Types of Chemical Reactions

Similar documents
Santa Monica College Chemistry 11

Section I: Synthesis reactions Synthesis reactions occur when two or more substances come together to form a single new substance.

Classifying Chemical Reactions

In this activity, you will observe and predict products for some simple

Experiment 8 - Double Displacement Reactions

Chemical Reactions: Introduction to Reaction Types

TYPES OF CHEMICAL REACTIONS

Classifying Chemical Reactions Analyzing and Predicting Products

Experiment 6. Investigating Chemical Reactions

Chemical Reactions and Equations

Physical Changes and Chemical Reactions

Types of Chemical Reactions and Predicting Products

Types of Chemical Reactions and Equations

L REACTIONS AND EQUATIONS

CSUS Department of Chemistry Experiment 3 Chem.1A

Classifying Chemical Reactions

DOUBLE DISPLACEMENT REACTIONS. Double your pleasure, double your fun

CHAPTER 8 CHEMICAL REACTIONS AND EQUATIONS

Nihal İKİZOĞLU 1. TYPE of CHEMICAL REACTIONS. Balance the following chemical equations. 1. Fe + H 2 SO 4 Fe 2 (SO 4 ) 3 + H 2

HYSICAL AND CHEMICAL PROPERTIES AND PHYSIC AND CHEMICAL CHANGES

Chemical Reactions. Chemical changes are occurring around us all the time

What Do You Think? Investigate GOALS

Physical and Chemical Changes

Lab: Types of Chemical Reactions

Electrodeposition. - Worksheet - Envisioning Chemistry. 1. Write half reactions for the following processes under electrical current.

Chapter 7: Chemical Reactions

D O UBLE DISPL Ac EMENT REACTIONS

Aqueous Chemical Reactions

CHM 130LL: Chemical and Physical Changes

Experiment #7. Chemical Reactions.

CHM101 Lab Chemical Reactions Grading Rubric

Unit 8 Chemical Reactions- Funsheets

elemental state. There are two different possibilities: DESCRIPTION 1. One cation (+ ion) replaces another. 2. One anion (- ion) replaces another.

ed. Brad Collins Aqueous Chemistry Chapter 5 Some images copyright The McGraw-Hill Companies, Inc. Sunday, August 18, 13

Chemistry Semester One Exam Review

Various Types of Reactions

MATTER. Chemistry is the study of matter and the changes that matter undergoes. Matter is anything that has mass and takes up space.

Classifying Chemical Reactions: Lab Directions

D O UBLE DISPL Ac EMENT REACTIONS

Chemical Equations and Chemical Reactions

Aqueous Chemical Reactions

Ch 7 Chemical Reactions Study Guide Accelerated Chemistry SCANTRON

10.3 Types of Chemical Reactions

Aqueous Chemical Reactions

Chapter 6. Chemical Reactions. Sodium reacts violently with bromine to form sodium bromide.

Types of Chemical Reactions

Name HONORS CHEMISTRY / / Oxide Reactions & Net Ionic Reactions

INTRODUCTION TO MATTER: CLASSI F ICATION OF MATTER, PHYSICAL AND C He MICAL PROPERTIES, AND PHYSICAL AND CHEMICAL CHANGES

Reaction Types and Chemical Equations

Reaction Writing Sheet #1 Key

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders

CHM-201 General Chemistry and Laboratory I Laboratory 4. Introduction to Chemical Reactions (based in part on Small Scale Chemistry methodology as

Reactions Crystal Gambino & Renee Y. Becker Manatee Community College

Balancing Equations Notes

8 Chemical Equations. Flames and sparks result when aluminum foil is dropped into liquid bromine.

Definition: the process by which one or more substances are rearranged to form different substances. Another name for a chemical change.

WRITING CHEMICAL EQUATIONS 2002, 1989 by David A. Katz. All rights reserved. Permission for classroom used provided original copyright is included.

