Chapter 2: Energy, Temperature, and Heat

Similar documents
Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

8.5 - Energy. Energy The property of an object or system that enables it to do work. Energy is measured in Joules (J).

Topic 5 Practice Test

Chapter 2. Heating Earth's Surface & Atmosphere

1. How much heat was needed to raise the bullet to its final temperature?

Chapter 14 Temperature and Heat

* Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy

MAPH & & & & & & 02 LECTURE

ATM 10. Severe and Unusual Weather. Prof. Richard Grotjahn.

Bernoulli s Principle. Application: Lift. Bernoulli s Principle. Main Points 3/13/15. Demo: Blowing on a sheet of paper

Temperature and Heat. Two systems of temperature. Temperature conversions. PHY heat - J. Hedberg

Section 1: The Science of Energy¹

L 18 Thermodynamics [3] Heat flow. Conduction. Convection. Thermal Conductivity. heat conduction. Heat transfer

What Is Air Temperature?

1. The most important aspects of the quantum theory.

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11

Temperature Scales

The Kinetic Theory of Matter. Temperature. Temperature. Temperature. Temperature. Chapter 6 HEAT

Heat Transfer. Conduction, Convection, and Radiation. Review: Temperature

Lecture 5: Greenhouse Effect

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

Composition, Structure and Energy. ATS 351 Lecture 2 September 14, 2009

TEMPERATURE. 8. Temperature and Heat 1

Chapter 9. Preview. Objectives Defining Temperature. Thermal Equilibrium. Thermal Expansion Measuring Temperature. Section 1 Temperature and

Physics 231. Topic 13: Heat. Alex Brown Dec 1, MSU Physics 231 Fall

Lecture 5: Greenhouse Effect

Handout 10: Heat and heat transfer. Heat capacity

kinetic molecular theory thermal energy.

Chapter 11. Energy in Thermal Processes

HEAT, TEMPERATURE, AND ATMOSPHERIC CIRCULATION

Heat and Temperature

Lecture 4: Heat, and Radiation

Chapter 11. Important to distinguish between them. They are not interchangeable. They mean very different things when used in physics Internal Energy

What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold?

Unit 11: Temperature and heat

Chapter 14 Temperature and Heat

Arctice Engineering Module 3a Page 1 of 32

Light & Atoms. Electromagnetic [EM] Waves. Light and several other forms of radiation are called electromagnetic waves or electromagnetic radiation.

SPH3U1 Lesson 03 Energy

PHYS:1200 LECTURE 18 THERMODYNAMICS (3)

3.3 Phase Changes 88 A NATURAL APPROACH TO CHEMISTRY. Section 3.3 Phase Changes

AT350 EXAM #1 September 23, 2003

Chapter 11. Energy in Thermal Processes

High temperature He is hot

LECTURE NOTES. Heat Transfer. III B. Tech II Semester (JNTUA-R15) CHADALAWADA RAMANAMMA ENGINEERING COLLEGE (AUTONOMOUS)

Lecture 6. Temperature and Heat 27 September 2018

Exercises Conduction (pages ) 1. Define conduction. 2. What is a conductor?

Lecture 3: Light and Temperature

PROGRAM OF PHYSICS. Lecturer: Dr. DO Xuan Hoi Room A

Very Dynamic! Energy in the Earth s Atmosphere. How Does it Get Here? All Objects Radiate Energy!

Chapter 16 Temperature and Heat

Chapter 14 Heat and Temperature Notes

Chapter 7 Notes. Matter is made of tiny particles in constant motion

Temperature. Temperature Scales. Temperature (cont d) CHAPTER 14 Heat and Temperature

Thermodynamics. Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23!

Lecture 22. Temperature and Heat

ATS150 Global Climate Change Spring 2019 Candidate Questions for Exam #1

Chapter 02 Energy and Matter in the Atmosphere

General Physics (PHY 2130)

2,000-gram mass of water compared to a 1,000-gram mass.

Kinds of Energy. Defining Energy is Hard! EXPLAIN: 1. Energy and Radiation. Conservation of Energy. Sco; Denning CSU ESMEI ATS 1

Bell Ringer. What are the formulas to obtain the force, acceleration, and mass? And corresponding units. F= ma M= f/a A= f/m

A) usually less B) dark colored and rough D) light colored with a smooth surface A) transparency of the atmosphere D) rough, black surface

Physics Mechanics

Lecture 4: Radiation Transfer

Name Class Date. What are three kinds of energy transfer? What are conductors and insulators? What makes something a good conductor of heat?

Chapter 17 Temperature and heat

Temperature and Its Measurement

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 10: The Greenhouse Effect. Section Table and Group

Lecture 6. Solar vs. terrestrial radiation and the bare rock climate model.

9/16/08 Tuesday. Chapter 3. Properties of Light. Light the Astronomer s Tool. and sometimes it can be described as a particle!

AP PHYSICS 2 WHS-CH-14 Heat Show all your work, equations used, and box in your answers! 1 108kg

Chapter: Heat and States

Thermal energy 7 TH GRADE SCIENCE

How do we get information about heavenly bodies when they are so far??

Clouds and Rain Unit (3 pts)

Chapter 1 - Temperature and Heat

Atmosphere, Weather & Climate Review for Unit Assessment (Can be taken on Study Island Due Mon., 11/26/12)

Recap: Bernoulli s Principle

Chapter 10 Temperature and Heat

Quiz C&J page 316 (top), Check Your Understanding #6:... use a straw

The greenhouse effect

KS3 Science. Heat and Energy

Energy. Kinetic and Potential Energy. Kinetic Energy. Kinetic energy the energy of motion

Chapter 2: The global ledger of radiation and heat

K20: Temperature, Heat, and How Heat Moves

Demonstrate understanding of aspects of heat

There are four phases of matter: Phases of Matter

A). Yes. B). No. Q15 Is it possible for a solid metal ball to float in mercury?

CPO Science Foundations of Physics. Unit 8, Chapter 26

Atoms and molecules are in motion and have energy

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens

WELCOME TO PERIOD 5: THERMAL ENERGY, THE MICROSCOPIC PICTURE. Homework #4 is due today at the beginning of class.

