse mode is extremely unstable. In this paper, we demonstrate an approach for stabilizing the transverse mode structure in cases where there is strong coupling between the 3-418/$ - see front matter Ó 24 Elsevier B.V. All rights reserved. doi:1.116/j.optcom.24.5.14

148 G. Machavariani et al. / Optics Communications 239 (24) 147 151 longitudinal and the transverse modes. In this approach, an intracavity phase element that discrim- qnm ¼ c pffiffiffiffiffiffiffiffiffi v arccosð g 1 g 2 Þ q þðnþmþ1þ ; 2L p inates and selects a specific transverse mode is ð1þ inserted into the laser resonator. We show that the discrimination can be so strong that the selection of the single transverse mode remains stable gitudinal modes, n and m indices denote the order where q is an integer number which counts the lon- despite changes of the resonator length. Such phase elements were used for increasing the output beam power [2 5] while maintaining good beam quality [6,7], in lasers with many longitudinal modes (e.g., >1 for YAG lasers [1,8]), where transverse mode stability is inherently insensitive to changes in the laser cavity length. Here, we investigate the influence of the phase elements on the laser mode stability, in the inherently unstable regime where the separation between the frequencies of adjacent longitudinal modes is of the order of the laser gain bandwidth. To demonstrate our approach we used a representative continuous wave CO 2 laser. The laser resonator included a flat output coupler with of nmth transverse mode, and g 1 and g 2 are the resonator g parameters [8] (for our laser, g 1 g 2 =.46). The second term in the brackets originates from the Guoy phase shift of the nm-th transverse mode and gives the frequency-separation of the higherorder transverse modes Dv trans for each given longitudinal mode q. For our laser configuration, this separation is Dv trans =49 MHz, and the higherorder transverse mode frequencies are clustered as satellite modes on the high-frequency side of each longitudinal mode, giving frequency-separation format somewhat between the near-planar and confocal configuration [8]. In order to discriminate and select the specific (,1) Laguerre Gaussian (LG) transverse mode, reflectivity R 1 =95% and a high reflective we used a binary phase element (BPE) [3]. To determine (R 2 =99.5%) concave back mirror with a curvature radius of 3 m. The resonatorõs length L was 165 cm, and the inner tube diameter was about 13 mm. No aperture was introduced, to allow for the effect of such a BPE, we calculate the ratio B of the small-signal gain to the gain threshold value [9] for the fundamental and (,1) LG modes, given by higher-order transverse mode operation. The back g mirror was placed on a mount that allowed for B ¼ L p j ln ffiffiffiffiffiffiffiffiffiffi R 1 R 2 V s j ; sub-micron displacements along the axial z ð2þ direction. where p g L denotes the small-signal gain, For the He:N 2 :CO 2 laser gas mixture that was j ln ffiffiffiffiffiffiffiffiffiffi R 1 R 2 V s j is the gain threshold value, and V s used, the average of pressure-broadening coefficients for different types of collisions is 5.87 MHz/ Torr [8]. So, for a pressure of about 2 Torr, the total pressure-broadened homogeneous linewidth is is the single-pass diffraction loss factor. We assume other losses to be small. The V s values were obtained by the round-trip matrix diagonalization method within a strip resonator model [1]. approximately 12 MHz. The inhomogeneous The small-signal gain was assumed to have the Lorentzian Doppler broadening [8] at room temperature and 1.6 lm transition was calculated to be 7 MHz. Consequently, homogeneous broadening is dominant. The linewidth of the laser transition obtained from the convolution of the homogeneous and lineshape [8]. The calculated results are presented in Fig. 1. Fig. 1(a) shows the ratio B of the small-signal gain to the gain threshold obtained for the resonator without the BPE, while Fig. 1(b) with the BPE. It is evident that without inhomogeneous linewidths is approximately the phase element, Fig. 1(a), the curves obtained 14 MHz, smaller than the spectral separation of the longitudinal modes, which for our laser is c/ (2L)=185 MHz. This means that the laser can operate with a single longitudinal mode. for the fundamental mode and (,1) LG mode, cross each other. This indicates that by properly adjusting the resonator length L so as to control the longitudinal modes, it would be possible to obtain The resonance frequencies of longitudinal and laser operation with different transverse corresponding transverse modes are [8] modes. On the other hand, with the BPE, Fig.

