The Fine Triangle Intersection Problem for Minimum Kite Coverings

Similar documents
The Intersection Problem for Steiner Triple Systems. Bradley Fain

C 7 -DECOMPOSITIONS OF THE TENSOR PRODUCT OF COMPLETE GRAPHS

Steiner Triple Systems Intersecting in Pairwise Disjoint Blocks

The Doyen-Wilson theorem for 3-sun systems

Minimal perfect bicoverings of K v with block sizes two, three and four

Decomposing dense bipartite graphs into 4-cycles

Small Group Divisible Steiner Quadruple Systems

Generalizing Clatworthy Group Divisible Designs. Julie Rogers

On the existence of (K 1,3,λ)-frames of type g u

4-Cycle Group-Divisible Designs with Two Associate Classes

Pure Latin directed triple systems

Representing graphs in Steiner triple systems - II

into B multisets, or blocks, each of cardinality K (K V ), satisfying

Equiblocking Sets in K 2,2 -Designs and in K 3,3 -Designs

The embedding problem for partial Steiner triple systems

Blocking Sets in Designs with Block Size 4

Minimum degree conditions for the existence of fractional factors in planar graphs

Symmetric bowtie decompositions of the complete graph

Uniform Coloured Hypergraphs and Blocking Sets

Decomposing oriented graphs into transitive tournaments

Additional Constructions to Solve the Generalized Russian Cards Problem using Combinatorial Designs

Chih-Hung Yen and Hung-Lin Fu 1. INTRODUCTION

PALINDROMIC AND SŪDOKU QUASIGROUPS

Disjoint G-Designs and the Intersection Problem for Some Seven Edge Graphs. Daniel Hollis

Chapter 1. Latin Squares. 1.1 Latin Squares

DECOMPOSITION OF COMPLETE GRAPHS INTO TRIANGLES AND CLAWS. Chin-Mei Fu*, Yuan-Lung Lin, Shu-Wen Lo and Yu-Fong Hsu 1. INTRODUCTION

Traffic Grooming in Unidirectional Wavelength-Division Multiplexed Rings with Grooming Ratio C = 6

Monogamous decompositions of complete bipartite graphs, symmetric H -squares, and self-orthogonal I-factorizations

Some V(12,t) vectors and designs from difference and quasi-difference matrices

Orthogonal arrays of strength three from regular 3-wise balanced designs

On a 3-Uniform Path-Hypergraph on 5 Vertices

List Decomposition of Graphs

Factors in Graphs With Multiple Degree Constraints

On completing partial Latin squares with two filled rows and at least two filled columns

New infinite families of Candelabra Systems with block size 6 and stem size 2

Group Divisible Designs With Two Groups and Block Size Five With Fixed Block Configuration

On the Upper Chromatic Number of Uniform Hypergraphs

Planar and Affine Spaces

4 CONNECTED PROJECTIVE-PLANAR GRAPHS ARE HAMILTONIAN. Robin Thomas* Xingxing Yu**

Sidon sets and C 4 -saturated graphs

arxiv: v1 [math.co] 10 Nov 2016

ON THE NUMBERS OF CUT-VERTICES AND END-BLOCKS IN 4-REGULAR GRAPHS

DECOMPOSITIONS OF MULTIGRAPHS INTO PARTS WITH THE SAME SIZE

The Steiner Quadruple Systems of Order 16

Combinatorial Designs Man versus Machine

Week 15-16: Combinatorial Design

Characterization of quasi-symmetric designs with eigenvalues of their block graphs

A UNIVERSAL SEQUENCE OF CONTINUOUS FUNCTIONS

Watchman s walks of Steiner triple system block intersection graphs

Octagon Quadrangle Systems nesting 4-kite-designs having equi-indices

On uniquely 3-colorable plane graphs without prescribed adjacent faces 1

Embedding partial Steiner triple systems with few triples

Stanton Graph Decompositions

PARTITIONS OF FINITE VECTOR SPACES INTO SUBSPACES

Every SOMA(n 2, n) is Trojan

On the Amicability of Orthogonal Designs

On the Hamilton-Waterloo problem with triangle factors and C 3x -factors

On the Classification of Splitting (v, u c, ) BIBDs

On Some Three-Color Ramsey Numbers for Paths

A special class of nested Steiner triple systems*

Existence of doubly near resolvable (v, 4, 3)-BIBDs

Discrete Mathematics. The edge spectrum of the saturation number for small paths

On colourings of Steiner triple systems

On scores in tournaments and oriented graphs. on score sequences in oriented graphs. Also we give a new proof for Avery s

Primitive 2-factorizations of the complete graph

A note on balanced bipartitions

Representations of disjoint unions of complete graphs

Latin squares: Equivalents and equivalence

Department of Mathematics, Suzhou University Suzhou China (PRC) Abstract

Automorphism groups of Steiner triple systems

Transversal Designs in Classical Planes and Spaces. Aiden A. Bruen and Charles J. Colbourn. Computer Science. University of Vermont

INTRCDUCTION Let n be a natural integer and let K be a set of naturals. One of the most central problems of combinatorial theory is to determine those

Gallai s Conjecture For Graphs of Girth at Least Four. Peter Harding and Sean McGuinness Thompson Rivers University

Construction of optimal supersaturated designs by the packing method

Cycle Systems. Nidhi Sehgal

DISTANCE LABELINGS: A GENERALIZATION OF LANGFORD SEQUENCES. 1. Introduction

Skolem-type Difference Sets for Cycle Systems

c 2010 Society for Industrial and Applied Mathematics

Doyen-Wilson results for odd length cycle systems

PARTITIONING THE BLOCKS OF A STEINER TRIPLE SYSTEM INTO PARTIAL PARALLEL CLASSES


Mathematical Department, University of Bayreuth, D Bayreuth

There exists no Steiner system S(4, 5, 17)

Peter J. Dukes. 22 August, 2012

and critical partial Latin squares.

Vertex-Coloring Edge-Weighting of Bipartite Graphs with Two Edge Weights

Resolving Triple Systems into Regular Configurations

On the Schur Complement of Diagonally Dominant Matrices

Ramsey Unsaturated and Saturated Graphs

Bulletin of the Iranian Mathematical Society

Eves Equihoop, The Card Game SET, and Abstract SET

Square 2-designs/1. 1 Definition

Decompositions of graphs into cycles with chords

Minimizing the Laplacian eigenvalues for trees with given domination number

arxiv: v1 [math.co] 13 Sep 2018

Generalized covering designs and clique coverings

Building Graphs from Colored Trees

An exact Turán result for tripartite 3-graphs

arxiv: v1 [math.co] 28 Oct 2016

The existence of designs - after Peter Keevash

Transcription:

42Æ 5 Vol.42, No.5 2013 10 ADVANCES IN MATHEMATICS Oct., 2013 The Fine Triangle Intersection Problem for Minimum Kite Coverings ZHANG Guizhi 1,2, CHANG Yanxun 1,, FENG Tao 1 (1. Institute of Mathematics, Beijing Jiaotong University, Beijing, 100044, P. R. China; 2. School of Mathematical Sciences, Hulunbuir College, Hulunbuir, Inner Mongolia, 021008, P. R. China) Abstract: In this article the fine triangle intersection problem for a pair of minimum kite coverings is investigated. Let Fin(v) = {(s,t) : a pair of minimum kite coverings of order v intersectinginsblocks ands+ttriangles}. Let Adm(v) = {(s,t) : s+t b v,s,tare nonnegative integers} and b v = v(v 1). It is established that Fin(v) = Adm(v)\{(b 8 v 1,0),(b v 1,1)} for any integer v 0,1(mod 8) and v 8; Fin(v) = Adm(v) for any integer v 2,3,,7(mod 8) and v 4. Key words: kite covering; triangle intersection; fine triangle intersection MR(2000) Subject Classification: 05B30 / CLC number: O157.2 Document code: A Article ID: 1000-0917(2013)05-0676-15 0 Introduction The intersection problem was first introduced by Kramer and Mesner [22]. They asked that for which values of s it is possible to find two Steiner systems S(t,k,v) intersecting in s blocks, where both objects must be based on the same element set. This initial work was later extended to cover many other combinatorial structures, such as Latin squares (see [1 2, 13, 17 18, 23]) and G-designs. This paper is closely related to the intersection problem for G-designs. Let K v be the complete graph with v vertices and λk v denote the graph K v with each of its edges replicated λ times. Given a family G of graphs each of which is simple and connected, a λ-fold G-design of order v, denoted by a (λk v,g)-design, is a pair (X,B) where X is the vertex set of K v and B is a collection of subgraphs (called blocks) of λk v, such that each block is isomorphic to a graph in G, and each edge of λk v belongs to exactly λ blocks of B. If in the definition of G-designs we replace the term exactly with at most (or at least ), we have a (λk v,g)-packing (or covering). When λ = 1, a (K v,g)-packing (or covering) is called a G-packing (or covering) of order v. When G contains a single graph G, i.e., G = {G}, a (λk v,{g})-design (packing or covering) is simply written as a (λk v,g)-design (packing or covering). If G is the complete graph K k, a (K v,k k )-design is called a Steiner system S(2,k,v). Two (K v,g)-packings (or coverings) (X,B 1 ) and (X,B 2 ) are said to intersect in s blocks provided B 1 B 2 = s. If s = 0, (X,B 1 ) and (X,B 2 ) are said to be disjoint. The intersection problem for (K v,g)-packings (or coverings) is the determination of all integral pairs (v,s) such that there exists a pair of (K v,g)-packings (or coverings) intersecting in s blocks. Received date: 2012-05-03. Revised date: 2012-12-30. Foundation item: Supported by the Fundamental Research Funds for the Central Universities (No. 2011JBZ012, No. 2011JBM298) and NSFC (No. 61071221, No. 10901016). E-mail: yxchang@bjtu.edu.cn

5,, : The Fine Triangle Intersection Problem for Minimum Kite Coverings 677 A complete solution to the intersection problem for S(2,3,v)s was made by Lindner and Rosa [24]. Colbournetal. [15] solvedtheintersectionproblemforapairofsteinersystems(2,4,v)s, leaving a handful of possible exceptions when v = 25,28 and 37. Gionfriddo and Lindner [19] first examined the intersection problem for S(3, 4, v)s; this problem was finally dealt with by Hartman and Yehudai [20], apart from two undecided values of v = 14 and 26. Billington and Kreher [5] discussed the intersection problem for all connected simple graphs G with at most four vertices or at most four edges. Billington et al. [4] completely determined the intersection numbers of K 4 e designs. For more information on intersection problems, the interested reader may also refer to [3, 12, 14, 21, 26 28]. Let B be a simple graph. Denote by T(B) the set of all triangles of the graph B. For example, if B is the graph with vertices a, b, c, d and edges ab, ac, bc, cd (such a graph is called a kite), then T(B) = {{a,b,c}}. Two (K v,g)-packings (or coverings) (X,B 1 ) and (X,B 2 ) are said to intersect in t triangles provided that T(B 1 ) T(B 2 ) = t, where T(B i ) = B B i T(B), i = 1, 2. The triangle intersection problem for (K v,g)-packings (or coverings) is the determination of all integer pairs (v,t) such that there exists a pair of (K v,g)-packings (or coverings) intersecting in t triangles. Lindner and Yazici [25] first consideredthe triangleintersectionproblem, and gavea complete solution to the triangle intersection problem for kite systems. Billington et al. [6] solved the triangle intersection problem for (K 4 e)-designs. Chang et al. [7 8] investigated the triangle intersection problems for S(2, 4, v)s. Every block B in a (K v,g)-packing (or covering) contributes T(B) = T(G) triangles. If two (K v,g)-packings (or coverings) (X,B 1 ) and (X,B 2 ) intersect in s blocks, then they intersect in at least s T(G) triangles. It is natural to ask how about the triangle intersection problem for a pair of (K v,g)-packings (or coverings) intersecting in s blocks. Thus the fine triangle intersection problem was introduced in [10]. Define Fin G (v) = {(s,t) : a pair of (K v,g)- packings (or coverings) intersecting in s blocks and t + s T(G) triangles}. The fine triangle intersection problem for (K v,g)-packings (or coverings) is to determine Fin G (v). Chang et al. has completely solved the fine triangle intersection problems for kite systems [10] and (K 4 e)- designs [9 11]. Recently, the authors investigated the fine triangle intersection problem for maximum kite packings [29]. In this paper we shall examine the fine triangle intersection problem for minimum kite coverings. A (K v,g)-covering (or packing) (X,B) is called minimum (or maximum) if there does not exist any (K v,g)-covering (or packing) (X,B ) with B < B (or B < B ). When G is a kite, a minimum (K v,g)-covering (or maximum (K v,g)-packing) is said to be a minimum kite covering (or maximum kite packing). In a kite covering, every block B contributes only one triangle, so we define Fin(v) = {(s,t) : a pair of minimum kite coverings of order v intersecting in s blocks and t+s triangles}. The fine triangle intersection problem for minimum kite coverings is to determine Fin(v). It is easy to see that the number of blocks in a minimum kite covering is v(v 1) 8 at least. Let Adm(v) = {(s,t) : s+t b v,s,t are nonnegative integers}, where b v = v(v 1) 8. The following result is straightforward. Lemma 0.1 Fin(v) Adm(v) for any integer v 2,3,,7(mod 8) and v 4.