Science Chapter 13,14,15

Astronomy The Nature of Light

Heat can be transferred by. and by radiation Conduction

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation

Warming Earth and its Atmosphere The Diurnal and Seasonal Cycles

Chapter 16 Temperature and Heat

Preview. Heat Section 1. Section 1 Temperature and Thermal Equilibrium. Section 2 Defining Heat. Section 3 Changes in Temperature and Phase

Transcription:

2.1 Energy The fundamental concept that connects all of the apparently diverse areas of natural phenomena is the concept of energy. Energy can be subdivided into welldefined forms such as: (1) mechanical energy, (2) heat energy, (3) electrical energy, (4) chemical energy, (5) atomic energy, etc. In any process that occurs in nature, energy may be transformed from one form to another. In its simplest form, energy can be defined as the ability of a body or system of bodies to perform work. Work is done whenever a force acting on a body causes that body to be moved through some distance. The unit of work is defined to be a joule, and is abbreviated as J. Since energy is the ability to do work, the units of work will also be the units of energy. 2.2 Gravitational Potential Energy Gravitational Potential Energy is defined as the energy that a body possesses by virtue of its position above the surface of the earth. If the parcel of air shown in figure 2.1, were lifted to a height h above the ground, then that parcel Figure 2.1 Gravitational potential energy. Figure 2.2 Water at the top of the falls has potential energy. would have potential energy in that raised position. That is, in the raised position, the parcel of air has the ability to do work whenever it is allowed to fall. The most obvious example of gravitational potential energy is a waterfall, figure 2.2. Water at the top of the falls has potential energy. When the water falls to the bottom, it can be used to turn turbines and thus do work. A similar example is a pile driver. A pile driver is basically a large weight that is raised above a pile that is to be driven into 2-1

the ground. In the raised position, the driver has potential energy. When the weight is released, it falls and hits the pile and does work by driving the pile into the ground. As in all the concepts studied in physics, we want to make this concept of potential energy quantitative. That is, how much potential energy does a body have in the raised position? How should potential energy be measured? Because work must be done on a body to put the body into the position where it has potential energy, the work done is used as the measure of this potential energy. That is, the potential energy of a body is equal to the work done to put the body into the particular position. Thus, the potential energy (PE) is PE = Work done to put body into position (2.1) As you recall from your College Physics course, the work W done in displacing the body is defined as the product of the force acting on the body, in the direction of the displacement, times the displacement of the body. Mathematically this is W = Fx (2.2) The unit of work or energy is the joule which is equal to a newton meter. We can now compute the potential energy of the parcel of air in figure 2.1. The applied force F necessary to lift the parcel is equal to the weight w of the parcel of air, and w = mg. The displacement x of the parcel is just the height h. Therefore, the potential energy of the parcel of air becomes PE = Work done = W = Fh = wh = mgh (2.3) Therefore, whenever an object in the gravitational field of the earth is placed at a height h above the surface of the earth, that object will have potential energy because it has the ability to do work. The potential energy of the air parcel in figure 2.1 is derived in equation 2.3 as PE = mgh (2.4) where m is the mass of the air in kilograms, abbreviated as kg; g is the acceleration due to gravity, which is equal to 9.80 m/s 2 ; and h is the height in meters, abbreviated as m, above the surface of the earth. Air aloft in the atmosphere has potential energy because of its height above the surface of the earth. In general, if a parcel of air rises in the atmosphere (h increases), its potential energy increases; if the parcel of air descends in the atmosphere (h decreases), its potential energy decreases. When air aloft in the atmosphere descends it gives up that energy. That gravitational energy is converted into heat energy. Thus air will warm as it descends in the atmosphere. 2-2

Example 2.1 A 1.00 kg parcel of air is raised to a height of 200 m above the surface of the earth. What is its potential energy with respect to the surface? Diagram for example 2.1 Solution Since the mass of the air is m = 1.00 kg and the height of the air is h = 200 m, the potential energy is found from equation 2.4 as PE = mgh PE = (1.00 kg)(9.80 m/s 2 )(200 m) PE = 1960 J To go to this Interactive Example click on this sentence. 2.3 Kinetic Energy Besides having energy by virtue of its position, a body can also possess energy by virtue of its motion. The kinetic energy of a body is the energy that a body possesses by virtue of its motion. Because work had to be done to place a body into motion, the kinetic energy of a moving body is equal to the amount of work that must be done to bring a body from rest into that state of motion. Kinetic energy (KE) = Work done to put body into motion (2.5) Consider a parcel of air at rest on the surface of the earth as shown in figure 2.3. A constant net force F is applied to the parcel to put it into motion. When it is a distance x away, it is moving at a speed v. What is its kinetic energy at this point? The kinetic energy, found from equation 2.5, is KE = Work done = W = Fx (2.6) 2-3

Figure 2.3 The kinetic energy of a parcel of air. But by Newton s second law, the force F acting on the parcel gives the body an acceleration a. That is, F = ma, and substituting this into equation 2.6 we have KE = Fx = max (2.7) But for a body moving at constant acceleration, the kinematic equation for the velocity v as a function of the displacement x was given by v 2 = v0 2 + 2ax Since the parcel started from rest, v0 = 0, giving us Solving for the term ax, v 2 = 2ax ax = v 2 2 (2.8) Substituting equation 2.8 back into equation 2.7, we have or KE = m(ax) = KE = 1 2 mv 2 2 mv 2 (2.9) Equation 2.9 gives us the kinetic energy of a parcel of air that is in motion, where m is the mass of the body in kilograms and v is the speed of the body in meters per second, abbreviated m/s. Example 2.2 A parcel of air has a mass m = 2.00 kg and is moving at a speed of v = 5.00 m/s. What is its kinetic energy? 2-4

Diagram for example 2.2 Solution Using equation 2.9 for the kinetic energy we obtain KE = 1/2 mv 2 KE = 1/2 (2.00 kg)(5.00 m/s) 2 KE = 25.0 kg m 2 /s 2 KE = 25.0 J To go to this Interactive Example click on this sentence. Example 2.3 If the speed of a parcel of air doubles, what happens to its kinetic energy? Solution Let us assume that the air parcel of mass m is originally moving at a speed vo. Its original kinetic energy is (KE)o = 1/2 mvo 2 If the speed is doubled, then v = 2vo and its kinetic energy is then KE = 1/2 mv 2 = 1/2 m(2vo) 2 = 1/2 m4vo 2 KE = 4(1/2 mvo 2 ) = 4(KE)o That is, doubling the speed results in quadrupling the kinetic energy. Increasing the speed by a factor of 4 increases the kinetic energy by a factor of 16. To go to this Interactive Example click on this sentence. As a further example of the application of the concept of kinetic energy to meteorology, suppose the normal wind speed in your area on a nice pleasant sunny day is 10 mph. If a hurricane moves into your area with a wind speed of 100 mph, this speed will be 10 times greater than the 10 mph. But the energy of the moving 2-5