Name CHEMISTRY / / Oxide Reactions & Net Ionic Reactions

Lab: Types of Chemical Reactions Safety is very important when combining chemicals

Types of Reactions: Reactions

Net Ionic Equations. Making Sense of Chemical Reactions

Types of Reactions. There are five main types of chemical reactions we will talk about:

Part 01 - Notes: Reactions & Classification

Unit IV: Chemical Equations & Stoichiometry

Lab #14: Qualitative Analysis of Cations and Anions

Chapter 5 Classification and Balancing of Chemical Reactions

Chemical Reactions CHAPTER Reactions and Equations

Types of Reactions: Reactions

Chapter 6. Types of Chemical Reactions and Solution Stoichiometry

Chemistry 141 Samuel A. Abrash Chemical Reactions Lab Lecture 9/5/2011

Unit 6.3 Types of Chemical reactions

Single Replacement Reactions

Ch. 8 Chemical Reactions

Experiments. EXPERIMENT 5 Aqueous Reactions Safety Introduction

CHEMISTRY 102B Practice Hour Exam I. Dr. D. DeCoste T.A (30 pts.) 16 (15 pts.) 17 (15 pts.) Total (60 pts)

o Test tube In this experiment, you ll be observing the signs of chemical reactions. These include the following:

Name Honors Chemistry / / Chemical Equations Reactions

Experiment 8 - Chemical Changes

Classifying Chemical Reactions

Types of Reactions. There are five types of chemical reactions we observed in the lab:

1. The elements on the periodic table are arranged by increasing A) atomic weight. B) atomic number. C) valence electrons. D) mass number.

"Undissolved ionic compounds":

The solvent is the dissolving agent -- i.e., the most abundant component of the solution

26. N 2 + H 2 NH N 2 + O 2 N 2 O 28. CO 2 + H 2 O C 6 H 12 O 6 + O SiCl 4 + H 2 O H 4 SiO 4 + HCl 30. H 3 PO 4 H 4 P 2 O 7 + H 2 O

CHEMISTRY 130 General Chemistry I. Five White Powders & Chemical Reactivity

In the exam you will be asked to tackle questions such as the one below.

TYPES OF CHEMICAL REACTIONS

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

A201. Milwaukie HS Chemistry Herrington/Linman. Period Date / / Balance the following Chemical Reactions 1. H 2 + O 2 H 2 O

SOLUTIONS. Solutions - page

NET IONIC EQUATIONS. Electrolyte Behavior

Experiment 5E BOTTLES WITHOUT LABELS: STUDIES OF CHEMICAL REACTIONS

Study Guide: Stoichiometry

Reactions in aqueous solutions Redox reactions

The Copper Cycle. HCl(aq) H + (aq) + Cl (aq) HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl (aq)

Notes: Chemical Reactions. Diatomic elements: H 2, N 2, O 2, F 2, Cl 2, Br 2, I 2 I Bring Clay For Our New Hut OR HOBrFINCl

Balancing Equations Notes

LAB TEST Physical and Chemical Changes

CHEMICAL REACTIONS. Introduction. Chemical Equations

Transcription:

Types of Chemical Reactions Objectives Perform and observe the results of a variety of chemical reactions. Become familiar with the observable signs of chemical reactions. Identify the products formed in chemical reactions and predict when a reaction will occur. Write balanced equations for the reactions studied. Use the results from the single replacement reactions to devise a partial activity series. Background Matter undergoes three kinds of change: physical, chemical, and nuclear. The composition of a chemical substance is not altered by physical changes such as freezing and evaporation. Chemical changes, or reactions, result in the formation of new substances when bonds are formed and/or broken. Some relatively simple but common types of chemical reactions are illustrated in this experiment. Examples and descriptions of each type appear below. There are often accompanying observable changes as a chemical reaction occurs. These include: Color change. Formation of a precipitate noted as the formation of a cloudy solution, formation of a gel, or an obvious solid. Evolution of a gas noted as bubbling in the solution. Appearance or disappearance of distinct separation between two or more liquids. Evolution of heat noted as a temperature increase. Absorption of heat noted as a temperature decrease. Plating out of one metal on another. Decomposition, pitting, or the disappearance of a solid metal One or more of these changes may occur in the reactions that are performed in this experiment. Reaction Types Some reactions may be classified as more than one type of reaction; for example, combination and decomposition reactions that involve elemental substances are also oxidation-reduction reactions Combination Reactions occur when two or more substances (elements or compounds) combine to form one new substance. For example, hydrogen and oxygen gases combine to give water: 2 H 2 (g) + O 2 (g) 2 H 2 O (l) Decomposition Reactions occur when a compound breaks apart to yield two or more new substances. As an example, potassium chlorate decomposes when heated to yield potassium chloride and oxygen gas. Potassium chlorate is one of the ingredients used in match heads. This reaction occurs as the match ignites, causing the match head to be surrounded by an oxygen atmosphere. Types of Reactions Page 1 of 5