678 «42Æ As the main result of the present paper, we are to prove the following theorem. Theorem 0.2 Fin(v) = Adm(v)\{(b v 1,0),(b v 1,1)} for any integer v 0,1(mod 8) and v 8; Fin(v) = Adm(v) for any integer v 2,3,,7(mod 8) and v 4. 1 Small Orders In this section, we shall examine Fin(v) for 4 v 23 and v 8,9,16,17 by ad hoc methods. In the following we always denote the copy of the kite with vertices a,b,c,d and edges ab,ac,bc,cd by [a,b,c d]. Lemma 1.1 Fin(4) = Adm(4). Proof Take the vertex set X = {0,1,2,3}. Let B = {[0,1,3 2],[2,1,0 3]}. Then (X,B) is a minimum kite covering of order 4. Consider the following permutations on X. π 0,0 = (0 3)(1 2), π 0,1 = (0 2 3 1), π 0,2 = (2 3), π 1,0 = (1 2), π 1,1 = (0 1), π 2,0 = (1). We have that for each (s,t) Adm(4), π s,t B B = s and T(π s,t B \B) T(B\π s,t B) = t. Lemma 1.2 Fin(5) = Adm(5). Proof Take the vertex set X = {0,1,2,3,4}. Let B = {[0,4,3 1],[0,1,2 3],[4,2,1 3]}. Then (X,B) is a minimum kite covering of order 5. Consider the following permutations on X. π 0,0 = (0 4)(2 3), π 0,1 = (0 1)(3 4), π 0,2 = (0 4 3)(1 2), π 0,3 = (1 2), π 1,0 = (0 4 1 2), π 1,1 = (0 1 3 2 4), π 1,2 = (0 4), π 2,0 = (0 2)(1 3), π 2,1 = (0 4)(1 2), π 3,0 = (1). We have that for each (s,t) Adm(5), π s,t B B = s and T(π s,t B \B) T(B\π s,t B) = t. Lemma 1.3 Fin(6) = Adm(6). Proof Take the vertex set X = {0,1,2,3,4,5}. Let B 1 = {[1,2,3 0],[3,4,5 2],[5,0,1 4],[0,2,4 1]}, B 2 = (B 1 \ {[5,0,1 4],[0,2,4 1]}) {[1,5,0 2],[0,1,4 2]}, and B 3 = (B 2 \{[0,1,4 2]}) {[1,2,4 0]}. Then (X,B i ) is a minimum kite coveringof order 6, i = 1,2,3. Consider the following permutations on X. π 0,0 = (0 3 1 4 2 5), π 0,1 = (0 4)(2 3), π 0,2 = (0 1 4)(2 5), π 0,3 = (0 2 5)(1 3 4), π 0,4 = (0 3)(2 5), π 1,0 = (0 3 5)(1 4), π 1,1 = (3 5), π 1,2 = (0 4 2)(1 5 3), π 1,3 = (0 4 5)(1 2 3), π 2,0 = (3 4), π 2,1 = (0 5 4)(1 3), π 2,2 = (0 2 3 5)(1 4), π 3,0 = (1), π 3,1 = (0 4 2)(1 5 3), π 4,0 = (1). Let M 1 = Adm(6)\{(0,3),(1,0),(1,2),(2,0),(2,1),(3,0)} and M 2 = {(0,3),(1,0),(1,2),(2,0), (2,1)}. We have that for each (s,t) M i, i = 1,2, π s,t B i B i = s and T(π s,t B i \B i ) T(B i \ π s,t B i ) = t. For (s,t) = (3,0), π s,t B 3 B 2 = s and T(π s,t B 3 \B 2 ) T(B 2 \π s,t B 3 ) = t. Lemma 1.4 Fin(7) = Adm(7). Proof TakethevertexsetX = {0,1,2,3,4,5,6}. LetB 1 = {[0,2,1 6],[2,4,3 1],[1,4,5 0],[2,6,5 3],[6,4,0 3],[2,6,3 5]}, B 2 = (B 1 \ {[2,6,3 5]}) {[3,6,4 1]}, B 3 = (B 1 \ {[1,4,5 0],[2,6,5 3]}) {[1,4,5 3],[2,6,5 0]}, B 4 = (B 1 \ {[6,4,0 3],[2,6,3 5]}) {[6,3,0 4],[6,5,4 3]}, and B 5 = (B 1 \{[2,4,3 1],[2,6,3 5]}) {[2,4,3 6],[1,3,4 5]}. Let B 6 = {[2,0,1 3],[2,4,3 0],[1,4,5 3],[2,6,5 0],[4,0,6 1],[2,6,3 1]}, and B 7 = (B 6 \{[2,6,3 1]}) {[2,6,3 5]}, Then (X,B i ) is a minimum kite covering of order 7 for each i = 1,2,,7. Consider the following permutations on X.

5,, : The Fine Triangle Intersection Problem for Minimum Kite Coverings 679 π 0,0 = (0 5)(1 3 4)(2 6), π 0,1 = (0 4)(2 6 3), π 0,2 = (0 2 3 4 1 6), π 0,3 = (0 1 2)(3 4 6), π 0,4 = (3 5)(4 6), π 0,5 = (1 6)(2 4), π 1,0 = (0 2 4 1)(3 5 6), π 1,1 = (0 2 6 5 1 3 4), π 1,2 = (0 6 5 1)(2 3 4), π 1,3 = (0 2 4)(1 3 6), π 1,4 = (0 6 5 1)(2 4), π 2,0 = (0 1)(2 6)(3 5), π 2,1 = (0 6 3 5 1)(2 4), π 2,2 = (0 1 4 2 5 3 6), π 2,3 = (0 6)(1 5), π 3,0 = (1 4), π 3,1 = (3 5), π 3,2 = (0 5)(2 4), π 3,3 = (0 5)(2 4). Let N = {(0,6),(1,5),(2,4),(4,0),(4,1),(4,2),(5,0),(5,1),(6,0)}, and take the identity permutation π s,t = (1) if (s,t) N. For each i,j,s,t in Table 1, B i π s,t B j = s and T(B i \π s,t B j ) T(π s,t B j \B i ) = t. Table 1 Fine triangle intersections for minimum kite coverings of order 7 i j (s, t) i j (s, t) 1 1 (0,0),,(0,5),(1,0),,(1,4), 1 2 (3,3),(5,0) (2,0),(2,1),(2,2),(3,0),(3,1),(3,2),(6,0) 1 3 (4,2) 1 4 (4, 0) 1 5 (4, 1) 1 6 (0,6),(2,3) 1 7 (1,5) 6 3 (2, 4) 6 7 (5, 1) Lemma 1.5 Fin(10) = Adm(10). Proof Take the vertex set X = {0,1,,9}. Let B 1 : [2,0,1 9], [4,7,0 5], [1,4,8 2], [1,7,5 8], [2,4,3 1], [7,8,6 5], [2,9,5 3], [9,0,8 3], [0,3,6 1], [6,9,4 5], [9,3,7 2], [2,6,3 1]; B 2 : [2,0,1 3], [4,0,7 2], [2,3,4 5], [6,4,9 1], [9,7,3 5], [1,7,5 0], [2,9,5 8], [0,3,6 5], [7,8,6 1], [1,4,8 3], [9,0,8 2], [2,6,3 0]. Take A i and A i for 3 i 14 as follows: i A i A i 3 [2,6,3 1] [2,6,4 1] 4 [2,6,3 1] [2,6,3 0] 5 [7,8,6 5] [2,9,5 3] [9,3,7 2] [9,2,7 8] [9,5,3 7] [2,5,6 7] [2,6,3 1] [6,8,1 0] 6 [2,9,5 3] [9,3,7 2] [9,3,5 2] [9,2,7 3] 7 [1,4,8 2] [9,0,8 3] [1,4,8 3] [9,0,8 2] 8 [1,4,8 2] [9,0,8 3] [2,6,3 1] [1,4,8 3] [9,0,8 2] [2,6,3 0] 9 [1,4,8 2] [9,0,8 3] [7,8,6 5] [1,4,8 3] [9,0,8 2] [7,8,6 1] [0,3,6 1] [0,3,6 5] 10 [1,4,8 2] [1,7,5 8] [7,8,6 5] [1,4,8 3] [1,7,5 3] [7,8,6 1] [2,9,5 3] [9,0,8 3] [0,3,6 1] [2,9,5 8] [9,0,8 2] [0,3,6 5] 11 [7,8,6 5] [2,6,3 1] [7,8,6 2] [5,6,4 1] 12 [1,4,8 2] [9,0,8 3] [2,6,3 1] [1,4,8 3] [9,0,8 2] [2,6,4 1] 13 [2,0,1 9] [2,4,3 1] [9,0,8 3] [2,0,1 3] [2,4,3 8] [8,0,9 1] [2,6,3 1] [2,6,4 1] 14 [2,0,1 9] [2,4,3 1] [9,0,8 3] [2,0,1 3] [2,4,3 8] [8,0,9 1] [2,9,5 3] [1,7,5 8] [2,6,3 1] [2,9,5 8] [1,7,5 3] [2,6,4 1] Let B i = (B 1 \ A i ) A i, 3 i 14. Then (X,B i) is a minimum kite covering of order 10 for each 1 i 14. Consider the following permutations on X. π 0,0 = (0 6 1 9)(2 8)(5 7), π 0,1 = (0 8 4)(2 9 6 7 3), π 0,2 = (0 7 1)(2 4)(3 5 9 6 8), π 0,3 = (0 5 4 1)(2 6 9 3), π 0,4 = (0 6 2 9 7 1 4 3 5), π 0,5 = (0 4 3 9)(2 8 7),