air goes up as the velocity squared, hence the energy of the moving air would be (10) 2 = 100 times greater than it was before. That is, even though the wind speed increases by only a factor of 10, the energy of the air increases by a factor of 100. This is why storms with very large winds, such as found in hurricanes, can cause so much damage, they have enormous energies associated with them. 2.4 The Conservation of Energy When it is said that something is conserved, it is meant that that quantity is a constant and does not change with time. It is a somewhat surprising aspect of nature that when a body is in motion, its position is changing with time, its velocity is changing with time, yet certain characteristics of that motion still remain constant. One of these quantities that remain constant during the motion is the total energy of the body. The analysis of systems whose energy is conserved leads us to the Law of Conservation of Energy, which says that the total energy of the system remains a constant. There may be a transfer of energy from one form to another, but the total energy remains the same. The total energy of a body will be the sum of its potential energy and its kinetic energy. That is, E = PE + KE (2.10) Hence, using equations 2.4 and 2.9 we get E = mgh + 1/2 mv 2 (2.11) The law of conservation of energy says that the total energy E of a parcel of air, given by equations 2.10, and 2.11, remains a constant. However the total energy of a parcel of air can also change if an amount of thermal energy (heat) Q is added or taken away from it. In this case the total energy can be written as E = PE + KE + Q (2.12) This case will be treated later after we discuss the concept of heat. 2.5 Temperature One of the most observable characteristics of the atmosphere is its temperature. The simplest and most intuitive definition of temperature is that temperature is a measure of the hotness or coldness of a body. That is, if a body is hot it has a high temperature, if it is cold it has a low temperature. This is not a very good definition, as will be shown in a moment, but it is one that most people have a feel for, because we all know what hot and cold is. Or do we? Let us consider the following thought experiment. Three beakers are placed on the table as shown in figure 2.4. Several ice cubes are placed into the first 2-6

beaker of water, while boiling water is poured into the third beaker. Equal amounts of the ice water from beaker one, and the boiling water from beaker three, are placed into the second beaker to form a mixture. I now take my left hand and plunge it into beaker one, and conclude that it is cold. Upon drying off the left hand, it is placed into the middle mixture. After coming from the ice water, the mixture in the second beaker feels hot in comparison. So it is concluded that the mixture is hot. I now take my right hand and plunge it into the boiling water of beaker three. (This is of course the reason why this is only a thought experiment. I can anticipate what will happen without doing bodily harm to myself.) I conclude that the water in beaker three is certainly hot. The hand is again dried off and then placed into beaker two. After the boiling water, the mixture feels cold in comparison, so it is concluded that the mixture is cold. After this relatively Figure 2.4 A Thought Experiment on temperature. scientific experiment, the conclusion is found to be contradictory. That is, the middle mixture is found to be either hot or cold depending on the sequence of the measurement. Thus, the hotness or coldness of a body is not a good concept to use to define the temperature of a body. Although we may have an intuitive feel for hotness or coldness, it cannot be used for any precise scientific work. A. The Thermometer In order to make a measurement of the temperature of a body, a new technique, other than estimating hotness or coldness, must be found. Let us look for some characteristic of matter that changes as it is heated. The simplest such characteristic is that most materials expand when they are heated. Using this characteristic of matter we take a glass tube and fill it with a liquid as shown in figure 2.5. When the liquid is heated it will expand and rise up the tube. The height of the liquid in the tube can be used to measure the hotness or coldness of a body. The device will become a thermometer. In order to quantify the process, it will be necessary to place numerical values on the glass tube, thus assigning a number that can be associated with the hotness or coldness of a body. This is the process of calibrating the thermometer. 2-7

First we place the thermometer into the mixture of ice and water of beaker number one in figure 2.4. The liquid lowers to a certain height in the glass tube. A mark is scratched on the glass at that height, and is arbitrarily called 0 degrees. Figure 2.5 A thermometer. Since it is the point where ice is melting in the water, 0 0 is called the melting point of ice. (Or similarly the freezing point of water.) Then we place the glass tube into beaker three which contains the boiling water. (We assume that heat is continuously applied to beaker three to keep the water boiling.) The liquid in the glass tube is thus heated and expands to a new height. This new height is marked on the glass tube and is arbitrarily called 100 degrees. Since the water is boiling at this point, it is called the boiling point of water. Figure 2.6 The temperature scales. Because the liquid in the tube expands linearly, to a first approximation, the distance between 0 0 and 100 0 can be divided into 100 equal parts. Any one of these divisions can be further divided into fractions of a degree. Thus, a complete scale of temperatures ranging from zero to 100 degrees is obtained. This thermometer is then placed into the mixture of beaker two. The liquid in the glass rises to some 2-8

number, that number, whatever it may be, will be called the temperature of the mixture. That number is a numerical measure of the hotness or coldness of the body. We call this device a thermometer, and in particular this scale of temperature that has 0 0 for the melting point of ice and 100 0 for the boiling point of water is called the Celsius temperature scale and is shown in figure 2.6(a). This scale is named after the Swedish Astronomer, Anders Celsius, who proposed it in 1742. Another, perhaps more familiar, temperature scale is the Fahrenheit temperature scale shown in figure 2.6(b). The melting point of ice on this scale is 32 0 F and the boiling point of water is 212 0 F. At first glance it might seem rather strange to pick 32 0 for the freezing point and 212 0 for the boiling point of water. As a matter of fact Fahrenheit was not trying to use pure water as his calibration points. When the scale was first made, 0 0 F corresponded to the lowest temperature then known, the temperature of freezing brine (a salt water mixture), and 100 0 F was meant to be the temperature of the human body. Fahrenheit proposed his scale in 1714. In addition to the Celsius and Fahrenheit scales there are other temperature scales. The most important of which is the Kelvin or absolute scale, which is shown in figure 2.6(c). The melting point of ice on this scale is 273 K and the boiling point of water is 373 K. The Kelvin temperature scale does not use the degree symbol for a temperature. To use the terminology correctly, one should say that, zero degrees Celsius corresponds to a temperature of 273 Kelvin. The Kelvin scale is extremely important in dealing with the behavior of gases. In fact it was in the study of gases that Lord Kelvin first proposed the absolute scale in 1848. For the present, however, the implications of the Kelvin scale can still be appreciated by looking at the molecular structure of a solid. The simplest picture of a solid, if it could be magnified trillions of times, is a large array of atoms or molecules in what is called a lattice structure, and shown in figure 2.7. Each dot in the figure represents an atom or molecule, depending on the Figure 2.7 Simple lattice structure. nature of the substance. Each molecule is in equilibrium with all the molecules around it. The molecule above exerts a force upward on the molecule while the molecule below exerts a force downward. Similarly there are balanced forces from right and left and in and out. The molecule is therefore in equilibrium. In fact every 2-9

molecule of the solid is in equilibrium. When heat is applied to a solid body, the added energy causes a molecule to vibrate around its equilibrium position. As any one molecule vibrates, it interacts with its nearest neighbors causing them to vibrate, which in turn causes its nearest neighbors to vibrate, etc. Hence, the heat energy applied to the solid shows up as vibrational energy of the molecules of the solid. The higher the temperature of the solid, the larger will be the vibrational motion of its molecules. The lower the temperature, the smaller will be the vibrational motion of its molecules. Thus, the temperature of a body is really a measure of the mean or average kinetic energy of the vibrating molecules of a body. It is therefore conceivable that if you could lower and lower the temperature of the body, the motion of the molecules would become less and less until at some very low temperature, the vibrational motion of the molecules would cease altogether. They would be frozen in one position. This point is called Absolute Zero, and is 0 on the Kelvin temperature scale. B. Temperature Conversions The Celsius temperature scale is the recognized temperature scale in most scientific work and in most countries of the world. All upper level weather maps are in the Celsius temperatures but the surface weather maps here in the United States are all expressed in Fahrenheit units. The Fahrenheit scale will eventually become obsolete For the present, however, it is still necessary to convert from one temperature scale to another. That is, if a temperature is given in degrees Fahrenheit, how can it be expressed in degrees Celsius, and vice versa? The principle of the thermometer is based on the linear expansion of the liquid in the tube. For two identical glass tubes containing the same liquid, the expansion of the liquid is the same in both tubes. Therefore, the height of the liquid columns is the same for each thermometer, as shown in figure 2.8. Figure 2.8 Converting one temperature scale to another. The ratio of these heights in each thermometer is also equal. Therefore, 2-10

