CHAPTER 4 BIPOLAR JUNCTION TRANSISTORS (BJTs)

Similar documents
Ch. 9 Common Emitter Amplifier

genius PHYSICS Energy Bands. Types of Solids.

Copyright 2004 by Oxford University Press, Inc.

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

Basic Electrical Engineering for Welding [ ] --- Introduction ---

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V

Lecture 3: Phasor notation, Transfer Functions. Context

ELCT 503: Semiconductors. Fall 2014

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added

Physics of Very High Frequency (VHF) Capacitively Coupled Plasma Discharges

V V. This calculation is repeated now for each current I.

CHAPTER 6 DESIGN OF THE PV-UPQC SYSTEM FOR LONG VOLTAGE INTERRUPTION COMPENSATION

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

Lecture 27 Bipolar Junction Transistors

1.4 Small-signal models of BJT

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

Week 11: Differential Amplifiers

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

Grand Canonical Ensemble

MECH321 Dynamics of Engineering System Week 4 (Chapter 6)

Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED?

55:141 Advanced Circuit Techniques Two-Port Theory

Aspects of Analog Electronics Chemistry 838

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014

Modelling of new generation plasma optical devices

Transfer Characteristic

Common Base Configuration

Properties of ferromagnetic materials, magnetic circuits principle of calculation

Jones vector & matrices

Electronic Circuits. BJT Amplifiers. Manar Mohaisen Office: F208 Department of EECE

The Hyperelastic material is examined in this section.

55:141 Advanced Circuit Techniques Two-Port Theory

ANALYSIS: The mass rate balance for the one-inlet, one-exit control volume at steady state is

9/12/2013. Microelectronics Circuit Analysis and Design. Modes of Operation. Cross Section of Integrated Circuit npn Transistor

Graphical Analysis of a BJT Amplifier

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer

orbiting electron turns out to be wrong even though it Unfortunately, the classical visualization of the

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Dealing with quantitative data and problem solving life is a story problem! Attacking Quantitative Problems

Analyzing Frequencies

2. Grundlegende Verfahren zur Übertragung digitaler Signale (Zusammenfassung) Informationstechnik Universität Ulm

Polytropic Process. A polytropic process is a quasiequilibrium process described by

ES 330 Electronics II Homework # 9 (Fall 2017 Due Monday, December 4, 2017)

signal amplification; design of digital logic; memory circuits

College of Engineering Department of Electronics and Communication Engineering. Test 2

Section 7 - Controllers for Electric Drive Systems

Dynamic Behavior of Current Controllers for Selective Harmonic Compensation in Three-phase Active Power Filters

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

??? Dynamic Causal Modelling for M/EEG. Electroencephalography (EEG) Dynamic Causal Modelling. M/EEG analysis at sensor level. time.

Voltage, Current, Power, Series Resistance, Parallel Resistance, and Diodes

From Structural Analysis to FEM. Dhiman Basu

IV. First Law of Thermodynamics. Cooler. IV. First Law of Thermodynamics

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES

Principles of Humidity Dalton s law

CHAPTER 4. The First Law of Thermodynamics for Control Volumes

VI. Transistor Amplifiers

de/dx Effectively all charged particles except electrons

A crash-course in transistor circuits

Three-Node Euler-Bernoulli Beam Element Based on Positional FEM

CHAPTER 33: PARTICLE PHYSICS

Physics 256: Lecture 2. Physics

LEBANESE UNIVERSITY FACULTY OF ENGINEERING

FEEDBACK AMPLIFIERS. v i or v s v 0

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol:

Phys 774: Nonlinear Spectroscopy: SHG and Raman Scattering

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

Lecture #15. Bipolar Junction Transistors (BJTs)

MPSA13 MPSA14 CASE 29-02, STYLE 1 TO-92 (TO-226AA) DARLINGTON TRANSISTOR MAXIMUM RATINGS THERMAL CHARACTERISTICS ON CHARACTERISTICS) 1) NPN SILICON

Outlier-tolerant parameter estimation

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

GPC From PeakSimple Data Acquisition

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved.