680 «42Æ π 0,6 = (0 8 7)(1 3)(2 5)(4 9 6), π 0,7 = (1 4 9 3 5)(6 7 8), π 0,8 = (0 9 7)(1 2)(3 4 8), π 0,9 = (0 7)(2 5)(3 8), π 0,10 = (0 9)(1 5)(3 4), π 1,0 = (0 3 2 4 6 7 9 1 5 8), π 1,1 = (0 9 7 5 4)(1 3)(2 8 6), π 1,2 = (0 3 8)(1 2 4 5 6), π 1,3 = (0 3 7 4 1 6 2 5 9), π 1,4 = (0 1 4 5 2 8 9)(3 6 7), π 1,5 = (0 7 3 8 2)(1 5)(4 9), π 1,6 = (0 8 9)(1 4 5 2)(3 6 7), π 1,7 = (0 4 9 7 6 3 2 1 8), π 1,8 = (0 6 7 9)(1 5 2)(3 8), π 1,9 = (0 9)(1 5)(3 4), π 1,10 = (0 9)(1 5)(3 4), π 2,0 = (0 5 6 7), π 2,1 = (0 7 9 4 3 6 5 2), π 2,2 = (0 4 1)(6 8), π 2,3 = (0 6 1 8 4)(2 7)(3 5), π 2,4 = (1 3 5)(4 9)(7 8), π 2,5 = (0 9 3 2 5 1 8 7 4 6), π 2,6 = (0 6 9 7)(1 2 5)(3 4), π 2,7 = (1 5), π 2,8 = (2 3), π 3,0 = (4 8 7 5), π 3,1 = (2 4 6), π 3,2 = (0 8 1), π 3,3 = (0 3)(7 8), π 3,4 = (4 9)(7 8), π 3,5 = (0 9)(6 7), π 3,6 = (0 2)(3 6)(4 7)(5 8), π 3,7 = (0 9)(1 5)(3 4), π 3,8 = (0 9)(1 5)(3 4), π 4,0 = (4 6 7), π 4,1 = (4 6)(5 8), π 4,2 = (0 5), π 4,3 = (0 3 8 9 7 6 4)(1 2), π 4,4 = (5 9), π 4,5 = (0 8)(4 6), π 4,6 = (0 9)(1 5)(3 4), π 4,7 = (0 9)(1 5)(3 4), π 5,0 = (1 6), π 5,1 = (2 4), π 5,2 = (1 4), π 5,3 = (5 9), π 5,4 = (5 7), π 5,5 = (5 7), π 6,0 = (0 9), π 6,1 = (8 9), π 6,2 = (5 7), π 6,3 = (2 3), π 6,4 = (2 3), π 7,0 = (7 8), π 7,1 = (4 6), π 7,2 = (5 7), π 7,3 = (5 7), π 8,1 = (2 3), π 8,2 = (5 7). Let S 1 = {(x,y) : x+y 12,x {8,9,10,11},y is a nonnegative integer}\{(8,1),(8,2)}, and S 2 = {(0,11),(0,12),(1,11),(2,9),(2,10),(3,9),(4,8),(5,6),(5,7),(6,5),(6,6),(7,4),(7,5), (12,0)}. For each (s,t) S 1 S 2, take the identity permutation π s,t = (1). For each i,j,s,t in Table 2, B i π s,t B j = s and T(B i \π s,t B j ) T(π s,t B j \B i ) = t. Table 2 Fine triangle intersections for minimum kite coverings of order 10 i j (s, t) i j (s, t) i j (s, t) 1 1 (0,0),,(0,10),(1,0),,(1,8), 1 2 (0,12), (3,7) 1 3 (11,0) (2,0),, (2,7), (3,0),, (3,6), 1 4 (11,1) 1 5 (8,0), (5,4) (4,0),, (4,5), (5,1), (5,2), 1 6 (10,0), (6,4), (8,2) 1 7 (10,2) (6,0), (6,2), (7,0), (7,1), (12,0) 1 9 (8,4) 1 10 (6,6) 1 11 (10, 1) 1 12 (9, 2) 1 13 (8, 3) 1 14 (6,5) 2 2 (1,9), (5,0), (5,3), (6,1) 2 3 (0,11), (3,8) 2 4 (1, 11) 2 6 (2, 8) 2 7 (2, 10), (4, 6) 2 8 (3, 9) 2 9 (4, 8) 2 10 (5, 7) 2 12 (2,9), (4,7) 3 6 (9,0), (6,3), (7,2) 3 9 (1,10), (7,4) 3 10 (5, 6) 4 7 (9, 3) 4 9 (7, 5) 6 4 (9, 1), (7, 3) 6 8 (5, 5) 6 12 (8, 1) For counting Fin(v) for 11 v 23 and v 16,17, we may search for a large number of instances of minimum kite coverings of order v as we have done in Lemma 1.5. However, to reduce the computation, when v = 19, 20, we shall first determine the fine triangle intersection numbers of a pair of minimum (K v \ K 9,G)-coverings with the same vertex set and the same subgraph K 9 removed, where G is a kite. When v = 22, in [29], we have determined the fine triangle intersection numbers of a pair of kite-gdds of type 8 2 6 1 with the same group set. When v 19,20,22, in [29], we have determined the fine triangle intersection numbers of a pair of (K v \K hv,g)-designs with the same vertex set and the same subgraph K hv removed, where G is a kite and 6, if v = 11,14, 5, if v = 12,13, h v = 7, if v = 15, 10, if v = 18,23, 12, if v = 21.