2 KClO 3 (s) 2 KCl (s) + 3 O 2 (g) Displacement or Single Replacement Reactions involve the displacement of one element in a compound by another element. Several examples of displacement reactions are given below: Displacement of one metal by another: Pb (s) + Cu(NO 3 ) 2 (aq) Cu (s) + Pb(NO 3 ) 2 (aq) Displacement of hydrogen gas from an acid by a metal: Mg (s) + 2 HCl (aq) MgCl 2 (aq) + H 2 (g) Displacement of hydrogen gas from water by a metal: 2 K (s) + 2 H 2 O (l) 2 KOH (aq) + H 2 (g) Displacement of one halogen by another: Cl 2 (aq) + NaBr (aq) NaCl (aq) + Br 2 (aq) Displacement reactions are always classified as oxidation-reduction reactions. For example, in the first reaction given above, elemental lead is oxidized to lead (II) and copper is reduced from copper (II) to elemental copper. Two electrons are transferred from lead to copper in the process: Pb (s) Pb 2+ (aq) + 2 e - oxidation of lead Cu 2+ (aq) + 2e - Cu (s) reduction of copper The ability of one metal to displace another depends on their relative ease of oxidation a more active metal (one that is more easily oxidized) displaces a less active metal. In the first reaction above, lead is more active than copper. The relative activities of metals can be tabulated in an activity series, ranking the metals by relative ease of oxidation. A metal that displaces hydrogen gas from acid is more active than hydrogen. A metal that displaces hydrogen gas from acid, but not from water, is less active than one that can displace hydrogen from water also. The ease with which a substance is oxidized is quantified as its standard oxidation potential; you will learn more about this in the second semester of General Chemistry Exchange or Double Replacement or Metathesis Reactions occur when two compounds that form ions in solution react by switching ion partners. Thus, these reactions have the general form AB + CD AD + CB. One of three conditions must be met for these reactions to occur: the formation of an insoluble ionic compound, observed as a precipitate, the formation of a gas, or the production of water from hydroxide and hydrogen ions (an example of an acid-base neutralization). In each case one of the products results by combining two ions that are removed from the solution by the reaction. Precipitation reactions occur when aqueous solutions of two ionic compounds are mixed and the ions can combine to make a compound that is not soluble in water (the precipitate). For example, sodium phosphate can be used in an exchange reaction to precipitate calcium ions out of hard water as calcium phosphate, a reaction that is used in some commercial water softeners. 3 CaCl 2 (aq) + 2 Na 3 PO 4 (aq) Ca 3 (PO 4 ) 2 (s) + 6 NaCl (aq) The solubility behavior of the ions that you will be using is summarized in the following table: Types of Reactions Page 2 of 5

