Crystal, Molecular, and Electronic Structure of 1-Acetylindoline and Derivatives

Similar documents
organic papers 2-Iodo-4-nitro-N-(trifluoroacetyl)aniline: sheets built from iodo nitro and nitro nitro interactions

organic papers Acetone (2,6-dichlorobenzoyl)hydrazone: chains of p-stacked hydrogen-bonded dimers Comment Experimental

Crystal structure of DL-Tryptophan at 173K

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement

2-Methoxy-1-methyl-4-nitro-1H-imidazole

CIF access. Redetermination of biphenylene at 130K. R. Boese, D. Bläser and R. Latz

Crystal and Molecular Structures of Monomethyl Esters of PDE-I and PDE-II, New Inhibitors of Cyclic Adenosine-3',5'-monophosphate Phosphodiesterase

Supporting Information

Supporting information. for. isatins and α-amino acids

Experimental. Crystal data

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

Supporting Information. Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii)

SUPPLEMENTARY INFORMATION

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

COPPER(I) COMPLEXES WITH N-ALLYLAZOMETHINES. IN STRUCTURE FORMATION OF 2CuBr R CH=N C 3 H 5 (R = 2-FURYL) AND CuBr R CH=N C 3 H 5 (R = PHENYL)

metal-organic compounds

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Experimental. Crystal data. C 18 H 22 N 4 O 6 M r = Monoclinic, P2=n a = (5) Å b = (4) Å c = (5) Å = 104.

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Sodium 3,5-dinitrobenzoate

Supramolecular structure of phellopterin isolated from the roots of heracleum thomsoni: A furanocoumarin

Supplementary Information

metal-organic compounds

3-methoxyanilinium 3-carboxy-4-hydroxybenzenesulfonate dihydrate.

organic papers 2,6-Diamino-3,5-dinitro-1,4-pyrazine 1-oxide Comment

Connellite from Bisbee, Arizona: a Single-Crystal X-ray Study

metal-organic compounds

Phthalocyanine-Based Single-Component

addenda and errata [N,N 0 -Bis(4-bromobenzylidene)-2,2-dimethylpropane-j Corrigendum Reza Kia, a Hoong-Kun Fun a * and Hadi Kargar b

Supporting Information

,

= (3) V = (4) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = 1.

Crystal and molecular structure of N-(p-nitrobenzylidene)- 3-chloro-4-fluoroaniline

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II)

organic compounds 2-(3-Nitrophenylaminocarbonyl)- benzoic acid: hydrogen-bonded sheets of R 4 4 (22) rings Comment

metal-organic compounds

metal-organic compounds

organic compounds 3-Hydroxybenzaldehyde

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

metal-organic compounds

(+-)-3-Carboxy-2-(imidazol-3-ium-1-yl)- propanoate

The Crystal and Molecular Structures of Hydrazine Adducts with Isomeric Pyrazine Dicarboxylic Acids

J. Am. Chem. Soc., 1996, 118(17), , DOI: /ja953373m

metal-organic compounds

Crystal growth and characterization of solvated organic charge-transfer complexes built on TTF and 9-dicyanomethylenefluorene derivatives

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

organic papers Malonamide: an orthorhombic polymorph Comment

metal-organic compounds

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 92 parameters

= (1) V = (12) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Supplementary Information

electronic reprint 2-Hydroxy-3-methoxybenzaldehyde (o-vanillin) revisited David Shin and Peter Müller

= 0.09 mm 1 T = 294 (2) K. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Spin Transition and Structural Transformation in a

metal-organic compounds

Spain c Departament de Química Orgànica, Universitat de Barcelona, c/ Martí I Franqués 1-11, 08080, Barcelona, Spain.

metal-organic compounds

organic papers 2-[(Dimethylamino)(phenyl)methyl]benzoic acid

New Journal of Chemistry. Synthesis and mechanism of novel fluorescent coumarindihydropyrimidinone. multicomponent reaction.

Highly accurate Gaussian basis sets for low-lying excited states of some positive and negative ions

SUPPLEMENTARY MATERIAL

electronic reprint (2,4,6-Trinitrophenyl)guanidine Graham Smith, Urs D. Wermuth and Jonathan M. White Editors: W. Clegg and D. G.