5,, : The Fine Triangle Intersection Problem for Minimum Kite Coverings 681 For later use these results are listed in Appendix. Lemma 1.6 Let M 19 = ({(s,t) : s+t 34,s {0,8},tis a nonnegativeinteger}\{(0,29), (0,30),, (0,33),(8,21),,(8,26)}) {(5,29),(10,24),(15,0),(15,19),(16,1),,(16,5),(16, 11),(17,0),(19,15),(21,0),(21,5),(22,6),(24,10),(26,0),(29,5),(32,2),(33,0),(33,1),(34,0)}. Let G be a kite and (s,t) M 19. Then there is a pair of minimum (K 19 \ K 9,G)-coverings with the same vertex set and the same subgraph K 9 removed, which intersect in s blocks and t+s triangles. Proof Take the vertex set X = {0,1,,18}. Let A 1 : [11,16,4 18], [14,9,4 15], [15,9,5 17], [16,10,5 18], [4,10,13 8], [5,11,13 17], [5,12,14 18], [12,4,17 3]; A 2 : [11,16,5 18], [14,9,5 15], [15,9,4 17], [16,10,4 18], [5,10,13 8], [4,11,13 17], [4,12,14 18], [12,5,17 3]; A 3 : [15,10,6 17], [16,9,6 18], [0,12,11 7], [2,10,11 8], [1,9,11 17], [14,6,11 18], [1,10,12 8], [2,9,12 7], [3,9,13 7], [6,12,13 18], [0,13,14 7], [3,10,14 8], [1,13,15 7], [2,14,15 8], [3,11,15 17], [0,15,16 7], [1,14,16 8], [2,13,16 17], [3,12,16 18], [7,9,17 1], [8,10,17 2], [0,18,17 14], [15,12,18 1], [7,10,18 2], [8,9,18 3], [0,9,10 1]; A 4 : [11,16,4 15], [14,9,4 18], [15,9,5 18], [16,10,5 17], [15,10,6 18], [16,9,6 17], [0,12,11 8], [2,10,11 7], [1,9,11 18], [14,6,11 17], [1,10,12 7], [2,9,12 8], [3,9,13 8], [4,10,13 7], [5,11,13 18], [6,12,13 17], [0,13,14 18], [3,10,14 7], [5,12,14 8], [1,13,15 17], [2,14,15 7], [3,11,15 8], [0,15,16 8], [1,14,16 7], [2,13,16 18], [3,12,16 17], [7,9,17 2], [8,10,17 1], [12,4,17 14], [0,18,17 3], [15,12,18 3], [7,10,18 1], [8,9,18 2], [0,9,10 2]. Let B 1 = A 1 A 3, B 2 = (B 1 \{[11,16,4 18],[14,9,4 15]}) {[11,16,4 15],[14,9,4 18]}, B 3 = (B 2 \{[15,9,5 17],[16,10,5 18],[0,9,10 1]}) {[15,9,5 18],[16,10,5 17],[0,9,10 2]}, B 4 = (B 3 \{[15,10,6 17],[16,9,6 18],[0,13,14 7],[3,10,14 8],[5,12,14 18]}) {[15,10,6 18],[16,9,6 17],[0,13,14 18],[3,10,14 7],[5,12,14 8]}, and B 5 = (B 4 \ {[5,11,13 17],[6,12,13 18],[1,13,15 7],[2,14,15 8],[3,11,15 17]}) {[5,11,13 18],[6,12,13 17],[1,13,15 17],[2,14,15 7],[3,11,15 8]}. Let B 6 = A 2 A 3, B 7 = A 4, B 8 = (B 1 \ {[0,9,10 1]}) {[0,9,10 2]} and B 9 = (B 1 \{[1,10,12 8]}) {[8,10,12 1]}. Then (X,B i ) is a minimum (K 19 \ K 9,G)-covering for each 1 i 9, where the removed subgraph K 9 is constructed on Y = {0,1,,8}. Now take the identity permutation π s,t = (1) if (s,t) {(0,26),(0,34),(5,29),(10,24),(15,19),(19,15),(24,10),(26,0),(29,5),(32,2),(33,0),(33,1),(34, 0)}. And consider the following permutations on X. π 0,0 = (9 13 11 14 16 17 18 15 12), π 0,1 = (9 16 13 11 15 10)(14 17), π 0,2 = (9 15 10 18)(11 17)(14 16), π 0,3 = (10 11 18 15 12 17 14 13), π 0,4 = (10 17 11)(12 18)(13 16 14), π 0,5 = (9 13)(10 12)(15 18)(16 17), π 0,6 = (9 16 10)(11 13)(12 14 18 15 17), π 0,7 = (9 10 11 12 17 18 14 13 16 15), π 0,8 = (9 16 13 17 12)(10 15 14 18 11), π 0,9 = (9 10 17)(11 15 16 12)(13 14), π 0,10 = (9 11 16 17 15 12 14)(10 13), π 0,11 = (9 17 11 10)(12 18)(13 16)(14 15), π 0,12 = (9 13)(10 18 12 16 14)(11 15 17), π 0,13 = (9 10 11 12)(13 14 15 16), π 0,14 = (9 18 10 11 12)(13 16)(14 15), π 0,15 = (9 17 15 16 18 10)(11 12)(13 14),

682 «42Æ π 0,16 = (9 15)(10 16)(11 13 17 12 14 18), π 0,17 = (9 14 15 12)(10 11)(13 16), π 0,18 = (9 17)(10 16)(11 13)(12 14)(15 18), π 0,19 = (9 12)(10 11)(13 18 16)(14 15), π 0,20 = (9 10)(11 12 18)(13 14)(15 16), π 0,21 = (9 12)(10 11)(13 16)(14 15 17), π 0,22 = (3 6)(4 5)(7 8)(9 12)(10 11)(15 17 18), π 0,23 = (3 8 7 6)(4 5)(9 12)(10 11)(17 18), π 0,24 = (0 2 8 7)(3 5)(9 11)(14 16)(17 18), π 0,25 = (0 2)(3 5)(4 7 8)(9 11)(14 16)(17 18), π 0,27 = (3 6)(4 5)(9 12)(10 11), π 0,28 = (2 8), π 8,0 = (0 6 4 5)(15 16 18), π 8,1 = (0 2 7 4 8)(1 3), π 8,2 = (0 7)(2 5 4)(15 17), π 8,3 = (0 6 3 2 4 8), π 8,4 = (1 2 3 4 6 8), π 8,5 = (0 7 5)(2 3 8), π 8,6 = (0 4)(2 5 7)(9 13), π 8,7 = (0 4 6 5 2)(14 16), π 8,8 = (2 6 5 8)(15 16), π 8,9 = (1 4 7 5 6 2)(11 12)(15 16)(17 18), π 8,10 = (0 1 4)(10 11)(14 15), π 8,11 = (1 2)(5 7)(11 12)(15 16)(17 18), π 8,12 = (0 1 2 7 8)(5 6)(11 12)(15 16)(17 18), π 8,13 = (3 7)(5 6)(9 10)(11 12), π 8,14 = (0 5)(1 2)(3 4)(7 8)(9 10)(15 16), π 8,15 = (3 8)(5 6)(9 10)(11 12)(17 18), π 8,16 = (0 7 8)(1 2)(5 6)(11 12)(15 16)(17 18), π 8,17 = (1 8 7)(3 4)(5 6)(9 10)(11 12), π 8,18 = (3 4 7 8)(5 6)(9 10)(11 12), π 8,19 = (1 2)(3 4 5)(7 8)(9 10)(15 16)(17 18), π 8,20 = (0 1)(3 5 6 4)(7 8)(9 11 12 10)(14 15), π 15,0 = (0 5)(11 13), π 16,1 = (0 5 4 3), π 16,2 = (2 5)(4 6), π 16,3 = (0 5 1 7), π 16,4 = (2 8 4 5), π 16,5 = (0 6)(11 13), π 16,11 = (1 2)(5 6)(11 12)(15 16)(17 18), π 17,0 = (0 5 4 6), π 21,0 = (0 6 5), π 21,5 = (1 2)(4 5), π 22,6 = (2 7). We have that for each row in Table 3, π s,t Y = Y, B i π s,t B j = s and T(B i \π s,t B j ) T(π s,t B j \ B i ) = t. Table 3 Fine triangle intersections for minimum (K 19 \ K 9,G)-coverings i j (s, t) i j (s, t) i j (s, t) 1 1 M 19 \{(0,26), 1 2 (32,2) 1 3 (29,5) (0, 27),(0, 28),(0, 34),(5, 29), 1 4 (24, 10) 1 5 (19, 15) (8,15),(8,19),(10,24),(15,19), 1 6 (26,0),(8,19),(21,5) 1 7 (0,27),(0,28),(0,34),(8,15) (19, 15),(21, 5),(24, 10),(26, 0), 1 8 (33, 1) 1 9 (33, 0) (29,5),(32,2),(33,0),(33,1)} 3 7 (5,29) 4 7 (10,24) 5 7 (15, 19) 6 7 (0, 26) Lemma 1.7 LetM 20 = ({(s,t) : s+t 39,s {0,39},tisanonnegativeinteger}\{(0,31), (0,35),(0,36),(0,37)}) {(7,32),(8,0),,(8,16),(8,21),(8,26),(13,26),(14,13),(14,20),(16,0),,(16,8),(18,12),(20,14),(21,8),(19,20),(20,19),(24,0),(24,3),(24,8),(26,6),(26,8),(26,13), (29,0),(32,7),(34,0),(38,0),(38,1)}. Let G be a kite and (s,t) M 20. Then there is a pair of minimum (K 20 \K 9,G)-coverings with the same vertex set and the same subgraph K 9 removed, which intersect in s blocks and t+s triangles. Proof Take the vertex set X = {0,1,,19}. Let B 1 : [2,13,9 6], [5,16,9 17], [1,13,10 7], [4,16,10 19], [0,9,11 6], [3,13,11 19], [0,10,12 6], [1,9,12 7], [2,16,12 19], [5,15,12 18], [1,11,14 5], [2,10,14 6], [3,9,14 7], [4,12,14 17], [0,13,15 19], [2,11,15 6], [3,10,15 7], [4,9,15 18], [0,14,16 7], [13,6,16 11], [1,15,17 2], [3,12,17 7], [4,11,17 13], [5,10,17 6], [1,16,18 0], [4,13,18 2], [5,11,18 7], [6,10,18 3], [0,17,19 1], [3,16,19 2], [5,13,19 4], [7,9,19 6], [18,14,19 8], [7,13,11 2], [8,9,18 17], [8,11,10 9], [8,13,12 11], [8,15,14 13], [8,17,16 15];