Engineering 1620: High Frequency Effects in BJT Circuits an Introduction Especially for the Friday before Spring Break

ACOUSTIC WAVE EQUATION. Contents INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS

Numerical Study of Two-fluid Flowing Equilibria of Helicity-driven Spherical Torus Plasmas

The Fourier Transform

8-node quadrilateral element. Numerical integration

Math 656 March 10, 2011 Midterm Examination Solutions

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

EE C245 ME C218 Introduction to MEMS Design

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS

Energy Storage Elements: Capacitors and Inductors

The pn junction: 2 Current vs Voltage (IV) characteristics

Collisions between electrons and ions

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

Radial Cataphoresis in Hg-Ar Fluorescent Lamp Discharges at High Power Density

Lecture 16: Bipolar Junction Transistors. Large Signal Models.

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

Lecture 5: Operational Amplifiers and Op Amp Circuits

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex.

A RELIABLE MATRIX CONVERTER FED INDUCTION MOTOR DRIVE SYSTEM BASED ON PARAMETER PLANE SYNTHESIS METHOD

Correlation and recombination heating in an ultracold plasma. Analitic estimations.

Week 9: Multivibrators, MOSFET Amplifiers

Answer Homework 5 PHA5127 Fall 1999 Jeff Stark

Comparative Analysis for Extracting Compensation Current for Shunt Active Filter

Transcription:

HAPER 4 POLAR JUNON RANSSORS (Js) haptr Outln 4.1 Dc Structur and Physcal Opraton 4.2 urrnt oltag haractrstcs 4.3 J rcuts at D 4.4 Applyng th J n Amplfr Dsgn 4.5 Small Sgnal Opraton and Modls 4.6 asc J Amplfr onfguratons 4.7 asng n J Amplfr rcuts 4.8 Dscrt rcut J Amplfrs NUEE Elctroncs L. H. Lu 4 1

4.1 Dc Structur and Physcal Opraton Physcal structur of bpolar juncton transstor (J) oth lctrons and hols partcpat n th conducton procss for bpolar dcs J conssts of two pn junctons constructd n a spcal way and connctd n srs, back to back h transstor s a thr trmnal dc wth mttr, bas and collctor trmnals From th physcal structur, Js can b ddd nto two groups: npn and pnp transstors Mods of opraton h two junctons of J can b thr forward or rrs basd h J can oprat n dffrnt mods dpndng on th juncton bas h J oprats n act mod for amplfr crcuts Swtchng applcatons utlz both th cutoff and saturaton mods Mod EJ J utoff Rrs Rrs Act Forward Rrs Saturaton Forward Forward NUEE Elctroncs L. H. Lu 4 2

Opraton of th npn transstor n th act mod Elctrons n mttr rgons ar njctd nto bas du to th forward bas at EJ Most of th njctd lctrons rach th dg of J bfor bng rcombnd f th bas s narrow Elctrons at th dg of J wll b swpt nto collctor du to th rrs bas at J Emttr njcton ffcncy ( ) = En /( En + Ep ) as transport factor ( ) = n / En ommon bas currnt gan () = n / E = < 1 rmnal currnts of J n act mod: E (mttr currnt) = En (lctron njcton from E to ) + Ep (hol njcton from to E) (collctor currnt) = n (lctron drft) + O (J rrs saturaton currnt wth mttr opn) (bas currnt) = 1 (hol njcton from to E) + 2 (rcombnaton n bas rgon) NUEE Elctroncs L. H. Lu 4 3

rmnal currnts: ollctor currnt: n AE qdndn x) / dx AE qdnn as currnt: Hol njcton nto mttr du to forward bas: Elctron hol rcombnaton n bas: otal bas currnt: Emttr currnt: E 1 A qd n N W E n E / ( (0) / W D N S 2 E / Q W n 1 AE qdpedpe x) / / n AE q 2 pe 1 2 S ( ) Dn NE LpE 2 Dn n 1 W E 1 2 / 2 ( dx n (0) W / n S A E E N / E qd L AE qwn 2N n pe pe 2 n 2 E / E / NUEE Elctroncs L. H. Lu 4 4