Decomposition of Ruthenium Olefin Metathesis. Catalysts

Supporting Information

Crystal Structure of Dichlorodiaquabis-(pdimethylaminobenzaldehyde)manganese(II)

Electronic Supplementary Information (ESI)

organic compounds Melaminium acetate acetic acid solvate monohydrate

Coordination Behaviour of Calcocene and its Use as a Synthon for Heteroleptic Organocalcium Compounds

240 Chem. Aromatic Compounds. Chapter 6

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine

metal-organic compounds

Z =8 Mo K radiation = 0.35 mm 1. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Organic Chemistry II KEY March 27, 2013

Conformations and Structures of N,N -Bis(2-methoxybenzylidene)- 1,3-diamino-propanol and N,N -Bis(3-methoxybenzylidene)-1,3- diamino-propanol

2FAMILIES OF CARBON COMPOUNDS:

Organic Chemistry II KEY March 27, Which of the following reaction intermediates will form the fastest in the reaction below?

Crystal and molecular structure of cis-dichlorobis(triphenylphosphite)

A and 4 molecules in the unit cell. Final atomic parameters have been obtained from a blockdiagonal

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity

SUPPORTING INFORMATION

Synthesis and Structure of 7H-12-Oxa-3,7-diazapleiadenes

electronic reprint Masanari Hirahara, Shigeyuki Masaoka and Ken Sakai Crystallography Journals Online is available from journals.iucr.

Supporting Information. Rh(III)-Catalyzed C7-Thiolation and Selenation of Indolines

4-(4-Hydroxymethyl-1H-1,2,3-triazol-1-yl)benzoic acid

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

b = (13) Å c = (13) Å = (2) V = (19) Å 3 Z =2 Data collection Refinement

Crystal structure of 4,6-dinitro-l-(5-tetrazolyl)- 1H-indazole trihydrate

Constructing a MO of NH 3. Nitrogen AO symmetries are

Crystal Structure of Nonaaquayttrium(III) Bromate at 100 K

Configuration of the C(20) Epimer of 7,8-Dihydrobatrachotoxinin A (x-ray crystallography/frog/venom/phyllobates/cardioactive steroid)

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Supporting Information. for. Angew. Chem. Int. Ed Wiley-VCH 2004

A new synthetic route towards heterometallic 3d-3d and 3d-4f Single- Molecule Magnets. First Co II -Mn III heterometallic complex

Exam (6 pts) Show which starting materials are used to produce the following Diels-Alder products:

metal-organic compounds

NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY

Seth B. Harkins and Jonas C. Peters

Transcription:

Structural Chemistry, ol. 9, No. 5, 1998 Crystal, Molecular, and Electronic Structure of 1-Acetylindoline and Derivatives M. M. Torres Moreno,1 R. H. A. Santos,2 M. T. P. Gambardella,2 A. J. Camargo,2 A. B. F. da Silva,2,3 and M. Trsic2 Received April 11, 1997; revised April 14, 1998; accepted April 28, 1998 The crystal and molecular structures of the following molecules have been determined: 1-acetylindoline, 1-acetyl-5-nitro-indoline, l-acetyl-5-nitro-7-bromo-indoline, 1-acetyl-5-bromo-7-nitroindoline, and l-acetyl-5-bromo-7-nitro-indol. Molecular orbital calculations are performed for these compounds and two related species. KEY WORDS: 1-Acetyl-indoline; crystal structure; electronic structure; AM1 calculation; CI calculation. INTRODUCTION The photosolvolisis of nitroderivatives of 1-acetylindoline (see Fig. 1) has been known since 1976 [1, 2]. Nitro derivatives of 1-acetyl-indole undergo the same reaction [3]. The reaction does not take place in the absence of the nitro group in the 7 position [3]. In order to provide a better understanding of these chemical species we have determined X-ray crystal and molecular structures of the following compounds: 1-acetyl-indoline (), l-acetyl-5-nitro-indoline (), l-acetyl-5-nitro-7-bromo-indoline (), l-acetyl-5- bromo-7-nitro-indoline (), and l-acetyl-5-bromo-7- nitro-indol () [4]. The results of the X-ray study are described in the next section. Then we report molecular orbital (MO) calculations for the same compounds, plus the debrominated 1-acetyl-7-nitro-indoline (I) and 1-acetyl-7-nitro-indol (II) species. 1 Departamento de Petrologia, Instituto de Geociencias UNESP, P.O. Box 178, 13560-900, Rio Claro, SP, Brasil. 2 Departamento de Quimica e Fisica Molecular, Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, P.O. Box 780, 13560-970, Sao Carlos, SP, Brasil. 3Correspondence should be directed to A. B. F. da Silva, Departamento de Quimica de Sao Carlos, Universidade de Sao Paulo, P.O. Box 780, 13560-970, Sao Carlos, SP, Brasil; e-mail: Alberico@iqsc.sc.usp.br Fig. 1. Chemical formulae of the molecules studied by X-ray diffraction. 365 1040-0400981000-0365$15.000 1998 Plenum Publishing Corporation