5,, : The Fine Triangle Intersection Problem for Minimum Kite Coverings 683 B 2 : [2,13,9 17], [5,16,9 6], [1,13,10 19], [4,16,10 9], [0,9,11 19], [3,13,11 6], [0,10,12 7], [1,9,12 6], [2,16,12 18], [5,15,12 11], [1,11,14 6], [2,10,14 5], [3,9,14 17], [4,12,14 13], [0,13,15 6], [2,11,15 19], [3,10,15 18], [4,9,15 7], [0,14,16 11], [13,6,16 15], [1,15,17 7], [3,12,17 2], [4,11,17 6], [5,10,17 13], [1,16,18 2], [4,13,18 0], [5,11,18 3], [6,10,18 17], [0,17,19 2], [3,16,19 1], [5,13,19 8], [7,9,19 4], [18,14,19 6], [7,13,11 3], [8,9,18 7], [8,11,10 7], [8,13,12 19], [8,15,14 7], [8,17,16 7]. Take A j and A j for 3 j 12 as follows: (l j,j) A j A j (1,3) [7,13,11 2] [1,13,7 11] (1,4) [7,13,11 2] [7,13,11 3] (1,5) [1,16,18 0] [4,13,18 2] [1,16,18 2] [4,13,18 0] [0,17,19 1] [3,16,19 2] [0,17,19 2] [3,16,19 1] [5,13,19 4] [7,9,19 6] [5,13,19 8] [7,9,19 4] [18,14,19 8] [18,14,19 6] (1,8) [1,13,10 7] [0,9,11 6] [0,13,10 7] [1,9,11 6] [0,10,12 6] [1,9,12 7] [1,10,12 6] [0,9,12 7] [1,11,14 5] [0,13,15 19] [0,11,14 5] [1,13,15 19] [0,14,16 7] [1,15,17 2] [1,14,16 7] [0,15,17 2] [1,16,18 0] [0,17,19 1] [0,16,18 1] [1,17,19 0] (1,10) [8,9,18 17] [8,11,10 9] [8,17,18 9] [8,9,10 11] [8,13,12 11] [8,15,14 13] [8,11,12 13] [8,13,14 15] [8,17,16 15] [8,15,16 17] (5,6) [3,10,15 7] [4,9,15 18] [3,10,15 18] [4,9,15 7] [1,15,17 2] [3,12,17 7] [1,15,17 7] [3,12,17 2] [4,11,17 13] [5,10,17 6] [4,11,17 6] [5,10,17 13] (6,7) [2,13,9 6] [5,16,9 17] [2,13,9 17] [5,16,9 6] [0,9,11 6] [3,13,11 19] [0,9,11 19] [3,13,11 6] [0,13,15 19] [2,11,15 6] [0,13,15 6] [2,11,15 19] (8,9) [2,13,9 6] [5,16,9 17] [2,13,9 17] [5,16,9 6] [2,16,12 19] [5,15,12 18] [2,16,12 18] [5,15,12 11] [8,13,12 11] [1,13,15 19] [8,13,12 19] [1,13,15 6] [2,11,15 6] [3,10,15 7] [2,11,15 19] [3,10,15 18] [4,9,15 18] [4,9,15 7] (10,11) [0,13,15 19] [2,11,15 6] [0,13,15 6] [2,11,15 19] [3,10,15 7] [4,9,15 18] [3,10,15 18] [4,9,15 7] [1,15,17 2] [3,12,17 7] [1,15,17 7] [3,12,17 2] [4,11,17 13] [5,10,17 6] [4,11,17 6] [5,10,17 13] (11,12) [0,17,19 1] [3,16,19 2] [0,17,19 2] [3,16,19 1] [5,13,19 4] [7,9,19 6] [5,13,19 8] [7,9,19 4] [18,14,19 8] [7,13,11 2] [18,14,19 6] [7,13,11 3] Let B j = (B lj \A j ) A j, where 3 j 12 and (l j,j) runs over each value in the first column of the above table. It is readily checked that (X,B i ) is a minimum (K 20 \K 9,G)-covering for each 1 i 12, where the removed subgraph K 9 is constructed on Y = {0,1,,8}. Now assume that