h 1 h 1 h = h 0 Celsius 0 Fahrenheit (2.13) These ratios, found from figure 2.8, are t 0 C 0 0 = t 0 F 32 0 100 0 0 0 212 0 32 0 t 0 C = t 0 F 32 0 100 0 180 0 Solving for the temperature in degrees Celsius Simplifying, t 0 C = 100 0 (t 0 F 32 0 ) 180 0 t 0 C = 5 (t 0 F 32 0 ) (2.14) 9 Therefore to convert a temperature in degrees Fahrenheit to a temperature in degrees Celsius we use equation 2.14 Example 2.4 If the outside air temperature is 68 0 F, what is this temperature in Celsius degrees? Solution The temperature in Celsius degrees is found from equation 2.14 as t 0 C = 5/9 (t 0 F 32 0 ) = 5/9 (68 0 32 0 ) = 5/9 (36) t = 20 0 C To go to this Interactive Example click on this sentence. To convert a temperature in degrees Celsius to one in Fahrenheit equation 2.14 is solved for t 0 F to obtain t 0 F = (9/5)t 0 C + 32 (2.15) 2-11

Example 2.5 A temperature of 5.00 0 C is observed on a weather map. What is this equivalent to as a Fahrenheit temperature? Solution The temperature in degrees Fahrenheit is found from equation 2.15 as t 0 F = (9/5) t 0 C + 32 = (9/5)( 5.00) + 32 = 9 + 32 t 0 F = 23 0 F To go to this Interactive Example click on this sentence. We can also find a conversion of absolute temperature to Celsius temperatures from figure 2.8, as h 1 h 1 h = h 0 Celsius 0 Kelvin t 0 C 0 0 = T K 273 100 0 0 0 373 273 t 0 C = T K 273 100 100 (2.16) Therefore, the conversion of Kelvin temperature to Celsius temperatures is given by t 0 C = T K 273 (2.17) And the reverse conversion of a temperature in Celsius degrees to an absolute temperature is found from rearranging equation 2.17 to T K = t 0 C + 273 (2.18) Example 2.6 Normal room temperature is considered to be 20.0 0 C, find the value of this temperature on the Kelvin scale? Solution 2-12

The absolute temperature is found from equation 2.18 as T K = t 0 C + 273 = 20.0 + 273 = 293 K To go to this Interactive Example click on this sentence. 2.6 Heat A solid body is composed of trillions upon trillions of atoms or molecules arranged in a lattice structure as shown in figure 2.7. Each of these molecules possess an electrical potential energy and a vibrational kinetic energy. The sum of the potential energy and kinetic energy of all these molecules is called the internal energy of the body. When that internal energy is transferred between two bodies as a result of the difference in temperatures between the two bodies it is called heat. Heat is thus the amount of energy flowing from a body at a higher temperature to a body at a lower temperature. Hence, a body does not contain heat, it contains internal energy. When the body cools, its internal energy is decreased; when it is heated, its internal energy is increased. Whenever two bodies at different temperature are brought into contact, thermal energy will always flow from the hotter body to the cooler body until they are both at the same temperature. When this occurs the two bodies are said to be in thermal equilibrium. This is essentially the principle behind the thermometer. The thermometer is placed in contact with the body whose temperature is desired. Thermal energy will flow from the hotter body to the cooler body until thermal equilibrium is reached. At that point, the thermometer is at the same temperature as the body. Hence, the thermometer is capable of measuring the temperature of a body. It is important to point out here again that heat and temperature are not the same thing. A cup of boiling water is at a higher temperature than the warm water in your bathtub. Yet if you were to take several identical ice cubes, the tub of warm water would melt more of them than the cup of boiling water. That is, the tub of warm water contains more energy than the cup of boiling water even though it is at a lower temperature. Temperature and heat are different concepts. The unit of heat that will be used is the same as the unit of energy, namely the Joule. It requires 4186 joules of thermal energy to raise the temperature of one kilogram of water one degree Celsius. 2-13

2.7 Specific Heat When the sun shines on the land and the oceans the land and oceans absorb some of that energy and the temperature of the land and the ocean increases. But the sand on the beach can become very hot while the water in the ocean is usually much cooler. Yet both the sand and the water are receiving the same amount of radiation from the sun. Since they both receive the same amount of thermal energy why aren t they both at the same temperature? The problem is that different materials absorb different amounts of heat even when subjected to the same radiation. The amount of thermal energy Q absorbed by a body of mass m when subjected to a temperature change t is given by Q = mc t (2.19) Equation 2.19 represents the amount of thermal energy Q that will be absorbed or liberated in any process. The quantity c is called the specific heat of the body. Whenever the temperature of several substances is raised the same amount, each substance does not absorb the same amount of thermal energy. Hence, different bodies absorb a different quantity of thermal energy even when subjected to the same temperature change. To handle this problem of different bodies absorbing different quantities of thermal energy when subjected to the same temperature change, the specific heat c of a body is defined as the amount of thermal energy Q required to raise the temperature of a unit mass of the material 1 0 C. Thus, Some specific heats are shown in table 2.1. Note that water has the largest value of the specific heat and is: 4186 joules/kg 0 C, since 4186 J raises the temperature of 1 kg of water 1 0 C. All other materials have a different value for the specific heat. c = Q m t Table 2.1 Specific Heats of Various Materials Material Air Aluminum Dry soil Granite rock Iron Quartz sand Sandy clay Steel Wet mud Water Ice Steam 1009 900 837 795 452 795 1380 452 2510 4186 2090 2010 J kg 0 C (2.20) 2-14

2.8 Heat Absorbed By Soil and Water Have you ever noticed when on a trip to the beach on a very hot summer day, that the sand on the beach is very hot (sometimes it is so hot that it burns your feet while walking toward the water) while the water in the ocean is quite cool. Yet both the sand and the water are receiving the same amount of radiation from the sun. Since they both receive the same amount of thermal energy why aren t they both at the same temperature? The fact that the sand and water are at different temperatures is because the sand and the water have different specific heats. As we saw in the last section the amount of heat absorbed or liberated in a particular process is given by equation 2.19 as Q = mc t If two different materials of the same mass m are subjected to the same temperature difference t, then the material with the largest value of the specific heat c will absorb the greatest amount of heat Q. This will be demonstrated in the following examples. Example 2.7 If 2.00 kg of water are heated from 20.0 0 C to 100 0 C how much thermal energy does the water absorb? Solution The thermal energy absorbed by the water is given by equation 2.19 as Q = mc t Q = (2.00 kg)(4186 joules)(100 0 C - 20.0 0 C) kg 0 C Q = 670,000 J To go to this Interactive Example click on this sentence. Example 2.8 If 2.00 kg of sand are heated from 20.0 0 C to 100 0 C how much thermal energy does the sand absorb? Solution The thermal energy absorbed by the sand is given by equation 2.10 as 2-15

