Präzisionsmessungen zur kosmischen Höhenstrahlung im Weltraum Das AMS Experiment auf der ISS Prof. Dr. Stefan Schael RWTH Aachen

Similar documents
!"#$%&'$(")*&$+,)*$-"+./&'$0,1&'2&$23 $4 &/1',"3 $5 -,6$!0($789&'23 &+1$,"#$%&'$:(( ;'<#=$-'=$(1&#,+$()*,&/

PEBS - Positron Electron Balloon Spectrometer. Prof. Dr. Stefan Schael I. Physikalisches Institut B RWTH Aachen

New results from the AMS experiment on the International Space Station. Henning Gast RWTH Aachen

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer

Cosmic Ray Physics with the Alpha Magnetic Spectrometer

Antimatter and DM search in space with AMS Introduction. 2 Cosmology with Cosmic Rays

Chapter 6.2: space based cosmic ray experiments. A. Zech, Instrumentation in High Energy Astrophysics

The AMS-02 Transition Radiation Detector to Search for Dark Matter in Space

THE AMS RICH COUNTER

Indirect Search for Dark Matter with AMS-02

The AMS-02 Anticoincidence Counter

The Alpha Magnetic Spectrometer on the International Space Station

AMS : A Cosmic Ray Observatory

Current and Future balloon and space experiments L. Derome (LPSC Grenoble) Tango, May 4-6th, 2009

PAMELA: a Satellite Experiment for Antiparticles Measurement in Cosmic Rays

Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics. PAMELA MissioN 17 December 2010 Prepared by FatiH KAYA

DARK MATTER SEARCHES WITH AMS-02 EXPERIMENT

P A M E L A Payload for Antimatter / Matter Exploration and Light-nuclei Astrophysics

Search for Antiparticles in Cosmic Rays in Space and the Earth s Atmosphere. Philip von Doetinchem I. Phys. Inst. B, RWTH Aachen University

High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter. F. Pilo for the AMS-02 ECAL Group INFN Sezione di Pisa, Italy

Rare Components in Cosmic Rays with AMS-02

Trento Summary: Antimatter & Dark Matter Search. Status Dark Matter Search

GeV to Multi-TeV Cosmic Rays: AMS-02 Status and Future Prospects

Introduction History of Cosmic Ray Studies: Origin, Propagation, Spectrum, Composition

arxiv: v1 [physics.ins-det] 3 Feb 2014

Status of the LHCb Experiment. Ueli Strauman, University of Zurich, Switzerland. Sept. 13, 2001

Recent CMS results on heavy quarks and hadrons. Alice Bean Univ. of Kansas for the CMS Collaboration

Detection and measurement of gamma rays with the AMS-02 detector

Detection and measurement of gamma rays with the AMS-02 detector

1 The beginning of Cosmic Ray Physics, the balloons BACKGROUND REJECTION AND DATA ANALYSIS. Aldo Morselli a and Piergiorgio Picozza a.

Status and prospects of the LHCb experiment

THE ELECTROMAGNETIC CALORIMETER OF THE AMS-02 EXPERIMENT

The Latest Results from AMS on the International Space Station

Primary Cosmic Rays : what are we learning from AMS

The space mission PAMELA

Cosmic Ray panorama. Pamela.roma2.infn.it PAMELA (2012) Experimental challenges : e + /p ~ 10-3 e + /e - ~ 10-1

The Quark-Gluon Plasma and the ALICE Experiment

Particle Detectors A brief introduction with emphasis on high energy physics applications


DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011

Introduction to Cosmic Rays Data Analysis Issues. Nicola De Simone INFN and University of Rome Tor Vergata

The ALICE Experiment Introduction to relativistic heavy ion collisions

b Physics Prospects For The LHCb Experiment Thomas Ruf for the LHCb Collaboration Introduction Detector Status Physics Program