366 Torres Moreno et al. Crystal and Molecular Structure Determination The crystal structures of compounds I to were obtained from a CAD-4 Enraf-Nonius automatic diffractometer and all structures were solved using direct methods [7]. The refinement was carried out by full-matrix least squares calculations [8] with anisotropic thermal parameters for non-h-atoms and isotropic thermal parameters (6 A 2 ) for H atoms. The crystal data and conditions are shown in Table I. In the refinement of the structures the minimized function was Ew i (k F 0 \ - \F C \) 2 with w i -1 = a 2 (F 0 ) + pf 2 for observed reflections, except in compound, where unit weights were used and w = 0 for nonobserved reflections. The H positions were assumed by the geometries of the bonded atoms and the H coordinates were recalculated after each refinement cycle until the final convergence with maximum least squares shifte.s.d. < 1 was obtained. The final converged values for R and R w and the maximum electron density calculated after the last refinement cycle are shown in Table I. Final atomic parameters for the non-h-atoms are given in Table II. (A list of structure factors, anisotropic thermal parameters, and hydrogen positions are available from the authors on request.) The bond lengths and angles are shown in Tables and. The torsion angles are given in Table. Some important planes and atomic distances to them are indicated in Table I. The bond distances in the benzene ring of compound are the same as in the benzene molecule and the variations observed in the substituted molecules can be attributed to the substituent influence. In compound, the C=O distance has a usual value (1.16(1) A), and in, for the two independent molecules, the intramolecular distance between the carboxyl oxygen and one of the nitro group oxygens is very short (2.7 A), probably due to the reduction of the indolinic ring tensions. Table I. Crystal Data for the Compounds I to Compound formula I C 10 H 11 ON C 10 H 10 N 2 0 3 C 10 H 9 N 2 O 3 Br C 10 H 9 N 2 O 3 Br C 10 H 7 N 2 O 3 Br Formula wt. Space group a (A) b (A) c (A) a ( o ) B ( ) r ( o ) v (A 3 ) z D c (g.cm- 3 ) F(000) u MoKa (cm -1 ) Size (mm.10 2 ) Scan type Range 2o max. ( ) Unique data I > 3e(I) N variables Final R Final Rw Rall S* w** (p. 10 3 ) 161.21 Pbca 9.439(2) 12.046(2) 14.870(4) 1691(1) 8 1.27 688 0.80 10 x 10 x 40 w -2o 0 < h < 10 0 < k < 13 0 < < 16 22.97 1178 870 114 0.0447 0.0517 0.0744 2.17 1.84 206.21 P2 1 c 11.287(2) 12.017(2) 7.425(3) 102.57(2) 983.0(8) 4 1.39 432 0.65 10 x 10 x 30 w -2o -13 < h < 13 0 < k < 14 0 < < 8 24.97 1734 366 71, 70 0.0624 0.3051 1.66 w = 1.0 285.11 P1 7.14 7.91 10.901(2) 72.01(1) 87.02(2) 64.97(2) 528.3(2) 2 1.79 280 37.77 20 x 20 x 30 w -2o -8 < h < 8-8 < k < 9 0 < l < 12 24.97 1858 1524 151 0.0279 0.0300 0.0568 1.95 1.23 285.11 P2 1 c 13.699(2) 9.019(2) 8.724(2) 90.3 1077.9(7) 4 1.76 588 37.08 10 x 20 x 30 w-2e -16 < h < 16 0 < k < 10 0 < < 10 24.98 1888 644 80, 71 0.0498 0.0498 0.2040 2.20 0.78 283.11 P2 1 c 12.066(2) 7.051(1) 24.532(3) 93.14(2) 2083.9(6) 8 1.82 1120 38.55 10 x 10 x 30 u -28-14 < h < 14 0 < k < 8 0 < l < 28 24.98 3634 1463 149, 149 0.0396 0.0396 0.1676 1.45 0.50 *S = [Ew( F 0 - F C ) 2 (N - M)] 12 **w = 1.000[<r 2 (F 0 ) + p(f 0 ) 2 ]