Larg sgnal modl and currnt gan for J n act rgon ommon mttr currnt gan ommon bas currnt gan (1) (+1) E E ommon mttr currnt gan: ommon bas currnt gan: h structur of actual transstors D ( D 2 W ) D /(1 ) n modrn procss tchnologs, th J utlzs a rtcal structur ypcally, s smallr and clos to unty whl s larg /( 1) pe n N N E W L pe 1 2 1 n n 1 1 NUEE Elctroncs L. H. Lu 4 5

Opraton of th npn transstor n th saturaton mod Saturaton mod: both EJ and J ar forward basd arrr njcton from both mttr and collctor nto bas as mnorty carrr concntraton chang accordngly ladng to rducd slop as ncrass ollctor currnt drops from th alu n act mod for ngat For a gn E, drops sharply to zro at around 0.5 and E around 0.2 J n saturaton: Esat = 0.2 urrnt gan rducs (from to forcd ): forcd saturaton n p0 xp( E / ) n p0 xp( / ) ncrass n p0 NUEE Elctroncs L. H. Lu 4 6

Ebrs Moll modl n EM modl, th EJ and J ar rprsntd by two back to back dods DE and D urrnt transportd from on juncton to th othr s prsntd by F (forward) and R (rrs) EM modl can b usd to dscrb th J n any of ts possbl mods of opraton EM modl s usd for mor dtald dc analyss / h dod currnts: ( E / DE SE 1) ( D S 1) F SE R S S h trmnal currnts: E DE RD D FDE E Applcaton of th EM modl h forward act mod: E 1 E / S S 1 R S E / 1 1 S F F R S E / 1 S 1 F F h saturaton mod: E S SE SE E / E / S S / / E / ( 1 ) (1 F S R ) / E DE R D D F DE NUEE Elctroncs L. H. Lu 4 7

h cutoff mod O (J rrs currnt wth mttr opn crcutd) O = (1 R F ) S oth EJ and J ar rrs basd n ral cas, rrs currnt dpnds on EO (J rrs currnt wth bas opn crcutd) EO = O /(1 F ) F s always smallr than unty such that EO > O J currnt flows from ( to ) so J s rrs basd EJ currnt flows from (E to ) so EJ s slghtly forward basd + (3) DE = 0 S (1) (3) R S S (1) E E E E = 0 (2) R S F DE (4) (2) R S R F S (4) + = O = (1 R F ) S (5) = ( R 1) S +(1 F ) DE = 0 DE = S (1 R )/(1 F ) (5) = S + F DE = S (1 R F )/(1 F ) EO = O /(1 F ) (6) NUEE Elctroncs L. H. Lu 4 8

h pnp transstor ransstor structur: mttr and collctor ar p typ bas s n typ Opraton of pnp s smlar to that of npn Opraton of pnp n th act mod ollctor currnt: as currnt: Emttr currnt: / E S E / Larg sgnal modl and currnt gan for J n act rgon ommon mttr currnt gan ommon bas currnt gan (1) (+1) E E 1 1 Exrcs 4.1 (xtbook) Exrcs 4.3 (xtbook) NUEE Elctroncs L. H. Lu 4 9