Tracking at the LHC. Pippa Wells, CERN

The Silicon-Tungsten Tracker of the DAMPE Mission

New Limits on Heavy Neutrino from NA62

Fluxes of Galactic Cosmic Rays

AMS Transition Radiation Detector 4-Layer Prototype and Gas System Tests

The LHCb Experiment II Detector XXXIV SLAC Summer Institute, July, 2006

The Ring Imaging Cherenkov detector of the AMS experiment: test beam results with a prototype

arxiv:astro-ph/ v1 29 Aug 2006

Theory English (Official)

The Anti Matter Spectrometer (AMS-02): a particle physics detector in space

Physics 661. Particle Physics Phenomenology. October 2, Physics 661, lecture 2

ATHENA / AD-1. First production and detection of cold antihydrogen atoms. ATHENA Collaboration. Rolf Landua CERN

Bad Honnef,

Kaon Identification at NA62. Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015

EP228 Particle Physics

The final 20-Layer-Prototype for the AMS Transition Radiation Detector: Beamtests, Data-Analysis, MC-Studies

Ridge correlation structure in high multiplicity pp collisions with CMS

Search for exotic process with space experiments

I. Physikalisches Institut, RWTH-Aachen, Germany. J. VANDENHIRTZ.

NA62: Ultra-Rare Kaon Decays

PoS(HCP2009)042. Status of the ALICE Experiment. Werner Riegler. For the ALICE Collaboration. CERN

PAMELA satellite: fragmentation in the instrument

The Alice Experiment Felix Freiherr von Lüdinghausen

Introduction. Tau leptons. SLHC. Summary. Muons. Scott S. Snyder Brookhaven National Laboratory ILC Physics and Detector workshop Snowmass, Aug 2005

A search for heavy and long-lived staus in the LHCb detector at s = 7 and 8 TeV

SciBar and future K2K physics. F.Sánchez Universitat Aútonoma de Barcelona Institut de Física d'altes Energies

Particle Detectors. Summer Student Lectures 2007 Werner Riegler, CERN, History of Instrumentation History of Particle Physics

Antiproton Flux and Antiproton-to-Proton Flux Ratio in Primary Cosmic Rays Measured with AMS on the Space Station

Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC

CMS ECAL status and performance with the first LHC collisions

Particle Identification: Computer reconstruction of a UA1 event with an identified electron as a candidate for a W >eν event

Precision measurements of nuclear CR energy spectra and composition with the AMS-02 experiment

Particle Identification of the LHCb detector

Exploring dense matter at FAIR: The CBM Experiment

LHCb: Reoptimized Detector & Tracking Performance

MoonCal An electromagnetic calorimeter on the lunar surface. R.Battiston, M.T.Brunetti, F. Cervelli, C.Fidani, F.Pilo

CALICE scintillator HCAL

The AMS detector: a particle physics experiment in space

The SHiP experiment. Colloquia: IFAE A. Paoloni( ) on behalf of the SHiP Collaboration. 1. Introduction

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

Recent&results&from&the&Alpha&Magne4c& Spectrometer&(AMS)&Experiment&& on&the&interna4onal&space&sta4on

The long road to understanding LHC data

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration

Antimatter in Space. Mirko Boezio INFN Trieste, Italy. PPC Torino July 14 th 2010

Results from the Tevatron: Standard Model Measurements and Searches for the Higgs. Ashutosh Kotwal Duke University

Results from HARP. Malcolm Ellis On behalf of the HARP collaboration DPF Meeting Riverside, August 2004

The LHCb Flavour Physics Experiment

Validation of Geant4 Physics Models Using Collision Data from the LHC

Experimental studies of East-West effect of the charge ratio of atmospheric muons with energies relevant to the atmospheric neutrino anomaly

2 ATLAS operations and data taking

Electroweak Physics at the Tevatron

HQL Virginia Tech. Bob Hirosky for the D0 Collaboration. Bob Hirosky, UNIVERSITY of VIRGINIA. 26May, 2016

PHY492: Nuclear & Particle Physics. Lecture 25. Particle Detectors

The TRD of the CBM experiment

7 Particle Identification. Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria

The Mu2e Transport Solenoid

Cosmic Background Radiation

Transcription:

Präzisionsmessungen zur kosmischen Höhenstrahlung im Weltraum Das AMS Experiment auf der ISS Prof. Dr. Stefan Schael RWTH Aachen 1

2

Cosmic Particle Spectrum 3

Suche nach Anti-Materie 10-10 10-9 Gauss 1. Es gib eine Asymmetrie zwischen Materie und Anti-Materie die wir noch nicht kennen. 2. Es gibt Bereiche im Universum die aus Anti-Materie bestehen. => AMS Experiment 5µG l=8mly t=4 My He : Kosmische Antimaterie!" $ # p / p < 30% at 1 TeV C : Anti-Sterne "% 4

Dark Matter log d Dark Energy v = H! d redshift z = (! "! ) /! 0 CMBR: Boomerang m ΔT(α,δ) = Σ l,m a l,m Y l (α,δ) : anisotropies - expansion in multipoles c l = < a 2 l,m > : power spectrum of anisotropies 5

Dark Matter & Dark Energy From Cosmic Background Radiation, Supernova 1a and Big bang nucleosynthesis Ω total = Ω b + Ω CDM + Ω Λ = (5±1)% + (31±7)% + (65±5)% = (99±3)% baryons + cold dark matter + dark energy the critical density for a flat universe: 2 3H0 3! c = $ 3 H-atoms / m 8" G! H % = h =! 100kms Mpc c 0 0 0 0 # 1 # 1 h = 0.65 ± 0.08 t = 13 ± 2Gyr 6

Search for Dark Matter From various observations we now that 90% of the matter of the universe in non luminous. DarkSusy The preferred candidate for dark matter is today the neutralino χ. m(χ) = 116 GeV tanβ = 5 Ω M = 0.28 Requires Proton/Positron separation on the 10-6 level 7

Technische Anforderungen an das AMS Experiment Bei Start/Landung treten Beschleunigungen bis zu 9g auf Das Experiment wird im Vakuum betrieben Temperaturschwankungen von 180 - +50 Grad Celsius Maximale Ausgasrate auf der ISS: < 1 10-14 g/s/cm 2 Maximales Gewicht 14900 lbs Kosten: 10000 $/lbs Maximaler Stromverbrauch: 2kW, 1 Stromkabel mit 120 V Maximale Datenrate: 1Mbyte/s 1 optischer Link zur ISS 8

AMS-01 Configuration on STS-91 Flight STS-91 Flight, June 2-12 th, 1998 3 years from proposal to launch Magnet: Nd 2 Fe 14 B, BL 2 = 0.15 TM 2 T.o.F: Four planes of scintillators; β and Z measurements, up/down separation Tracker: Six planes of ds silicon detectors; Charge sign, de/dx up to Z=8, Rigidity (p/z) Anticounters: Veto stray trajectories and background particles from magnet walls Aerogel Threshold Čerenkov: β measurements (1 3 GeV/c) for better e/p separation Low Energy Particle Shielding (LEPS): Carbon fibre, shield from low energy (<5MeV) particles 9

AMS-01: STS-91 Flight Results Data taking 135 hours Shuttle altitude 370 km Trigger rate 100 700 Hz 100 million events recorded Energy Range: 100 MeV/n<E k < 300 GeV/n Electronics channels: 70000 Power: 1 kw Weight: 3 t 10

11

Stability of the Si-tracker 12

Search for anti-matter with AMS-01 N N He He < "! 6 1.8 10 (@ 95% CL) >50 contributions related to AMS-01 at ICRC 2001 in Hamburg 13

Search for Anti-Matter with AMS-02 Time on ISS: 3 years AMS02 statistics 10 3 AMS01 superconductivity magnet B-field: 0.15 T 0.9 T momentum reach x 6 exclude a sphere of 1000 Mpc 14

Full GEANT simulation of the earth leads to a detailed understanding of the measured spectra. 15

Expected data for AMS02: 1. 1 10 9 He 1-1400 GV 2. 4 10 6 e + 5-300 GeV 3. 1 10 6 p - 5-1000 GeV 4. 3 10 6 p + > 1 TeV 5. 1 10 7 e - > 10 GeV 16