Structure of 1-Acetyl-indoline and Derivatives 367 Table II. Atomic Coordinates and Isotropic-Equivalent Temperature Factors (A 2 ) with e.s.d.'s. for Compounds to Atom Xa Yb Zc B eq Compound I N(l) Compound II 0(3) N(l) Compound Br 0(3) N(l) Compound Br O(l) O(2) O(3) N(1) 0.5528(2) 0.3963(2) 0.4920(3) 0.3209(3) 0.2295(3) 0.1790(3) 0.2160(3) 0.3174(3) 0.3858(3) 0.3468(3) 0.2461(3) 0.5220(3) 0.47-0.138(1) -0.114(1) 0.3826(9) -0.08 0.477(1) 0.386(1) 0.263(1) 0.077(1) 0.043(1) 0.114(1) 0.229(1) 0.269(1) 0.196(1) 0.591(1) 0.0471(1) -0.0204(3) 0.3750(4) 0.4955(4) -0.2206(4) 0.3722(4) -0.1859(5) -0.3686(5) -0.2472(5) 0.0733(5) 0.2162(4) 0.2130(4) 0.0684(4) -0.0668(4) -0.0699(5) -0.3643(7) 1.043 0.5744(5) 0.7578(5) 0.7311(5) 0.6495(5) 0.7549(5) 0.5701(7) 0.6397(6) 0.7246(8) 0.8791(6) -0.0522(2) 0.0725(2) -0.010 0.1262(2) 0.2166(2) 0.2491(2) 0.2189(2) 0.140 0.0861(2) 0.1149(2) 0.1966(2) -0.0459(2) 0.859(1) 0.709(1) 0.887(1) 0.6940(9) 0.789(2) 0.759(2) 0.571(1) 0.535(1) 0.659(1) 0.766(2) 0.858(1) 0.842(1) 0.73 0.642(1) 0.96(1) 0.3734(0) 0.2194(3) -0.4565(4) -0.2405(4) 0.1408(4) -0.3007(4) 0.2181(4) 0.0477(5) -0.1496(5) -0.2412(4) -0.1769(4) 0.0021(4) 0.1195(4) 0.0505(4) -0.1225(4) 0.3032(6) 0.2529(2) 0.0582(8) -0.1346(8) -0.0549(9) 0.2645(9) -0.034(1) 0.167(1) 0.425(1) 0.503(1) 0.383(1) 0.2951(1) 0.2417(1) 0.2307(2) 0.166 0.210 0.3796(2) 0.4669(2) 0.482 0.4115(2) 0.3245(1) 0.3088(1) 0.1358(2) 0.298(2) -0.276(2) -0.227(2) 0.214(1) -0.205(2) 0.295(2) 0.203(2) 0.096(2) -0.068(2) -0.092(2) -0.022(2) 0.076(2) 0.111(2) 0.04 0.383(20) 0.1816(0) -0.0225(2) 0.6187(2) 0.5787(3) 0.1309(2) 0.5556(3) 0.0046(3) 0.1643(3) 0.2679(3) 0.4204(3) 0.4454(3) 0.3725(3) 0.2667(3) 0.2345(3) 0.3153(3) -0.0956(4) 0.0465(1) 0.2775(8) 0.2049(8) 0.4352(9) 0.3641(8) 0.305(1) 0.346(1) 0.403(1) 0.32 0.19 5.47(7) 3.69(6) 4.13(8) 4.62(9) 4.24(8) 4.61(8) 4.91(9) 4.78(9) 4.22(8) 3.63(7) 3.71(1) 5.2(1) 8.9(5) 11.9(8) 12.2(7) 4.6(4) 1 5.7(6) 6.4(6) 6.7(6) 6.0(6) 5.7(6) 5.9(6) 5.3(5) 4.5(5) 5.1(5) 8.0(7) 3.25(2) 3.5(1) 4.9(2) 5.5(2) 2.7(1) 3.6(2) 3.1(2) 3.9(2) 3.5(2) 2.8(2) 2.7(2) 2.6(2) 2.4(2) 2.4(2) 2.7(2) 5.0(3) 4.89(5) 2.1(3) 4.6(3) 4.7(3) 2.9(4) 3.2(4) 3.7(4) 4.8(5) 3.3(4)