4.2 urrnt oltag haractrstcs rcut symbols, oltag polarts and currnt flow rmnal currnts ar dfnd n th drcton as currnt flow n act mod Ngat alus of currnt or oltag man n oppost polarty (drcton) Summary of th J currnt oltag rlatonshps n th act mod h trmnal currnts for a J n act mod solly dpnd on th juncton oltag of EJ h ratos of th trmnal currnts for a J n act mod ar constant h currnt drctons for npn and pnp transstors ar oppost E npn transstor E / S S S E / E / E pnp transstor E / S S S E / E / E 1 1 NUEE Elctroncs L. H. Lu 4 10

urrnt oltag charactrstcs of J h charactrstcs h E charactrstcs h Early ffct As J rrs bas ncrass, th ffct bas wdth W ff rducs du to th ncrasng dplton For a constant juncton oltag E : h slop of n (x) ncrass ncrass n (0) harg storag Q n rducs dcrass urrnt gan and ncrass Y Early oltag ( A ) s usd for th lnar approxmaton of Early Effct X E / Lnar dpndnc of on E : (1 / ) Exhbt fnt output rsstanc: S E A 1 ro E constant E A NUEE Elctroncs L. H. Lu 4 11 n 0 0 W X W Y W Z Z

ommon bas output charactrstcs Early ffct brakdown rsus plot wth arous E as paramtr s known as common bas output charactrstcs h slop ndcats that dpnds to a small xtnt on Early ffct ncrass rapdly at hgh brakdown J s slghtly forward basd for 0.4 < < 0 No sgnfcant chang s obsrd n h J stll xhbts charactrstcs as n th act mod J turns on strongly and th starts to dcras for < 0.4 charactrstcs n th saturaton mod and Esat s consdrd a constant ( 0.2 ) urrnt gan (): larg sgnal / E and small sgnal (ncrmntal) / E NUEE Elctroncs L. H. Lu 4 12

ommon mttr output charactrstcs () rsus E plot wth arous E as paramtr ommon mttr currnt gan s dfnd as = / h J turns on wth a post at low E J oprats n saturaton mod h cur has a fnt slop du to Early ffct h charactrstcs lns mt at E = A A s calld th Early oltag (~ 50 to 100 ) ommon mttr output charactrstcs () Plot of rsus E wth arous as paramtr J n act rgon acts as a currnt sourc wth hgh (but fnt) output rsstanc h cutoff mod n common mttr confguraton s dfnd as = 0 urrnt gan: larg sgnal b dc / and b ac / Early ffct brakdown NUEE Elctroncs L. H. Lu 4 13

Saturaton of common mttr confguraton n saturaton rgon, t bhas as a closd swtch wth a small rsstanc R Esat h saturaton cur can b approxmatd by a straght ln ntrsctng th E axs at Eoff h saturaton oltag Esat Eoff + sat R Esat Esat s normally tratd as a constant of 0.2 for smplcty rgardlss th alu of ncrmntal n saturaton s lowr than that n act rgon: forcd sat / < Ordr factor / forcd NUEE Elctroncs L. H. Lu 4 14

ransstor brakdown ransstor brakdown mchansm: Aalanch brakdown: aalanch multplcaton mchansm taks plac at J or EJ as punch through ffct: th bas wdth rducs to zro at hgh J rrs bas n confguraton, O s dfnd at E = 0 h brakdown oltag s smallr than O for E > 0 n E confguraton, EO s dfnd at =0 h brakdown oltag s smallr than EO for > 0 ypcally, EO s about half of O rakdown of th J s not dstruct as long as th powr dsspaton s kpt wthn saf lmts rakdown of th EJ s dstruct bcaus t wll caus prmannt dgradaton of NUEE Elctroncs L. H. Lu 4 15

Exrcs 4.13 (xtbook) Exrcs 4.14 (xtbook) Exampl 4.3 (xtbook) Exrcs 4.21 (xtbook) NUEE Elctroncs L. H. Lu 4 16