AMS-02 17

, Karlsruhe 18

TRD: Particle ID & 3D tracking 20 layers fleece + Xe/CO2 gas 5248 channels, 6mm straw tubes p + /e + < 10-2 from 10 300 GeV Upper TOF, 2 layers, Trigger, s t @ 125 ps Anticoincidence (VETO) counter Double sided Si-strip tracker with internal laser alignment system, CFC support structure 6 m 2 in 3 double and 2 single layers 1s charge separation up to 1 TeV Super conducting magnet (ETH Zürich) B=0.9T, V=0.6m 3, 2600 l He Lower TOF, 2 layers, 1.3 m distance p + /e + > 3 s below 2 GeV RICH AGL+NaF Radiator for A<28 and Z<29 separation > 3 s from 1-12 GeV ECAL 3D sampling lead/scint.-fibre p + /e + < 10-4 from 10 300 GeV 19

AMS02 Transition Radiation Detector 20

21

22

TRD Support Structure 23

Required mechanical accuracy < 0.1 mm 24

25

26

Gas Gain Measurements 27

Total loss by diffusion: 1 10-5 mbar/s at 1 bar Quality control during production: 1 10-4 mbar/s at 1 bar 1760 l Xe and 440 l CO2 in 1000 days 28

TRD Gas System: MIT Storage: 44.3 kg Xe 3.7 kg CO2 @ 50 bar 8100 l Xe 2000 l CO2 Extra safety factor of 5!!! 29

30

Vibration test up to 6.8 g (90 s) 31

FE-model measured after vibration test 1 after thermo vacuum test after vibration test 2 1. eigenfrequency [Hz] x y z 132 371 132 371 128 362 268 128 128 32

33

Leak Rates Diffusion limit: 1.2 10-5 mbar/s Xe/CO 2 1.8 10-4 mbar/s He TRD design: total gas volume 5 x leak rate 1 10-4 mbar/s Xe/CO 2 Consequences: 1. we can not use EPO-TEK 353 ND glue 2. new design for gas connection use stainless steel tubes instead of peak 34

TRD radiator The fleece material (Polypropylene, LRP 375 BK) has been produced and cut to the required width. We have cut the radiator (4000 pieces) to the appropriated length. Cleaning (CH 2 Cl 2 ) of the radiator has been done at the Institute for Organic Chemistry of the RWTH Aachen. after cleaning the material fullfills the NASA outgasing limit of: < 1.2 10-12 g/s/cm 2 35

TRD Upper TOF Combined Thermal Control TOF Power @ TRD Power @ 20 Watt TOF & TRD connected to the same M-Structure Contract has been placed with OHB & CGS 36

Radiative link between the PCB s (UFE boards) and the radiator: 37

First results from the TRD thermal model: 38

TRD FE-electronics: 20 Watt for 5248 channels => multiplexed pulsheight only +1600 V 39

FE-electronic: Space Qualification Vibration test up to 6.8 g (90 s), thermo vaccum test (-30 C, +60 C) 40

IEKP Karlsruhe, Prof. Dr. W. de Boer DAQ with 2x/3x redundancy UDR for data reduction (1Mbyte/s limit) R&D: Karlsruhe, RWTH, MIT, Geneva, C.A.E.N. Production: CSIST (Taiwan) 41

TRD Test Beam Results I 20 layer TRD detector in the test beam at CERN in 2000 we have recorded 3 million events providing signals for protons, electrons, muons and pions at energies from 5-250 GeV Muon events have been used for an intercalibration of the individual straws to a relative accuracy of 2%. 42

TRD Testbeam Results Proton Contamination The TRD fulfills the specification of: proton contamination < 1% at an electron efficiency of 90% up to 260 GeV 43

Summary AMS offers a world wide unique discovery potential for new physics to build a modern particle physics detector which can be operated in space for 3 years is a technical challenge we are looking forward to the liftoff in Summer 2005 44

45

46

47

48

49

50

51