368 Torres Moreno et al. Table II. Continued Atom Compound a Br(1) 0(3) N(1) Compound b Br(2) 0(11) 0(21) 0(31) N(11) N(21) C(11) C(21) C(31) C(41) C(51) C(61) C(71) C(81) C(91) C(101) Xa 0.9206(7) 0.8742(7) 0.7891(8) 0.7405(7) 0.7902(8) 0.4801 Yb 0.24 0.111(1) 0.115(2) 0.242(2) 0.379(1) 0.223(1) Zc 0.149(1) 0.181(1) 0.254(1) 0.293(1) 0.266(1) 0.431(1) B eq 3.2(4) 4.0(5) 2.8(5) 3.0(4) 3.1(5) 4.3(5) 0.7965(1) 0.2184(5) 0.3924(5) 0.3361(6) 0.3236(5) 0.3883(5) 0.2182(7) 0.3388(7) 0.4473(7) 0.6186(6) 0.6478(6) 0.5692(6) 0.4601(6) 0.4259(6) 0.5066(6) 0.1172(7) 0.1451(2) 0.167(1) 0.182(1) 0.434(1) 0.2948(9) 0.288(1) 0.248(2) 0.316(1) 0.289(1) 0.223(1) 0.192(1) 0.204(1) 0.242(1) 0.262(1) 0.256(1) 0.319(1) 0.4365(0) 0.4195(3) 0.3280(3) 0.3681(3) 0.4899(3) 0.3671(3) 0.4614(4) 0.5465(4) 0.5611(3) 0.5036(3) 0.4516(3) 0.4070(3) 0.4158(3) 0.4689(3) 0.5130(3) 0.4894(4) 4.06(3) 4.7(3) 5.9(3) 4.9(3) 2.6(3) 3.5(3) 3.8(4) 3.5(4) 2.8(3) 2.8(3) 2.8(3) 2.5(3) 2.1(3) 2.4(3) 4.2(4) 0.5991(1) 1.1328(4) 0.8853(5) 1.0024(5) 1.0951(5) 0.9339(6) 1.1669(7) 1.1249(7) 1.0367(7) 0.8274(7) 0.7545(7) 0.7892(6) 0.9017(7) 0.9790(6) 0.9381(6) 1.2890(6) 0.2671(2) 0.1605(9) 0.24 0.456(1) 0.2971(9) 0.334(1) 0.235(1) 0.303(1) 0.305(1) 0.289(1) 0.282(1) 0.291(1) 0.298(1) 0.294(1) 0.296(1) 0.267(2) 0.2411(0) 0.1382(2) 0.0774(3) 0.1064(2) 0.2192(2) 0.1139(3) 0.1794(4) 0.2759(3) 0.3045(3) 0.2768(3) 0.2303(4) 0.1786(3) 0.1692(3) 0.2143(3) 0.2679(3) 0.1924(4) 4.76(4) 3.4(2) 5.1(3) 4.1(2) 2.4(2) 2.7(3) 3.4(4) 2.7(3) 2.8(3) 2.1(3) 2.4(3) 4.7(4) Table. Bond Lengths (A) with e.s.d's. for the Compounds I to -C(1) N(1)-C(1) N(1)- N(1)- C(1)- - 1.227(3) 1.353(4) 1.481(4) 1.412(3) 1.503(4) 1.536(4) II 1.2 1.35(2) 1.48(2) 1.42(1) 1.51(3) 1.51(2) 1.207(5) 1.380(4) 1.498(6) 1.399(4) 1.495(5) 1.527(5) 1.16(1) 1.41(1) 1.49(1) 1.41(1) 1.53(1) 1.54(1) a 1.18(1) 1.46(2) 1.4 1.383(9) 1.52(1) 1.35(1) b 1.19(2) 1.42(2) 1.42(1) 1.400(9) 1.51(1) 1.31(1)