G. Machavariani et al. / Optics Communications 239 (24) 147 151 149 small signal gain / threshold, A.U. 25 2 15 1 5 15 1 5 1 5 5 1 L, microns Fig. 1. Calculated ratio B of pffiffiffiffiffiffiffiffiffiffi the small-signal gain g L to the gain threshold value j lnð R 1 R 2 V s Þj, for the fundamental (dashed curve) and (,1) (solid curve) LG modes, as function of a slight change DL of the resonator length: (a) without BPE; (b) with BPE. 1(b), the curves obtained for the fundamental and (,1) LG modes are separated, indicating that the laser will operate only in a single transverse higherorder mode. Fig. 2 shows the experimental near-field and far-field intensity distributions, obtained with the (a) (b) laser that did not contain a BPE, for different resonator lengths. The upper row shows the near-field intensity distributions, while the lower row shows the far-field intensity distributions. From the left to the right, each subsequent distribution is detected after a slight change DL of the resonator length. The periodic change of the transverse modes is clearly evident, whereby each transverse mode is repeated, as expected, after DL = 5.3 lm= k/2. These results indicate that control of the longitudinal modes by adjusting the resonator length L allows selection of different transverse modes. Such a method for transverse mode selection is not very practical, because the resonator length is extremely sensitive to mechanical and thermal variations. Such variations can lead to change of the transverse modes with time. Moreover, the modes are not very pure. Indeed, it is evident from the Fig. 2 that the Gaussian distribution of the fundamental mode is too wide, because it is obtained with no appropriate aperture (we obtained M 2 =1.55), and that of the (,1)* LG mode is really a mixture of (,1)* LG and Gaussian modes (we obtained M 2 =1.76 for this mode ). In order to improve the transverse mode stability, we incorporated a BPE designed to select (,1) LG mode into the laser resonator at a distance of 3 cm from the back mirror. It was fabricated using Fig. 2. Experimental near-field and far-field intensity distributions for different resonator lengths. From the left to the right, each subsequent distribution is recorded for the resonator length change DL=k/6, DL=k/2 and DL=2k/3, whereby the period between two similar distributions is 5.3 lm=k/2. Upper row: near-field intensity distributions; low row: corresponding far-field intensity distributions.

15 G. Machavariani et al. / Optics Communications 239 (24) 147 151 photolithographic reactive ion etching and antireflection coating technologies on zinc selenide substrates [4]. Configuration of the laser resonator containing the BPE, is shown in Fig. 3. The inset schematically shows the BPE profile. Fig. 4 shows the near-field and far-field intensity distributions, for different laser resonator lengths, with the BPE in the cavity. The upper row shows the near-field intensity distributions, while the lower row shows the far-field distributions. Each subsequent distribution, from left to right, is recorded after a slight change DL of the resonator length, whereby DL after two displacements is k/2. As evident, the selected transverse mode does not Fig. 3. Configuration of the CO 2 laser resonator containing the BPE. The inset schematically shows the BPE profile. change with the change of the resonator length L. This indicates that the mode will remain stable with respect to mechanical and thermal variations. The variations of the intensity in the center of the output beam provide a good qualitative criterion for the transverse mode stability. We measured the intensity in the center of the output beam as a function of DL. The results are presented in Fig. 5. Curve (a) is for the laser without BPE, while the Intensity in the center, A.U. 14 12 1 8 6 4 2 5 1 15 2 L, microns Fig. 5. Experimental near-field intensity in the center of the output beam, as a function of the change DL of the laser resonator length: (a) without a BPE; (b) with a BPE designed to select (,1) LG mode. Note large periodic variations in curve (a) and total stability in curve (b). (a) (b) Fig. 4. Experimental near-field and far-field intensity distributions for different resonator lengths, with an intracavity phase element designed to select (,1) LG mode. From the left to the right, each subsequent distribution is recorded for the resonator length change DL=k/6, DL=k/2 and DL=2k/3. Upper row: near-field intensity distributions; low row: far-field intensity distributions.