684 «42Æ π 0,0 = (9 14 13 12 10 11)(16 18 17 19), π 0,1 = (9 12 10 14 13)(15 16 18 19), π 0,2 = (9 10 14 12 11 13)(15 17)(18 19), π 0,3 = (9 11)(10 12 14 13)(15 19)(17 18), π 0,4 = (9 12 13 11 10 14)(15 17 16), π 0,5 = (9 12 14 10)(11 13)(15 17 16 19 18), π 0,6 = (9 12 13 14 10 11)(15 19)(16 17 18), π 0,7 = (9 12 13)(10 11 14)(15 19 16 17 18), π 0,8 = (9 11)(10 14)(12 13)(15 17 19)(16 18), π 0,9 = (9 10 11 13 14 12)(15 16 19 17 18), π 0,10 = (9 11)(10 13)(12 14)(15 17 19 16 18), π 0,11 = (9 12)(10 11)(13 14)(15 16)(17 19), π 0,12 = (9 11 10)(12 14 13)(15 18 17 16), π 0,13 = (9 11)(10 13)(15 17)(16 18), π 0,14 = (9 11)(10 13)(12 14)(15 19 17)(16 18), π 0,15 = (9 11)(10 13)(12 14)(16 18)(17 19), π 0,16 = (1 7 8 6)(17 18 19), π 0,17 = (4 7 8)(5 6)(16 19)(17 18), π 0,18 = (4 5)(6 7 8)(16 17)(18 19), π 0,19 = (5 7 8 6)(17 19 18), π 0,20 = (4 5)(10 12), π 0,21 = (2 4)(9 12), π 0,22 = (0 6 1 3), π 0,23 = (0 2 6 4), π 0,24 = (1 5 4), π 0,25 = (12 13), π 0,26 = (9 14), π 0,27 = (0 1 6), π 0,28 = (2 5 6), π 0,29 = (1 4), π 0,30 = (2 4), π 0,32 = (1 6), π 0,33 = (2 6), π 8,0 = (0 4 1 5 3)(9 10), π 8,1 = (1 8 4)(3 5)(16 18), π 8,2 = (0 2)(1 4 3)(12 14 13), π 8,3 = (1 2 7)(3 4)(10 14), π 8,4 = (0 2)(1 7 3)(4 6), π 8,5 = (0 3)(1 2 6)(10 13), π 8,6 = (1 5 4)(3 8)(17 19), π 8,7 = (0 6)(3 5)(17 18), π 8,8 = (2 3 5 7 6)(12 13), π 8,9 = (0 4)(1 7 8)(10 14), π 8,10 = (5 6)(10 12)(16 19), π 8,11 = (3 7 8)(15 17 19), π 8,12 = (1 6 7)(16 18), π 8,13 = (3 6 7)(4 8), π 8,14 = (2 8 7)(18 19), π 8,15 = (5 6)(16 19)(17 18), π 8,16 = (4 7 6)(16 18), π 14,13 = (2 4)(10 12)(15 17), π 16,0 = (9 10 14), π 16,1 = (0 7 1 3 5), π 16,2 = (0 1)(16 18), π 16,3 = (1 4)(12 13), π 16,4 = (1 2 4 5), π 16,5 = (2 5)(11 13), π 16,6 = (1 7)(12 14), π 16,7 = (2 6)(3 5), π 16,8 = (2 4 3 7), π 18,12 = (5 6 7), π 24,0 = (15 16), π 24,3 = (0 1)(16 18), π 24,8 = (4 7), π 26,6 = (4 7). Take π s,t = (1) if (s,t) {(0,34),(0,38),(0,39),(7,32),(8,21),(8,26),(13,26),(14,20),(20,14), (21,8),(19,20),(20,19),(26,8),(26,13),(29,0),(32,7),(34,0),(38,0),(38,1),(39,0)}. It is readily checked that for each row in Table 4, π s,t Y = Y, B i π s,t B j = s and T(B i \ π s,t B j ) T(π s,t B j \B i ) = t. Table 4 Fine triangle intersections for minimum (K 20 \ K 9,G)-coverings i j (s, t) i j (s, t) i j (s, t) 1 1 M 20 \{(0,20),,(0,30), 1 3 (38,0) 1 4 (38,1) (0,32),(0,33),(0,34),(0,38),(0,39), 1 5 (32,7) 1 6 (26,13) (7,32),(8,21),(8,26),(13,26), 1 7 (20,19) 1 8 (24,3),(29,0) (14,20),(16,0),(16,4),(16,6), 1 9 (21,8) 1 10 (16,0),(34,0) (19, 20),(20, 14),(20, 19),(21, 8), 1 11 (26, 8) 1 12 (20, 14) (24,3),(26,6),(26,8),(26,13), 2 2 (16,4),(16,6),(26,6) 2 3 (0,38) (29,0),(32,7),(34,0),(38,0),(38,1)} 2 5 (7,32) 2 6 (13,26) 2 7 (19, 20) 2 9 (8, 21) 1 2 (0,20),,(0,30),(0,32), 2 10 (0,34) 2 11 (8,26) (0, 33),(0, 39) 2 12 (14, 20) Lemma 1.8 Fin(v) = Adm(v) for 11 v 23 and v 16,17,22. Proof By Lemma 0.1, Fin(v) Adm(v). We need to show that Adm(v) Fin(v). When v = 21, our proof will rely on the fact that Fin(12) = Adm(12). Thus one can first make use of the following procedure to obtain Fin(v) = Adm(v) for 11 v 23 and v 16,17,21,22. Then the same procedure guarantees Fin(21) = Adm(21). For each 11 v 23 and v 16,17,22, take the corresponding M v from Lemmas 1.6 1.7

5,, : The Fine Triangle Intersection Problem for Minimum Kite Coverings 685 and from Table 5 in Lemma 3.1 in Appendix. Let G be a kite and (α v,β v ) M v. Let 6, if v = 11,14, 5, if v = 12,13, 7, if v = 15, h v = 9, if v = 19,20, 10, if v = 18,23, 12, if v = 21. By Lemmas 1.6 1.7 and Lemma 3.1 in Appendix, there is a pair of minimum (K v \ K hv,g)- coverings(or(k v \K hv,g)-designs)(x,b (v) 1 )and(x,b(v) 2 )withthesamesubgraphk h v removed, which intersect in α v blocks and β v + α v triangles. Here the subgraph K hv is constructed on Y X. Let (γ v,ω v ) Adm(h v ) when v 19,20, and (γ v,ω v ) Adm(9)\{(8,0),(8,1)} when v = 19,20. Since [10] shows that Fin(9) = Adm(9) \ {(8,0),(8,1)}, combining the results of Lemmas 1.2 1.5, we have a pair of minimum kite coverings of order h v (Y,B (v) 1 ) and (Y,B (v) 2 ), with γ v common blocks and γ v + ω v common triangles. It follows that (X,B (v) 1 B (v) 1 ) and (X,B (v) 2 B (v) 2 ) are both minimum kite coverings of order v with α v +γ v common blocks and α v +β v +γ v +ω v common triangles. Thus we have, when v 19,20, and when v = 19,20, Fin(v) {(α v +γ v,β v +ω v ) : (α v,β v ) M v,(γ v,ω v ) Adm(h v )}, Fin(v) {(α v +γ v,β v +ω v ) : (α v,β v ) M v,(γ v,ω v ) Adm(9)\{(8,0),(8,1)}}. It is readily checked that for any pair of integers (s,t) Adm(v), we have (s,t) Fin(v). Lemma 1.9 Fin(22) = Adm(22). Proof Take the same set M 22 as in Lemma 3.2in Appendix. Let (α,β) M 22. By Lemma 3.2inAppendix, thereisapairofkite-gddsoftype8 2 6 1 withthesamegroupset, whichintersect in α blocks and β +α triangles. Let (γ 1,ω 1 ) and (γ 2,ω 2 ) Adm(8)\{(6,0),(6,1)}. It is shown in [10] that there is a pair of kite systems of order 8 intersecting in γ i common blocks and ω i + γ i common triangles for i = 1,2. Let (γ 3,ω 3 ) Adm(6). By Lemma 1.3, there is a pair of minimum kite covering of order 6 with γ 3 common blocks and ω 3 +γ 3 common triangles. So we obtain a pair of minimum kite covering of order 22 with α + 3 γ i common blocks and β + 3 ω i +(α+ 3 γ i) common triangles. Thus we have {( ) 3 3 Fin(22) α+ γ i,β + ω i : (α,β) M 22,(γ 3,ω 3 ) Adm(6), (γ 1,ω 1 ),(γ 2,ω 2 ) Adm(8)\{(6,0),(6,1)} }. It is readily checked that for any pair of integers (s,t) Adm(22), we have (s,t) Fin(22). 2 Main Theorem In this section we shall establish the main theorem of this paper. First we need to introduce some auxiliary designs.