Structure of 1-Acetyl-indoline and Derivatives 369 Table HI. Continued - - - - - - - O(2)- 0(3)- - - Br- Br- 1.497(3) 1.393(4) 1.382(3) 1.367(4) 1.392(3) 1.390(4) 1.389(3) II 1.5 1.34(2) 1.42(2) 1.4 1.36(2) 1.43(2) 1.37(2) 1.22(3) 1.24(3) 1.48(2) 1.510(6) 1.388(6) 1.373(4) 1.384(4) 1.382(4) 1.397(5) 1.389(4) 1.204(5) 1.232(5) 1.460(4) 1.877(3) 1.51(2) 1.45(1) 1.4 1.36(2) 1.33(1) 1.37(2) 1.44(2) 1.27(1) 1.2 1.49(2) 1.908(9) a 1.43(1) 1.36(1) 1.4 1.42(2) 1.37(2) 1.39(2) 1.42(2) 1.22(1) 1.21(1) 1.47(2) 1.882(8) b 1.45(2) 1.4 1.37(1) 1.36(1) 1.4 1.41(2) 1.43(2) 1.24(1) 1.21(1) 1.45(2) 1.913(8) Table. Intramolecular Bond Angles ( ) with e.s.d's. for the Compounds to C(1)-N(1)- C(1)-N(1)- -N(1)- O(1)-C(1)-N(1) -C(1)- N(1)-C(1)- N(1)-- -- -- -- -- -- N(1)-- N(1)-- -- -- -- -- O(2)--0(3) O(2)-- O(3)-- O(2)-- O(3)-- -- -- -- -- Br-- Br-- Br-- Br-- 123.4(2) 126.3(2) 110.2(2) 121.5(2) 121.8(2) 116.8(3) 104.8(2) 104.2(2) 118.5(2) 120.7(2) 121.7(2) 117.5(2) 129.3(2) 109.7(2) 121.0(3) 128.8(2) 110.5(2) 120.7(3) II 126(1) 127(1) 108(1) 122(1) 123(1) 115(1) 106(1) 105(1) 115(1) 126(1) 119(1) 117(1) 128(2) 112(2) 121(1) 129(1) 109(1) 121(1) 125(2) 117(2) 118(2) 117(1) 117(2) 122.3(3) 123.3(3) 107.3(2) 121.3(3) 122.1(3) 116.7(3) 105.1(3) 102.8(3) 117.1(3) 122.7(3) 119.4(3) 118.6(3) 128.6(3) 111.0(3) 120.3(3) 129.0(3) 109.6(3) 121.4(4) 126.3(3) 118.6(3) 118.1(3) 118.5(3) 118.7(3) 118.4(2) 122.8(2) 124.1(8) 123.1(9) 108.7(9) 123.3(8) 125.3(9) 111.4(8) 105.5(7) 105.1(8) 117(1) 121.7(9) 119(1) 125(1) 131(1) 112(1) 116.7(9) 131(2) 107.7(9) 121(2) 123.6(9) 115.5(8) 120.8(9) 113(2) 122(1) 114.0(7) 124.3(8) a 124.4(7) 123.9(7) 108.5(7) 119.1(8) 126.6(8) 114.2(8) 108.7(7) 109.0(7) 118.8(8) 121.4(8) 120.0(7) 120.1(7) 132.9(7) 108.2(7) 119.0(7) 133.8(7) 105.7(7) 120.5(8) 125.7(8) 117.1(8) 117.1(8) 116.2(7) 123.0(7) 120.8(6) 117.8(6) b 123.8(6) 125.9(6) 106.5(6) 121.8(7) 122.2(9) 115.9(7) 111.0(7) 109.3(7) 116.6(8) 123.1(7) 120.7(7) 118.7(8) 133.2(8) 108.4(6) 118.4(7) 132.7(7) 104.9(7) 122.4(7) 124.8(8) 116.2(2) 119.0(7) 118.3(7) 122.5(7) 117.8(7) 119.2(7)