4.3 J rcuts at D J opraton mods h J opraton mod dpnds on th oltags at EJ and J h charactrstcs ar strongly nonlnar Smplfd modls and classfcatons ar ndd to spd up th hand calculaton analyss Mod EJ J npn transstor pnp transstor Act Forward Rrs utoff Rrs Rrs nrs Mod E < 0, 0 Saturaton Mod E 0, 0 nrs Mod E < 0, 0 Saturaton Mod E 0, 0 Saturaton Forward Forward nrs Rrs Forward utoff Mod E < 0, < 0 Act Mod E 0, 0 E utoff Mod E < 0, < 0 Act Mod E 0, 0 E Smplfd modls and classfcatons for th opraton of th npn J ut off mod: E = = = 0 E < 0.5 and < 0.4 Act mod: E = 0.7 and : : E = 1: : (1+) E > 0.3 Saturaton mod: E = 0.7 and E = 0.2 / = forcd < NUEE Elctroncs L. H. Lu 4 17

Equalnt crcut modls NUEE Elctroncs L. H. Lu 4 18

D analyss of J crcuts Stp 1: assum th opraton mod Stp 2: us th condtons or modl for crcut analyss Stp 3: rfy th soluton Stp 4: rpat th abo stps wth anothr assumpton f ncssary Exampl 4.4 = 100 Exampl 4.5 NUEE Elctroncs L. H. Lu 4 19

Exampl 4.9 (xtbook) Exampl 4.11 (xtbook) NUEE Elctroncs L. H. Lu 4 20

Exrcs 4.22 (xtbook) Exrcs 4.23 (xtbook) Exrcs 4.24 (xtbook) Exrcs 4.25 (xtbook) Exrcs 4.28 (xtbook) Exampl 4.12 (xtbook) NUEE Elctroncs L. H. Lu 4 21

4.4 Applyng th J n Amplfr Dsgn J oltag amplfr A J crcut wth a collctor rsstor R can b usd as a smpl oltag amplfr as trmnal s usd th amplfr nput and th collctor s consdrd th amplfr output h oltag transfr charactrstc () s obtand by solng th crcut from low to hgh E utoff mod: 0 E < 0.5 and = 0 O = E = Act mod: E > 0.5 and = S xp( E / ) O = R = R S xp( E / ) Saturaton: E furthr ncrass E = Esat = 0.2 O = 0.2 NUEE Elctroncs L. H. Lu 4 22

asng th crcut to obtan lnar amplfcaton h slop n th ndcats oltag gan J n act mod can b usd as oltag amplfcaton Pont Q s known as bas pont or dc opratng pont = S xp( E / ) h sgnal to b amplfd s suprmposd on E E (t) = E + b (t) h tm aryng part n E (t) s th amplfd sgnal h crcut can b usd as a lnar amplfr f: A propr bas pont s chosn for gan h nput sgnal s small n ampltud h small sgnal oltag gan h amplfr gan s th slop at Q: A d d E E E E oltag gan dpnds on and R Maxmum oltag gan of th amplfr A R E R A max NUEE Elctroncs L. H. Lu 4 23

Dtrmnng th by graphcal analyss Prods mor nsght nto th crcut opraton Load ln: th straght ln rprsnts n ffct th load = ( E )/R h opratng pont s th ntrscton pont Locatng th bas pont Q h bas pont (ntrscton) s dtrmnd by proprly choosng th load ln h output oltag s boundd by (uppr bound) and Esat (lowr bound) h load ln dtrmns th oltag gan h bas pont dtrmns th hadroom or maxmum uppr/lowr oltag swng of th amplfr NUEE Elctroncs L. H. Lu 4 24