Q = mc t Q = (2.00 kg)(795 joules)(100 0 C - 20.0 0 C) kg 0 C Q = 127,000 J To go to this Interactive Example click on this sentence. If we take the ratio of the amount of heat absorbed by the water to the amount of heat absorbed by the sand we get 670,000/127,000 = 5.27. That is water will absorb 5.27 times more heat energy as will sand for the same temperature change. Therefore oceans store a tremendous amount of energy. The examples we just considered showed the differences in heat absorbed if the temperature difference were the same. Let us now consider the reciprocal problem and ask by how much will the temperature of the sand rise above the temperature of the water for the same amount of energy received from the sun. The amount of energy absorbed from the sun by the water is Q w = mcw tw while the heat absorbed by the sand is given by Q sand = mcsand tsand The energy absorbed by the water Qw is the same as the energy absorbed by the sand Qsand because both heat energies are coming from the radiation from the sun. That is, Qsand = Qw mcsand tsand = mcw tw t sand = cw tw csand Replacing the values for the specific heat we get tsand = 4186 tw 795 tsand = 5.27 tw Thus the temperature change of the sand will be 5 times greater than the temperature change of the water. That is even though the water and sand receive the same energy from the sun, the change in temperature of the sand will be 5 2-16

times greater than the change in temperature of the water 1. Therefore the sand will be much hotter than the water. This will also be true if we consider the same effect with the soil. Since the specific heat of the soil is also less than the specific heat of water the change in temperature of the soil will also be greater than the change in temperature of the water. Thus, in general, land areas will always be hotter than water areas during the day. At night the process will be reversed and the land will give up more energy than the water and land areas will be cooler than water areas at night. Because of this difference in specific heats, locations near oceans have relatively mild climates compared to areas deep inside continents. As a general case, we can solve equation 2.19 for the temperature change, and obtain t = Q mc As you can see from this equation, the material with the largest value of c (water) will have the smallest temperature change, while the material with the smallest value of c (sand) will have the largest temperature change. A simple example of a temperature change is given below. Example 2.9 The final temperature. If 500-g of water at an initial temperature of 10.0 0 C absorbs 85500 J of energy in a thermal process, what will its new temperature be? Solution The specific heat of water, found from table 2.1, is 4186 J/(kg 0 C). The change in temperature is found from equation 2.19 as Q = mc t t = Q mc t = (85500 J) (0.500 kg)( 4186 J/kg 0 C) t =40.9 0 C The final temperature is found from t = tf - ti and hence tf = t + ti 1 1 Be careful in your interpretation of these results. We did not say that the temperature of the sand would be five times greater than the temperature of the water. We said that the temperature change of the sand would be five times greater than the temperature change of the water. Thus if the water temperature changed by 2 degrees, the temperature change of the sand would be (5)(2) = 10 degrees. 2-17

tf = (40.9 0 C) + ( 10 0 C) tf = 50.9 0 C To go to this Interactive Example click on this sentence. 2.9 Mechanisms of Heat Transfer In Section 2.7 it was shown that an amount of thermal energy Q, given by Q = mc t (2.19) is absorbed or liberated in a sensible heating process. But how is this thermal energy transferred to, or from, the body so that it may be absorbed, or liberated? To answer that question, it is necessary to discuss the mechanism of thermal energy transfer. The transfer of thermal energy has historically been called heat transfer. Thermal energy can be transferred from one body to another by any or all of the following mechanisms: 1) Convection 2) Conduction 3) Radiation Convection is the transfer of thermal energy by the actual motion of the medium itself. The medium in motion is usually a gas or a liquid. Convection is the most important heat transfer process for liquids and gases. Conduction is the transfer of thermal energy by molecular action, without any motion of the medium. Conduction can occur in solids, liquids, and gases, but it is usually most important in solids. Radiation is a transfer of thermal energy by electromagnetic waves. As an example, energy is radiated from the sun as an electromagnetic wave, and this wave travels through the vacuum of space, until it impinges upon the earth, thereby heating the earth. Let us now go into more detail about each of these mechanisms of heat transfer. 2.10 Convection Convection is the transfer of thermal energy by the actual motion of the medium itself. Convection is the most important heat transfer process within the atmosphere. Let us describe the transfer of air by convection. Consider the large mass m of air at the surface of the earth that is shown in figure 2.9. Each block in the figure represents a parcel of air at a particular temperature. The air to the left is warmer than the air to the right. The figure shows the view from the top and the 2-18

view from the side. The lines labeled T0, T1, T2, and so on are called isotherms and represent the temperature distribution of the air at the time t. An isotherm is a line along which the temperature is constant. Thus everywhere along the line T0 the air temperature is T0, and everywhere along the line T1 the air temperature is T1, and so forth. Consider a point P on the surface of the earth that is at a temperature T0 at the time t. How can thermal energy be transferred to this point P thereby changing its temperature? That is, how does the thermal energy at that point Figure 2.9 Horizontal convection. change with time? If we assume that there is no local infusion of thermal energy into the air at P, such as heating from the sun and the like, then the only way that thermal energy can be transferred to P is by moving the hotter air, presently to the left of point P, to point P itself. That is, if energy can be transferred to the point P by convection, then the air temperature at the point P increases. This is equivalent to moving an isotherm that is to the left of P to the point P itself. The transfer of thermal energy per unit time to the point P is given by Q/ t. By multiplying and dividing by the distance x, we can write this as But Q = Q x t x t x t = v (2.21) the velocity of the air moving toward P. Therefore, equation 2.21 becomes Q = v Q t x (2.22) But Q, on the right-hand side of equation 2.22, can be replaced with 2-19

Q = mc T (2.19) (To avoid confusion, we will use the lower case t to represent time, and the upper case T to represent temperature.) Therefore, Q = vmc T t x (2.23) Hence, the thermal energy transferred to the point P by convection becomes Q = vmc T x t (2.24) The term T/ x is called the temperature gradient, and tells how the temperature changes as we move in the x-direction. We will assume in our analysis that the temperature gradient remains a constant. Example 2.10 Energy transfer per unit mass. If the temperature gradient is 2.00 0 C per 100 km and if the specific heat of air is 1009 J/(kg 0 C), how much thermal energy per unit mass is convected to the point P in 12.0 hr if the air is moving at a speed of 10.0 km/hr? Solution The heat transferred per unit mass, found from equation 2.24, is Q = vc T t m x o km J 2.00 C = 10.0 1009 12.0 hr hr 0 kg C 100 km = 2420 J/kg ( ) To go to this Interactive Example click on this sentence. If the mass m of the air that is in motion is unknown, the density of the fluid can be used to represent the mass. Because the density ρ = m/v, where V is the volume of the air, we can write the mass as m = ρv (2.25) 2-20