370 Torres Moreno et al. Table. Selected Torsion Angles ( ) with e.s.d's. for the Compounds to -N(1)-C(1)-O(1) -N(1)-C(1)- -N(1)-C(1)- -N(1)-C(1)- C(1)-N(1)-- -N(1)-- C(1)-N(1)-- C(1)-N(1)-- -N(1)-- -N(1)-- N(1)--- --- --~ --- --- --- --- --- --- --- --- ---N(1) --- N(1)--- N(1)--- ---N(1) --- --- --- O(2)--- O(2)--- O(3)--- O(3)--- O(2)--- O(2)--- O(3)--- O(3)--- Br--- Br--- Br--- Br---N(l) Br--- 179.2(2) 0.8(3) -4.7(4) 176.4(2) -177.8(2) 6.0(3) 2.2(4) -178.2(2) 178.4(2) -2.0(3) -7.3(3) -175.0(3) 6.6(3) 0.7(4) -177.6(3) 0.7(4) -0.9(4) -0.3(4) -178.7(2) 1.7(4) -3.0(3) 178.4(2) 176.6(2) -1.9(4) II -2(2) 6(2) -175(1) -178(1) -4(1) -2(2) 177(1) -176(1) 2(1) 3(1) 178(1) -1(2) 2(2) -177(1) -3(2) -178(1) 3(2) 18-1(2) -4(2) 175(1) -2(2) -149.8(3) 31.5(5) -3.4(5) 177.9(3) 130.3(3) -20.7(4) 49.2(5) -135.5(2) -160.1(3) 15.2(4) 18.0(3) 170.1(3) -9.8(4) 2.6(5) -179.3(3) -177.4(3) 2.5(5) -3.0(5) 179.0(3) -1.8(5) -178.3(3) 6.8(5) -3.1(4) 177.0(3) 172.6(3) -7.3(5) 2.0(5) -179.8(3) -178.5(3) -0.3(5) - 172.9(2) 7.2(5) -167.7(2) 158.1(9) -23(1) 4(1) -177.7(9) - 146.7(8) 10.9(9) -32(1) 152.0(9) 171(1) -6(1) -12(1) -177(1) 8(1) 1(1) -177(1) -4(1) -1(1) 3.9(2) -170.2(9) 177.3(9) -6(1) -176.8(8) -9(2) 167.3(9) -178.8(9) 6(1) -48(1) 137.5(9) 128.4(9) -46(1) 179.5(7) 179.6(8) mol a - 152.3(9) 3 5(1) -172.8(8) 157.6(8) -2.6(9) 24(1) -158.3(8) -175.7(9) 2.0(9) 2(1) 178.9(9) -1(1) 4(1) 178.5(9) 168.7(8) -178.1(8) 4(1) -0.6(9) 179.5(7) 12(1) -165.9(8) 177.4(8) 49(1) - 140.4(8) -126.4(8) 44(1) 179.6(6) -178.6(6) mol b 149.5(8) -3-5(1) 175.3(8) - 159.3(8) -0.5(9) -26(1) 157.7(7) 176.1(9) -0.6(8) 1(1) 178.0(9) -1.6(9) -3(1) 179.7(8) -1(1) 3(1) 1(1) -171.6(8) 179.4(8) -4(1) 1.3(8) -178.3(7) -9(1) 167.5(7) -176.0(7) 4(1) -47(1) 141.1(8) 130.5(8) -41(1) -177.5(6) -177.4(6) Assuming the benzene ring in planar (plane B), one can observe that the carbonyl group (C(1)-O(1)) has the largest distance to this plane caused by the coplanarity of the nitro group (plane N) to plane B. MOLECULAR ORBITAL CALCULATIONS Semiempirical quantum chemical calculations were performed for the molecule shown in Fig. 1 plus two related compounds. The AM1 procedure as implemented in AMPAC 5.0 (Semichem, Inc.) was employed. The electron density distribution and electronic spectra of compounds I to II were calculated. Figure 2 shows the net atomic charges for all the molecules being studied. The ring N atom has a small positive charge in all cases, while the -NO2 group N atom has a large positive charge as a result of polarization by the oxygen atoms. The positive charge for nitrogen induces a negative charge on the linked C atom.

Structure of 1-Acetyl-indoline and Derivatives 371 Table I. Atomic Distances with e.s.d's. (A) to the Least-Square Planes and Dihedral Angles Between the Planes ( ) for the Compounds to Plane A: O(l), N(l),,, Plane B:,,,,, Plane N:, O(2), O(3) mol a mol b Br 0(3) N(l) A-B A-N B-N 0.002(2) -0.007(3) 0.003(3) 0.006(2) -0.011(2) 0.007(2) -0.047(2) -0.038(2) -0.096(2) -0.087(3) 0.066(3) -0.198(3) 0.01(1) 0.0 0.02(1) 0.0 0.13(1) -0.03(1) 0.02(2) 0.02(2) 0.03(2) 0.1-0.008(3) 0.026(3) -0.011(3) -0.023(3) 0.041(3) -0.026(3) -0.276(1) 1.677(2) 0.097(3) 0.063(3) 0.075(3) 0.062(3) 0.936(3) -0.347(4) -0.117(4) 0.881(4) Dihedral Angles 45. 46.3(2) 2(6) 0.005(9) 0.006(9) 0.003(9) -0.02(1) 0.031(9) 0.02(1) 0.03 1.129(7) 0.460(7) -1.118(7) 0.065(7) -0.256(9) 0.668(9) -0.113(9) 0.02(1) 0.6 27.8(5) 54.7(7) 48.4(5) 0.021(8) -0.022(8) 0.000(8) 0.023(9) -0.023(8) 0.002(8) -0.013(1) -0.994(7) -0.338(8) 1.206(7) -0.049(7) 0.3-0.52(1) 0.005(9) 0.006(9) -0.3 26.5(4) 52.3(7) 49.2(5) 0.025(8) -0.016(8) 0.029(7) -0.016(8) 0.107(1) 1.048(6) 0.413(7) -1.074(7) 0.049(6) -0.242(8) 0.524(9) 0.002(8) -0.053(8) 0.34(1) 152.4(3) 48.6(6) 135.1(4) Fig. 2. Calculated net atomic charges for compounds to II.