4.5 Small Sgnal Opraton and Modls h collctor currnt and th transconductanc h total quantts (ac + dc) of th collctor currnt: Small sgnal approxmaton: b << h transconductanc ndcats th ncrmntal chang of rsus chang of E h transconductanc g m s dtrmnd by ts dc collctor currnt Gnral, Js ha rlatly hgh transconductanc compard wth FEs at th sam currnt ll h bas currnt and th nput rsstanc at th bas h total quantts (ac + dc) of th bas currnt: Small sgnal approxmaton: Rsstanc r s th small sgnal nput rsstanc btwn bas and mttr (lookng nto th bas) NUEE Elctroncs L. H. Lu 4 25 b b E E S S b E E / / / / ) ( b b c 1 E m g b b E E S S / / / / b b b 1 m b b g r

h mttr currnt and th nput rsstanc at th mttr h total quantts (ac + dc) of th mttr currnt: Small sgnal approxmaton: Rlaton btwn r and r : Output rsstanc accountng for Early ffct Us th collctor currnt quaton wth lnar E dpndnc: h output rsstanc r o s ncludd to rprsnt Early Effct of th J h rsultng r o s typcally a larg rsstanc and can b nglctd to smplfy th analyss NUEE Elctroncs L. H. Lu 4 26 c E E m m E b g g r 1 b E b b m c g r )r 1 ( m m g r g r A E S E 1 / A constant E o r E 1

J small sgnal modls wo modls ar xchangabl and dos not affct th analyss rsult h hybrd modl ypcally usd as th mttr s groundd Nglct r o h modl ypcally usd as th mttr s not groundd Nglct r o NUEE Elctroncs L. H. Lu 4 27

hr basc confguratons 4.6 asc J Amplfr onfguraton ommon Emttr (E) ommon as () ommon ollctor () haractrzng amplfrs h J crcuts can b charactrzd by a oltag amplfr modl (unlatral modl) h lctrcal proprts of th amplfr s rprsntd by R n, R o and A o h analyss s basd on th small sgnal or lnar qualnt crcut (dc componnts not ncludd) oltag gan: A Orall oltag gan: o RL Ao RL Ro o G R sg n Rn R sg A R n Rn R sg RL R R L so A o NUEE Elctroncs L. H. Lu 4 28

h common mttr (E) amplfr haractrstc paramtrs of th E amplfr nput rsstanc: Output rsstanc: Opn crcut oltag gan: oltag gan: A R n r Orall oltag gan: E amplfr can prod hgh oltag gan R g m o R r nput and output ar out of phas du to ngat gan Lowr ncrass R n at th cost of oltag gan Output rsstanc s modrat to hgh Small R rducs R o at th cost of oltag gan o A R o g ( R r ) g m o ( R RL ro ) gm( R RL ) r r G gm( R RL ro ) gm ( R RL) r R r R sg m R sg NUEE Elctroncs L. H. Lu 4 29

h common mttr (E) wth an mttr rsstanc haractrstc paramtrs (by nglctng r o ) nput rsstanc: R n ( 1 )( r R ) r (1 ) R Output rsstanc: Ro R Opn crcut oltag gan: A o gmr 1 R / r oltag gan: A Orall oltag gan: G gmr 1 g R r r m gmr 1 g R RL R R L g R m Emttr dgnraton rsstanc R s adoptd nput rsstanc s ncrasd by addng (1+)R Gan s rducd by th factor (1+g m R ) h orall gan s lss dpndnt on t s consdrd a ngat fdback of th amplfr gm( R RL) 1 g R R m m L Rsg 1 gmr RL R r r R sg gm( R RL) 1 g R m NUEE Elctroncs L. H. Lu 4 30

h common bas () amplfr haractrstc paramtrs of th E amplfr (by nglctng r o ) nput rsstanc: Rn r Output rsstanc: Ro R Opn crcut oltag gan: Ao gmr oltag gan: A g R R ) Orall oltag gan: m( L r G r R ( R RL ) E amplfr can prod hgh oltag gan nput and output ar n phas du to post gan nput rsstanc s ry low A sngl stag s not sutabl for oltag amplfcaton Output rsstanc s modrat to hgh Small R rducs R o at th cost of oltag gan h amplfr s no longr unlatral f r o s ncludd sg g m NUEE Elctroncs L. H. Lu 4 31

h common collctor () amplfr haractrstc paramtrs of th amplfr (by nglctng r o ) nput rsstanc: Rn ( 1 )( r RL) Output rsstanc: Ro r Rsg / Opn crcut oltag gan: Ao RL /( RL r ) 1 Rn RL ( 1) RL Orall oltag gan: G R 1)( R r ) R amplfr s also calld mttr followr. nput rsstanc s ry hgh Output rsstanc s ry low h oltag gan s lss than but can b clos to 1 amplfr can b usd as oltag buffr t s notd that, n th analyss, th amplfr s not unlatral R n sg R L r ( L sg 1 NUEE Elctroncs L. H. Lu 4 32