Therefore, the thermal energy transferred by convection to the point P becomes Q = vρvc T x t (2.26) Sometimes it is more convenient to find the thermal energy transferred per unit volume. In this case, we can use equation 2.26 as Q = vρc T V x t (2.27) Example 2.11 Energy transfer per unit volume. Using the data from example 2.10, find the thermal energy per unit volume transferred by convection to the point P. Assume that the density of air is ρair = 1.293 kg/m 3. Solution The thermal energy transferred per unit volume is found from equation 2.27 as Q = vρc T t V x o km kg J 2.00 C = 10.0 1.293 1009 12.0 hr hr 3 0 m kg C 100 km = 3120 J /m 3 ( ) Note that although the number 3120 J/m 3 may seem small, there are thousands upon thousands of cubic meters of air in motion in the atmosphere. Thus, the thermal energy transfer by convection can be quite significant. To go to this Interactive Example click on this sentence. As we will see there is a large surplus of thermal energy at the equator and a deficit of thermal energy at the poles, and in general there will be motion of the air in the atmosphere to move the hot air at the equator north, and the cold air at the pole south in order to reach an equilibrium condition. Of course the equilibrium condition is never realized. For vertical motion in the atmosphere we find that hot air rises and cold air descends. In a similar way, the oceans move hot water from the equator northward on the east side of continents and cold water southward 2-21

from the poles on the west side of continents. Although convection is the transfer of thermal energy by motion of the medium itself, Meteorologists make a slight distinction by calling vertical motion convection, and horizontal motion advection. 2.11 Conduction Conduction is the transfer of thermal energy by molecular action, without any motion of the medium. Conduction occurs in solids, liquids and gases, but the effect is most pronounced in solids. If one end of an iron bar is placed in a fire, in a relatively short time, the other end will become hot. Thermal energy is conducted from the hot end of the bar to the cold end. The atoms or molecules in the hotter part of the body will vibrate around their equilibrium position with greater amplitude than normal. This greater vibration causes the molecules to interact with their nearest neighbors, causing them to vibrate more also. These in turn will interact with their nearest neighbors passing on this energy as kinetic energy of vibration. The thermal energy is thus passed from molecule to molecule along the entire length of the bar. The net result of these molecular vibrations is a transfer of thermal energy through the solid. A. Heat Flow Through a Slab of Material Consider a slab of material, as shown in figure 2.10, of cross sectional area A, Figure 2.10 Heat Conduction Through a Slab thickness d, and is subjected to a high temperature Th, on the hot side, and a colder temperature, Tc, on the other. The amount of thermal energy conducted through a solid body is determined by the equation Q = ka(th - Tc)t d (2.28) Note that the thermal energy conducted through this slab is directly proportional to: the area A of the slab - the larger the area, the more thermal energy transmitted; the time t - the longer the period of time, the more thermal energy transmitted; and finally the temperature difference, Th Tc, between the faces of 2-22

the slab. If there is a large temperature difference, a large amount of thermal energy will flow. Also notice that the thermal energy transmitted is inversely proportional to the thickness d of the slab. This is very reasonable because the thicker the slab the greater the distance that the thermal energy must pass through. Thus, a thick slab implies a small amount of energy transfer, while a thin slab implies a larger amount of energy transfer. Since different materials transfer different quantities of thermal energy, this is taken into account by the constant k in equation 2.28, and is called the coefficient of thermal conductivity, and is given in table 2.2. If k is large, then a large amount of thermal energy will flow through the Table 2.2 Coefficient of Thermal Conductivity for Various Materials Material Aluminum Iron Granite Rock Ice Wet Soil Concrete Glass Water Snow Oak Dry Soil Wood Glass Wool Air, and Dust particles 234 87.9 2.7 2.1 2.1 1.30 0.791 0.60 at 20 0 C 0.63 0.147 0.25 0.08 0.0414 0.0230 J m s 0 C slab, and the material is called a good conductor of heat. If k is small then only a small amount of thermal energy will flow through the slab, and the material is called a poor conductor or a good insulator. Note from table 2.2 that most metals are good conductors while most non-metals are good insulators. In particular notice that the thermal conductivity of air is only 2.30 10 2 J /(m s 0 C), which is a very small number. Hence, air is a very poor conductor of heat, and conduction will not be a significant process of heat transfer in the atmosphere. However, conduction will still be significant in terms of the depth that heat will be conducted into the ground. Let us now look at an example of heat conduction. 2-23

Example 2.12 Find the amount of thermal energy that flows per minute through a snow bank, 2.0 meters wide and 0.5 meters thick that is 1.5 meters long, if one side of the snow bank is at the temperature of 25 0 C while the temperature of the other end is 5.0 0 C. Solution The cross sectional area A of the snow bank is found as A = (length)(width) = l w A = (1.5 m)(2.0 m) = 3.0 m 2 The thermal energy conducted through the snow bank is found from equation 2.28 as Q = ka(th - Tc)t d Q = (0.63 J/(m s 0 C))(3.0 m 2 )(25 0 C - 5 0 C)(60 s) (0.5 m) Q = 4536 J To go to this Interactive Example click on this sentence. 2.12 Radiation Radiation is the transfer of thermal energy by electromagnetic waves. Each wave is characterized by its wavelength λ, and frequency f. Figure 2-11 shows a picture of a wave. Notice that the wavelength λ is the length of the wave where the Figure 2.11 A picture of a wave. wave starts to repeat itself. The electromagnetic waves in the visible portion of the spectrum are called light waves. These light waves, have wavelengths that vary from about 0.38 10 6 m for violet light to about 0.72 10 6 m for red light. Above visible red light there is an invisible infrared portion of the electromagnetic spectrum. The wavelengths range from 0.72 10 6 m to 1.5 10 6 m for the near 2-24