Summary of Solubility Rules Solubility Rule Group IA, ammonium and nitrate compounds are soluble Chlorides, Bromides and iodides are soluble. Sulfates are soluble. Carbonates are insoluble. Sulfides are insoluble. Hydroxides are insoluble. Important Exceptions None The halides of silver, lead(ii), and mercury(i) are insoluble. The sulfates of lead(ii), barium, and calcium are insoluble. The carbonates of Group IA and ammonium are soluble. The sulfides of Group IA, ammonium, calcium, and barium are soluble. The hydroxides of Group IA are soluble. Barium hydroxide is soluble, but other Group IIA hydroxides are moderately soluble to insoluble. Gas forming reactions typically go to completion because one or more of the products are removed from the reaction vessel via the formation of a gas as bubbles that leave the reaction mixture. Gases thus produced include hydrogen sulfide, sulfur dioxide, carbon dioxide and ammonia. Hydrogen sulfide, H 2 S, by direct combination of acid (source of H + ) and sulfide ion: Na 2 S(aq) + 2 HCl (aq) H 2 S (g) + 2 NaCl (aq) Sulfur dioxide, SO 2, by decomposition of sulfurous acid initially formed in a reaction between acid and sulfite ion: Na 2 SO 3 (s) + 2 HCl (aq) H 2 SO 3 (aq) + 2 NaCl (aq) H 2 SO 3 (aq) H 2 O (l) + SO 2 (g) ------------------------------------------------------------------------ Na 2 SO 3 (s) + 2 HCl (aq) H 2 O (l) + SO 2 (g) + 2 NaCl (aq) Carbon dioxide, CO 2, by decomposition of carbonic acid initially formed in a reaction between acid and carbonate ion: Na 2 CO 3 (s) + 2 HCl (aq) H 2 CO 3 (aq) + 2 NaCl (aq) H 2 CO 3 (aq) H 2 O (l) + CO 2 (g) ------------------------------------------------------------------------- Na 2 CO 3 (s) + 2 HCl (aq) H 2 O (l) + CO 2 (g) + 2 NaCl (aq) Ammonia, NH 3, from the combination of ammonium and hydroxide ions: NH 4 Cl (aq) + NaOH (aq) NaCl (aq) + H 2 O (l) + NH 3 (g) Acid-Base or Neutralization Reactions involve the transfer of a proton (H + ) from the acid to the base: HCl (aq) + NaOH (aq) NaCl (aq) + H 2 O (l) Water is always a product when the base contains hydroxide ion. Some of the gasforming reactions may also be classified as neutralization reactions. Types of Reactions Page 3 of 5

Procedure Safety Be especially cautious with the 6M and 3M acid solutions as they can burn your skin. Do not stare directly at the magnesium when it burns as the light can hurt your eyes. Skin discoloration will result from contact with silver nitrate. Do not touch metals with your hands. Materials and Equipment Solids: Mg, CuSO 4 5H 2 O, Ca, Cu, Zn, NaHCO 3 Solutions: 6 M HCl, 0.1 M CuSO 4, 0.1 M ZnSO 4, 0.1 M AgNO 3, 0.1 M NaCl, 0.1 M Ni(NO 3 ) 2, 6 M NaOH, 0.1 M Pb(NO 3 ) 2, 0.1 M K 2 CrO 4, 1 M MH 4 NO 3, 6 M H 2 SO 4. Equipment: crucible tongs, one large test tube, two small test tubes, ten small test tubes, test tube holder, test tube rack, 100-mL beaker, red litmus paper, Bunsen Burner Reagents and Equipment for Instructor Demonstrations: CaO solution (prepared in advance by stockroom), sucrose, 18 M H 2 SO 4, distilled water, Na, means of cutting Na and removing from its storage vessel, two 100-mL beakers, straw, red and blue litmus paper, glass stirring rod Instructions for performing reactions Perform each of the following reactions except those that are to be demonstrated by your instructor. You use 1 ml of solution in many of the reactions; estimate this by drops (typically 12-15 drops from the reagent bottle dispenser) or by measuring 1 ml once in your graduated cylinder and then transferring it to a test tube to determine how far it fills the test tube. Record your observations on the data page as you do each reaction. Make sure that you observe the results of every reaction even if you didn t actually mix the chemicals yourself. Write a balanced equation for each reaction. Be sure to include the states of all compounds in your reactions (solid, liquid, aqueous, or gas). If no reaction occurs write the words "no reaction" (or NR) instead of the products in your balanced equation and indicate why your think there was no reaction. Unless otherwise indicated, dispose of all waste in the waste container, or a beaker that you pour into the waste container at the end of the experiment. Do not put metal strips in the sink. A. Combination Reactions 1. Instructor Demonstration. Pour about 35 ml of a clear saturated solution containing calcium oxide into a 100 ml beaker. Allow the solution to stand for about 15 minutes. Observe. Use a straw to blow bubbles into the solution for a few seconds. Observe the solution again. 2. Hold a small strip of magnesium metal (used in flashbulbs and fireworks) in your crucible tongs and ignite the metal in the hot portion of a burner flame. Don't forget to note the color and composition of the residue left on the tongs. B. Decomposition Reactions 1. Instructor Demonstration. Do in the fume hood. Fill a 100 ml beaker about one-third full of granulated sugar (sucrose, C 12 H 22 O 11 ). Add about 20 ml of concentrated (18 M) sulfuric acid and stir until mixed well. Continue stirring until the mixture darkens. Observe. Do not touch the reaction products or the beaker with your hands; use a stirring rod to guide the solid product that forms. 2. Place a small amount (an amount that will fit on the end of a spatula) of solid copper(ii) sulfate pentahydrate in a medium test tube. Use a test tube holder to hold the tube at about a 45º angle and heat in a burner flame for a few minutes, remembering not to point the tube at anyone in the room. Note any changes in the appearance of the solid and anything else Types of Reactions Page 4 of 5