D bas for J amplfr 4.7 asng n J Amplfr rcuts h amplfrs ar opratng at a propr dc bas pont Lnar sgnal amplfcaton s prodd basd on small sgnal crcut opraton h D bas crcut s to nsur th J n act mod wth a propr collctor currnt h classcal dscrt crcut bas arrangmnt A sngl powr supply and rsstors ar ndd hnn qualnt crcut: = R 2 /(R 1 +R 2 ) R = R 1 R 2 J opratng pont: R E / R (1 1/ ) E R s chosn to nsur th J n act ( E > Esat ) A two powr supply rson of th classcal bas arrangmnt wo powr suppls ar ndd Smlar dc analyss J opratng pont: R EE E / R (1 1/ ) E NUEE Elctroncs L. H. Lu 4 33

asng usng a collctor to bas fdback rsstor A sngl powr supply s ndd R nsurs th J n act ( E > E 0.7 ) J opratng pont: E / R (1 1/ ) h alu of th fdback rsstor R affcts th small sgnal gan asng usng a constant currnt sourc h J can b basd wth a constant currnt sourc h rsstor R s chosn to oprat th J n act mod h currnt sourc s typcally mplmntd by a J currnt mrror urrnt mrror crcut: oth J transstors Q 1 and Q 2 ar n act mod Assum currnt gan s ry hgh: REF R EE E R Whn applyng to th amplfr crcut, th oltag has to b hgh nough to nsur Q 2 n act Exrcs 6.35 (xtbook) Exrcs 6.36(xtbook) NUEE Elctroncs L. H. Lu 4 34

4.8 Dscrt rcut J Amplfrs rcut analyss: D analyss: Rmo all ac sourcs (short for oltag sourc and opn for currnt sourc) All capactors ar consdrd opn crcut D analyss of J crcuts for all nodal oltags and branch currnts Fnd th dc currnt and mak sur th J s n act mod A analyss: Rmo all dc sourcs (short for oltag sourc and opn for currnt sourc) All larg capactors ar consdrd short crcut Rplac th J wth ts small sgnal modl for ac analyss h crcut paramtrs n th small sgnal modl ar obtand basd on th alu of omplt amplfr crcut D qualnt crcut A qualnt crcut NUEE Elctroncs L. H. Lu 4 35

h common mttr (E) amplfr h common mttr amplfr wth an mttr rsstanc NUEE Elctroncs L. H. Lu 4 36

h common bas () amplfr h common collctor () amplfr NUEE Elctroncs L. H. Lu 4 37

h amplfr frquncy rspons h gan falls off at low frquncy band du to th ffcts of th couplng and by pass capactors h gan falls off at hgh frquncy band du to th ntrnal capact ffcts n th Js Mdband: All couplng and by pass capactors (larg capactanc) ar consdrd short crcut All ntrnal capact ffcts (small capactanc) ar consdrd opn crcut Mdband gan s narly constant and s aluatd by small sgnal analyss h bandwdth s dfnd as W = f H f L A fgur of mrt for th amplfr s ts gan bandwdth product dfnd as G = A M W NUEE Elctroncs L. H. Lu 4 38

Exrcs 6.40 (xtbook) Exrcs 6.41 (xtbook) Exrcs 6.43 (xtbook) Exrcs 6.44 (xtbook) NUEE Elctroncs L. H. Lu 4 39