infrared; from 1.5 10 6 m to 5.6 10 6 m for the middle infrared; and from 5.6 10 6 m up to 1 10 3 m for the far infrared. Most, but not all, of the radiation from a hot body falls in the infrared region of the electromagnetic spectrum. Everything around you is radiating electromagnetic energy, but the radiation is in the infrared portion of the spectrum, which your eyes are not capable of detecting. Therefore, you are usually not aware of this radiation. 2.13 The Electromagnetic Spectrum Electromagnetic waves exist and propagate through space at the speed of light. The wavelength and frequency are not independent but are related by the fundamental equation of wave propagation as c = λf (2.29) It is evident that an entire series of electromagnetic waves should exist, differing only in frequency and wavelength. Such a group of electromagnetic waves has been found and they are divided into six main categories: radio waves, infrared waves, visible light waves, ultraviolet light, X-rays, and gamma rays. The entire group of electromagnetic waves is called the electromagnetic spectrum and is shown in figure 2.12. Let us look at some of the characteristics of these waves. Figure 2.12 The Electromagnetic Spectrum. 1) Radio Waves. Radio waves are usually described in terms of their frequency. AM (Amplitude Modulated) radio waves are emitted at frequencies from 550 khz to 1600 khz. (Recall that the unit khz is a kilohertz, which is a thousand cycles per second, hence 550 khz is equal to 550 10 3 cycles per second or 5.50 10 5 cycles/s. FM (Frequency Modulated) radio waves, on the other hand, are transmitted in the range of 88 MHz to 108 MHz. (Recall that MHz is equal to a Megahertz which is equal to 10 6 Hz.) Television waves are transmitted in the range of 44 MHz to 216 MHz. Ultra-High frequency (uhf) TV waves are broadcast in the 2-25

range of 470 MHz to 890 MHz. Microwaves, which are used in Radar sets and Microwave ovens fall in the range of 1 GHz to 30 GHz. A Gigahertz (GHz) is equal to 10 9 cycles/s. 2) Infrared Waves. Infrared waves are usually described in terms of their wavelength rather than their frequency. The infrared spectrum extends from approximately 720 nm to 50,000 nm. Recall that the unit nm is a nanometer and is equal to 10 9 m. Infrared frequencies can be determined from equation 2.29 if desired. 3) Visible Light. Visible light occupies a very small portion of the electromagnetic spectrum, from 380 nm to 720 nm. The wavelength of 380 nm corresponds to a violet color, while 720 nm corresponds to a red color. 4) Ultraviolet Light. The ultraviolet portion of the spectrum extends from around 10 nm up to about 380 nm. It is this ultraviolet radiation from the sun that causes sunburn and skin cancer. 5) X-Rays. X-rays are very energetic electromagnetic waves. They are usually formed when high-speed charged particles are brought to rest on impact with matter. The x-ray portion of the electromagnetic spectrum lies in the range 0.01 nm up to about 150 nm. 6) Gamma Rays. Gamma Rays are the most energetic of all the electromagnetic waves and fall in the range of almost 0 to 0.1 nm overlapping the x- ray region. They differ from x-rays principally in origin. They are emitted from the nucleus of an atom, while the x-rays are usually associated with processes occurring in the electron shell structure of the atom. Another quantity, which is of great interest, is the intensity of the electromagnetic radiation. The intensity of radiation is defined as the total energy per unit area per unit time. Because the total energy per unit time is power, the intensity of the radiation can also be defined as the power of the electromagnetic wave falling on a unit area. Thus, Intensity = Total Energy area time (2.30) A. The Stefan-Boltzmann Law Joseph Stefan (1835-1893) found experimentally, and Ludwig Boltzmann (1844-1906) found theoretically, that everybody at an absolute temperature T, radiates energy, which is proportional to the fourth power of the absolute temperature. The result, which is called the Stefan-Boltzmann law is given by Q = eσat 4 t (2.31) where: Q is the thermal energy emitted, e is the emissivity of the body, which varies from 0 to 1; σ is a constant, called the Stefan-Boltzmann constant and is given by σ = 5.67 10 8 J s m 2 K 4 2-26

A is the area of the emitting body; T is the absolute temperature of the body; and t is the time. B. Radiation From A Blackbody The amount of radiation depends on the radiating surface. Polished surfaces are usually poor radiators, while blackened surfaces are usually good radiators. Good radiators of heat are also good absorbers of radiation, while poor radiators are also poor absorbers. A body, which absorbs all the radiation incident upon it, is called a blackbody. The name, blackbody, is really a misnomer, since the sun acts as a blackbody and it is certainly not black. A blackbody is a perfect absorber and a perfect emitter of radiation. The name blackbody comes from the time when all light came from candles which left a finely powdered black soot on everything. The black soot was called lampblack, and it makes a very good approximation to a blackbody. For a blackbody, the emissivity e, in equation 2.31 is equal to 1. The amount of heat absorbed or emitted from a blackbody is Q = σat 4 t (2.32) Example 2.13 Energy radiated from the sun. If the temperature of the sun is approximately 5800 K, how much thermal energy is radiated from the sun per unit time. Assume that the sun can be treated as a blackbody. Solution The energy radiated from the sun per unit time is found from equation 2.32. The radius of the sun is about 6.96 10 8 m. Its area is therefore A = 4πr 2 = 4π(6.96 10 8 m) 2 A = 6.09 10 18 m 2 The heat radiated from the sun per unit time is therefore Q = σat 4 t Q = (5.67 10 8 J )(6.09 10 18 m 2 )(5800 K) 4 t s m 2 K 4 Q = 3.91 10 26 J t s To go to this Interactive Example click on this sentence. 2-27

Example 2.14 The solar constant. How much energy from the sun impinges upon the top of the earth s atmosphere per unit time per unit area? Solution The energy per unit time emitted by the sun is power and was found in the previous example to be 3.91 10 26 J/s. This total power emitted by the sun does not all fall on the earth because that power is distributed throughout space, in all directions, figure 2.13. Hence, only a small portion of it is emitted in the direction of the earth. Figure 2.13 Radiation received on the earth from the sun. To find the amount of that power that reaches the earth, we first find the distribution of that power over a sphere, whose radius is the radius of the earth s orbit, r = 1.5 10 11 m. This will give us the power, or energy per unit time, falling on a unit area at the distance of the earth from the sun. The area of this sphere is A = 4πr 2 = 4π(1.5 10 11 m) 2 A = 2.83 10 23 m 2 The energy per unit area per unit time impinging on the earth is therefore Q = 3.91 10 26 J/s = 1.38 10 3 W At 2.83 10 23 m 2 m 2 2-28

This value, 1.38 10 3 W/m 2, the energy per unit area per unit time impinging on the edge of the atmosphere, is called the Solar Constant, and will be designated as So. Hence, So = 1.38 10 3 W/ m 2 (2.33) To go to this Interactive Example click on this sentence. Example 2.15 Solar energy reaching the earth. Find the total energy from the sun impinging on the top of the atmosphere during a 24 hr period. Solution The actual power impinging on the earth at the top of the atmosphere can be found by multiplying the solar constant S o by the effective area, A, subtended by the earth. The area subtended by the earth is found from the area of a disk whose radius is equal to the mean radius of the earth, RE = 6.37 10 6 m. That is, A = πre 2 = π(6.37 10 6 m) 2 = 1.27 10 14 m 2 Power impinging on earth = (Solar Constant)(Area) = SoA P = (1.38 10 3 W )(1.27 10 14 m 2 ) = 1.76 10 17 W m 2 The energy impinging on the earth in a 24 hr period is found from Q = Pt = (1.76 10 17 W)(24 hr)(3600 s/hr) Q = 1.52 10 22 J This is an enormous quantity of energy. Obviously, solar energy, as a source of available energy for the world needs to be tapped. To go to this Interactive Example click on this sentence. All the solar energy incident upon the upper atmosphere does not make it down to the surface of the earth because of reflection from clouds, scattering by dust particles in the atmosphere, and some absorption by water vapor, carbon dioxide and ozone in the atmosphere. What is even more interesting is that this enormous energy received by the sun is re-radiated back into space. If the earth did not re- 2-29