that appears in the test tube. Allow the solid to cool and add a few drops of water. Observe. Dispose of the copper compound in the waste container. C. Displacement Reactions Use 1 ml of each solution in a small test tube unless otherwise specified. Use 0.1 M reagents unless otherwise specified. For reactions involving metals use one piece of metal. Do not put the metal pieces in the sink. If no discernable initial change is noted, let the reaction mixture stand for at least five to ten minutes before observing again. Not all of the combinations will yield observable reactions. Repeat the reaction if there is any doubt with respect to whether or not a reaction occurred. 1. Instructor Demonstration. Cautiously add a small piece of sodium metal to water. Test the resulting solution with red and blue litmus papers (red litmus paper will turn blue in the presence of a base; blue litmus will turn red in the presence of an acid). 2. Calcium metal and water (15 ml) in a large test tube. 3. Zinc metal and water 4. Copper metal and 6 M hydrochloric acid 5. Zinc metal and 6 M hydrochloric acid 6. Zinc metal and 0.1 M copper(ii) sulfate 7. Copper metal and 0.1 M zinc sulfate 8. Copper metal and 0.1 M silver nitrate D. Exchange Reactions Use 1 ml of each solution in a small test tube unless otherwise specified. Use 0.1 M reagents unless otherwise specified. Be sure to mix the solutions well. 1. Silver nitrate and sodium chloride 2. Nickel nitrate and three drops of 6 M sodium hydroxide 3. Lead(II) nitrate and potassium chromate 4. Ammonium nitrate (1 M) and 6 M sodium hydroxide. Warm the test tube gently by passing it back and forth through a burner flame. Hold a strip of moistened red litmus paper so that it is in the tube without coming in contact with the sides of the tube and note any color changes to the paper. Remove the tube from the flame and quickly and cautiously note the smell. 5. Place 5 ml of 6 M hydrochloric acid in a 100 ml beaker. Carefully add several spatulas of solid sodium bicarbonate. Observe. 6. Combine about 5 ml each of 6 M sodium hydroxide and 6 M sulfuric acid in a large test tube. Mix with a stirring rod. Cautiously feel the outside of the test tube. If you cannot detect anything, make sure that you used the correct concentrations of acid and base. Be very careful with the concentrated sulfuric acid; it is very caustic and can dissolve skin and clothing. Types of Reactions Page 5 of 5