G. Machavariani et al. / Optics Communications 239 (24) 147 151 151 M 2 3. 2.5 2. 1.5 1. M 2 x M 2 y 5 1 15 2 25 L, microns Fig. 6. Experimental M 2 x and M 2 y beam quality factors as a function of the change DL of the laser resonator length, with a BPE designed to select (,1) LG mode. Note periodic 5% variation of M 2 x and 9% variation of M 2 y, with the period of k/2=5.3 lm. In our experiment the laser efficiency, prior to inserting the BPE, was 1%, with the output power of 3 W. With the BPE, the output power decreased to 1.9 W, as expected from the effective mode area of the (,1) LG mode as compared to the (,1)* LG mode. To conclude, we have shown that an intracavity phase element significantly improves transverse mode stability. Specifically, we experimentally demonstrated that the introduction of an intracavity phase element into a CO 2 laser essentially maintains the same single transverse mode, regardless of changes in the resonator length L. In contrast to this, without the phase element, the transverse mode is not maintained even with slight changes of the resonator length L. This research was supported in part by Pamot Venture Capital Fund through Impala, Ltd. curve (b) is for the laser with BPE designed to select (,1) LG mode. As evident, without the BPE the intensity in the center shows strong periodic variations (with a period of k/2), reflecting periodic change from nearly Gaussian mode distribution to a nearly (,1)* LG mode distribution (see Fig. 1). On the other hand, the intensity in the center, obtained with the BPE, does not vary at all, demonstrating excellent stability. To quantitatively characterize the stability of the (,1) LG mode, selected with the BPE, we measured beam quality factor M 2 as a function of DL. The results are shown in Fig. 6. The upper curve denotes M 2 x factor, while the lower curve denotes M 2 y factor. The variation in M 2 y factor is only 9%, while the variation in M 2 x factor is only 5%. Also, we obtained periodic variation in the output power, which was of about 15%. These variations are due to the periodic variations of the resonance conditions as the resonator length L is varied. References [1] A. Yariv, Optical Electronics, Saunders College Publishing, USA, 1991 p. 152. [2] R. Oron, Y. Danziger, N. Davidson, A.A. Friesem, E. Hasman, Appl. Phys. Lett. 74 (1999) 1373. [3] R. Oron, Y. Danziger, N. Davidson, A.A. Friesem, E. Hasman, Opt. Commun. 169 (1999) 115. [4] R. Oron, N. Davidson, A.A. Friesem, E. Hasman, in: E. Wolf (Ed.), Progress in Optics, vol. 42, Pergamon, Oxford, 21 (Chapter 6). [5] A.A Ishaaya, N. Davidson, G. Machavariani, E. Hasman, A.A. Friesem, J. Quant. Electron. 39 (1) (23) 74. [6] G. Machavariani, N. Davidson, A. Ishaaya, A.A. Friesem, E. Hasman, Opt. Lett. 27 (17) (22) 151. [7] A.A. Ishaaya, G. Machavariani, N. Davidson, A.A. Friesem, E. Hasman, Opt. Lett. 28 (23) 54. [8] A.E. Siegman, Lasers, University Science Books, Mill Valley, CA, 1986 p. 129, 161. [9] N. Hodson, H. Weber, Optical Resonators, Springer- Verlag London Limited, 1997 p. 37. [1] A.G. Fox, T. Li, Resonant modes in a maser interferometer, Bell Sys. Tech. J. 4 (1961) 453.