emit this energy the mean temperature of the earth would constantly rise until the earth would burn up. C. Blackbody Radiation As A Function of Wavelength. Blackbody Radiation as a Function of Wavelength The Stefan-Boltzmann law tells us only about the total energy emitted and nothing about the wavelengths of the radiation. Because all this radiation consists of electromagnetic waves, the energy is actually distributed among many different wavelengths. The energy distribution per unit area per unit time per unit frequency ν is given by a relation known as Planck s radiation law as Q π ν = At ν c e νσ 3 2 h 1 2 h / T 1 (2.34) where c is the speed of light and is equal to 3 10 8 m/s, ν is the frequency of the electromagnetic wave, e is a constant equal to 2.71828 and is the base e used in natural logarithms, σ is the Boltzmann constant given previously, and h is a new constant, called Planck s constant, given by h = 6.625 10 34 J s This analysis of blackbody radiation by Max Planck (1858-1947) was revolutionary in its time (December 1900) because Planck assumed that energy was quantized into little bundles of energy equal to hν. This was the beginning of what has come to be known as quantum mechanics. Equation 2.34 can also be expressed in terms of the wavelength λ as Q 2π hc2 1 = (2.35) At λ λ5 ehc/ λσt 1 A plot of equation 2.35 is shown in figure 2.14 for various temperatures. Note that T4 > T3 > T2 > T1. The first thing to observe in this graph is that the intensity of the radiation for a given temperature, varies with the wavelength from zero up to a maximum value and then decreases. That is, for any one temperature, there is one wavelength, λ max, for which the intensity is a maximum. Second, as the temperature increases, the wavelength, λ max, where the maximum or peak intensity occurs, shifts to shorter wavelengths. This can be seen as the dotted lines in figure 2.14 that go from the maximum value of the curve down to the axis. This effect had been recognized earlier by the German physicist Wilhelm Wien (1864-1928) and had been written in the form λmaxt = constant = 2.898 10 3 m K (2.36) 2-30

Figure 2.14 The intensity of blackbody radiation as a function of wavelength and temperature. and was called the Wien displacement law. Third, the visible portion of the electromagnetic spectrum (shown in the hatched area) is only a small portion of the spectrum, and most of the radiation from a blackbody falls in the infrared range of the electromagnetic spectrum. Because our eyes are not sensitive to these wavelengths, the infrared radiation coming from a hot body is invisible. But as the temperature of the blackbody rises, the peak intensity shifts to lower wavelengths, until, when the temperature is high enough, some of the blackbody radiation is emitted in the visible red portion of the spectrum and the heated body takes on a red glow. If the temperature continues to rise, the red glow becomes a bright red, then an orange, then yellow-white and finally blue-white as the blackbody emits more and more radiation in the visible range. When the blackbody emits all wavelengths in the visible portion of the spectrum it will appear white. (The visible range of the electromagnetic spectrum, starting from the infrared end, has the colors red, orange, yellow, green, blue, and violet before the ultraviolet portion of the spectrum begins.) Example 2.16 Find the wavelength of the maximum intensity of radiation from the sun, assuming the sun to be a blackbody at 5800 K. Solution 2-31

The wavelength of the maximum intensity of radiation from the sun is found from the Wien displacement law, equation 2.34, as λ max = 2.898 10 3 m K T λmax = 2.898 10 3 m K 5800 K λmax = 0.499 10 6 m That is, the wavelength of the maximum intensity from the sun lies at 0.499 10 6 m, which is in the blue-green portion of the visible spectrum. It is interesting to note that some other stars, which are extremely hot, radiate mostly in the ultraviolet region. To go to this Interactive Example click on this sentence. Example 2.17 The wavelength of the maximum intensity of radiation from the earth. Assuming that the earth has a mean temperature of about 300 K use the Wien displacement law to estimate the wavelength of the peak radiation from the earth. The wavelength of the peak radiation from the earth is found from equation 2.34 as which is also shown in figure 2.15. Solution λ max = 2.898 10 3 m K = 2.898 10 3 m K T 300 K λmax = 9.66 10 6 m To go to this Interactive Example click on this sentence. 2-32

2.14 The Greenhouse Effect and the Heating of the Atmosphere Have you ever wondered what the newscaster was talking about when she said that the earth is getting warmer because of the Greenhouse Effect? What is the Greenhouse Effect and what does it have to do with the heating of the earth? The name Greenhouse Effect comes from the way the earth and its atmosphere is heated. The ultimate cause of heating of the earth s atmosphere is the sun. But if this is so, then why is the top of the atmosphere, (closer to the sun) colder than the lower atmosphere (farther from the sun). You may have noticed snow and ice on the colder mountaintops while the valleys below are relatively warm. This paradox can be explained in terms of the radiation of the sun, the radiation of the earth, and the constituents of the atmosphere. The sun radiates approximately as a blackbody at 5800 K with a peak intensity occurring at 0.499 10 6 m, as shown in figure 2.15. While the earth radiates approximately as a blackbody at 300 K with a peak intensity occurring at 9.66 10 6 m, also shown in figure 2.15. Figure 2.15 Comparison of radiation from the sun and the earth. Notice that the maximum radiation from the earth lies well in the longer wave infrared region, while the maximum intensity of the solar radiation lies in much shorter wavelengths. (Ninety-nine percent of the solar radiation is in wavelengths shorter than 4.0 µm, and almost all terrestrial radiation is at wavelengths greater than 4.0 µm.) Therefore, solar radiation is usually referred to as short wave radiation, while terrestrial radiation is usually referred to as long wave radiation. 2-33

Of all the gases in the atmosphere only oxygen, ozone, water vapor, and carbon dioxide are significant absorbers of radiation. Moreover these gases are selective absorbers, that is, they absorb strongly in some wavelengths and hardly at all in others. The absorption spectrum for oxygen and ozone is shown in figure 2.16b. The absorption of radiation is plotted against the wavelength of the radiation. An absorptivity of 1 means total absorption at that wavelength while an absorptivity of 0 means that the gas does not absorb any radiation at that wavelength. Thus, when the absorptivity is 0, the gas is totally transparent to that wavelength of radiation. Observe from figure 2.16b that oxygen and ozone absorb almost all the ultraviolet radiation from the sun in wavelengths below 0.3 mm. A slight amount of ultraviolet light from the sun reaches the earth in the range 0.3 µm to the beginning of visible light in the violet at 0.38 µm. Also notice that oxygen and ozone are almost transparent to radiation in the visible and infrared region of the electromagnetic spectrum. Figure 2.16 Absorption of radiation at various wavelengths for atmospheric constituents. 2-34