372 Torres Moreno et al. Fig. 3. Calculated bond indexes for compounds I to II. Table II. Calculated and Measured Lowest Electronic Transitions for Compounds to II Compound Nature of the transition Wavelength (nm) Oscillator strength Measured peaks [5, 6] Compound Nature of the transition Wavelength (nm) Oscillator strength Measured peaks [5, 6] T -» T* *-» T* 7 -> f* K -> T* f -> i* 7 -» T* 7 -> T* - a* I -» T* - a*" i -> T* 322 301 296 242 332 316 286 236 347 338 333 268 351 322 0.0169 0.2030 0.0243 0.1435 0.2368 0.0449 0.0166 0.2101 0.0392 0.0571 0.0785 0.0384 0.0755 0.1503 _ 336 230 343 I II T -> f* i -> T* 7 -> T* - a*" T -> r* r -> T* 256 241 329 287 266 252 350 318 268 240 341 319 276 259 0.0155 0.2003 0.0279 0.0264 0.2908 0.1466 0.0622 0.1480 0.0174 0.2276 0.0379 0.0137 0.3125 0.0421 243 333 343 243 333 _ aas a result of the nonstrict planarity of the molecules, some mixing of quasi-r and quasi-r orbitals may appear.

Structure of 1-AcetyI-indoline and Derivatives 373 The O atom in the acetyl group has a negative charge, polarizing the neighboring carbon atom. Figure 3 displays the calculated bond indexes. The C Br bond is estimated as a single bond, the CO linkage is quasi a double bond, and NO has a bond index of 1 12as expected. The benzenoid ring shows an aromatic character and the difference between indoline and indol 5-membered rings shows an increase of half a bond where the double linkage is assumed (between atoms 2 and 3). Table II shows the lowest electronic transitions and a few measured peaks. The calculated values were obtained with the aid of configuration interaction (CI) and the AM1 routine. The CI calculation included the last 10 higher-occupied orbitals and the first 10 virtual orbitals. This generates ca. 2 X 10 5 microstates from which ~ 100 microstates are selected. The nature of the transitions, the wavelength, and the oscillator strengths are reported. All molecules show a first absorption at 320-350 nm. The last theoretical transition shown is at approximately 250 nm. There is a good correspondence between the measured peaks and the calculated transitions available. CONCLUDING REMARKS X-ray diffraction analysis was employed for the structural characterization of 1-acetyl-indoline and nitro and bromo derivatives; a bromo-nitro indol compound was also included in the study. The same and related compounds were examined by semiempirical quantum chemical calculations with the main purpose of providing the lowest electronic transitions and electron density distribution. ACKNOWLEDGMENTS We are gratefull to Prof. G. Goissis and Mrs.. C. A. Martins for providing the crystal samples. This work had financial support from CNPq and FINEP (Brazilian agencies). Certain of the results in this paper were developed with the assistance of AMP AC 5.0, a quantum chemistry program for Semichem, Inc. REFERENCES 1. Amit, B.; Ben-Efrain, D. A.; Patchomik, P. J. Am. Chem. Soc. 1976, 98, 834. 2. Goissis, G.; Erikson, B. W.; Merrifield, R. B. Proceedings of the Fifth American Peptide Symposium; John Wiley: New York, 1976, p. 559. 3. Goissis, G. Private communication. 4. All the crystal samples were provided by Prof. G. Goissis, Institute de Quimica de Sao Carlos, Universidade de Sao Paulo. 5. Pepato, M. T. Dissertation; University of Sao Paulo, 1985. 6. Martins,. C. A. Dissertation; University of Sao Paulo, 1989. 7. Sheldrick, G. M. SHELXS 86. In Crystallographic Computing 3; G. M. Sheldrick, C. Kruguer, and R. Goddard, eds.; Oxford University Press, 1986. 8. Sheldrick, G. M. SHELX 76: Program for Crystal Structure Determination; University of Cambridge: England, 1976.