686 «42Æ Let K be a set of positive integers. A group divisible design (GDD) K-GDD is a triple (X,G,A) satisfying the following properties: (1) G is a partition of a finite set X into subsets (called groups); (2) A is a set of subsets of X (called blocks), each of cardinality from K, such that every 2-subset of X is either contained in exactly one block or in exactly one group, but not in both. If G contains u i groups of size g i for 1 i r, then we call g u1 1 gu2 2 gur r the group type (or type) of the GDD. If K = {k}, we write a {k}-gdd as a k-gdd. We quote the following result for later use. Lemma 2.1 [16] Let g, t and u be nonnegative integers. There exists a 3-GDD of type g t u 1 if and only if the following conditions are all satisfied: (1) if g > 0, then t 3, or t = 2 and u = g, or t = 1 and u = 0, or t = 0; (2) u g(t 1) or gt = 0; (3) g(t 1)+u 0(mod 2) or gt = 0; (4) gt 0(mod 2) or u = 0; (5) g2 t(t 1) 2 +gtu 0(mod 3). Let H = {H 1,H 2,,H m } be a partition of a finite set X into subsets (called holes), where H i = n i for 1 i m. Let K n1,n 2,,n m be the complete multipartite graph on X with the i-th part on H i, and G be a subgraph of K n1,n 2,,n m. A holey G-design is a triple (X,H,B) such that (X,B) is a (K n1,n 2,,n m,g)-design. The hole type (or type) of the holey G-design is {n 1,n 2,,n m }. We use an exponential notation to describe hole types: the hole type g u1 1 gu2 2 gur r denotes u i occurrences of g i for 1 i r. Obviously if G is the complete graph K k, a holey K k -design is just a k-gdd. When G is kite, a holey G-design is said to be a kite-gdd. A pair of holey G-designs (X,H,B 1 ) and (X,H,B 2 ) of the same type is said to intersect in s blocks if B 1 B 2 = s. A pair of holey G-designs (X,H,B 1 ) and (X,H,B 2 ) of the same type is said to intersect in t triangles if T(B 1 ) T(B 2 ) = t, where T(B i ) = B B i T(B), i = 1,2. Lemma 2.2 [10] Let (s,t) {(0,0),(0,1),(0,12),(12,0)}. There exists a pair of kite-gdds of type 4 3 with the same group set intersecting in s blocks and t+s triangles. Let (s 1,t 1 ) and (s 2,t 2 ) be two pairs of nonnegative integers. Define (s 1,t 1 ) + (s 2,t 2 ) = (s 1 +s 2,t 1 +t 2 ). If X and Y are two sets of pairs of nonnegative integers, then X +Y denotes the set {(s 1,t 1 )+(s 2,t 2 ) : (s 1,t 1 ) X,(s 2,t 2 ) Y}. If X is a set of pairs of nonnegative integers and h is some positive integer, then h X denotes the set of all pairs of nonnegative integers which can be obtained by adding any h elements of X together (repetitions of elements of X allowed). Lemma 2.3 For any integer v 2,3,,7,10,11,,15(mod 24) and v 4, Fin(v) = Adm(v). Proof The cases of v = 4,5,6,7,10,11,,15 follow from Lemmas 1.1 1.5 and Lemma 1.8. Assume that v 24. By Lemma 0.1, we have Fin(v) Adm(v). We need to show that Adm(v) Fin(v). Let v = 8u+a with u 0,1(mod 3), u 3 and a {2,3,,7}. Start from a 3-GDD of type 2 u from Lemma 2.1. Give each point of the GDD weight 4. By Lemma 2.2, there is a pair of kite-gdds of type 4 3 with α common blocks and α+β common triangles, (α,β) {(0,0),(0,12),(12,0)}. Then there exists a pair of kite-gdds of type 8 u which intersect in x α i blocks and x (α i + β i ) triangles, where x = 2u(u 1) 3 is the number of

5,, : The Fine Triangle Intersection Problem for Minimum Kite Coverings 687 blocks of the 3-GDD of type 2 u and (α i,β i ) {(0,0),(0,12),(12,0)} for 1 i x. Define A(8+c) = A 8+c, where c {2,3,4} and A 8+c is taken from Table 6 of Lemma 3.3 in Appendix. When c {5,6,7}, define A(8+c) = M 8+c, where M 8+c is taken from Table 5 of Lemma 3.1 in Appendix. By Lemmas 3.1 and 3.3, there is a pair of (K 8+a \K a,g)-designs with the same vertex set and the same subgraph K a removed with γ j common blocks and γ j + ω j commontriangles, where(γ j,ω j ) A(8+a), 1 j u 1, anda {2,3,,7}. ByLemmas1.5 and1.8, thereisapairofminimum kitecoveringoforder8+awithγ u commonblocksandγ u +ω u common triangles, (γ u,ω u ) Adm(8+a), then there exists a pair of minimum kite covering of order v = 8u+a with x α i + u j=1 γ j common blocks and x (α i +β i )+ u j=1 (γ j +ω j ) common triangles. Thus we have {( x ) u x u Fin(v) α i + γ j, β i + ω j : (α i,β i ) {(0,0),(0,12),(12,0)},1 i x, j=1 j=1 (γ j,ω j ) A(8+a),1 j u 1,(γ u,ω u ) Adm(8+a) { x = (α i,β i )+ u (γ j,ω j ) : (α i,β i ) {(0,0),(0,12),(12,0)},1 i x, j=1 (γ j,ω j ) A(8+a),1 j u 1,(γ u,ω u ) Adm(8+a) =x {(0,0),(0,12),(12,0)}+(u 1) A(8+a)+Adm(8+a). Let n be the number of blocks of a (K 8+a \K a,g)-design. Then n = 7+2a. Let m be the number of blocks of a minimum kite covering of order 8+a. Define S(z) = {(s,t) : s+t z,s,t 0}. Then it is readily checked that (u 1) A(8+a)+Adm(8+a) = (u 1) A(8+a)+S(m) = (u 2) A(8+a)+[A(8+a)+S(m)] = (u 2) A(8+a)+S(m+n) = S((u 1)n+m). } } Note that {(0,0),(0,12),(12,0)}+S(z) = S(z +12) (1) for any integer z 22. Since (u 1)n+m 22, using Formula (1) inductively x times, we have Fin(v) (x 1) {(0,0),(0,12),(12,0)}+({(0,0),(0,12),(12,0)}+S((u 1)n+m)) = (x 1) {(0,0),(0,12),(12,0)}+S((u 1)n+m+12) = S((u 1)n+m+12x) = S(b v ) = Adm(v). This completes the proof. Lemma 2.4 For any integer v 18,19,,23(mod 24) and v 18, Fin(v) = Adm(v).

688 «42Æ Proof The cases of v = 18,19,,23 follow from Lemmas 1.8 1.9. Assume that v 42. By Lemma 0.1, we have Fin(v) Adm(v). We need to show that Adm(v) Fin(v). Let v = 8u+a with u 2(mod 3), u 5 and a {2,3,,7}. Start from a 3-GDD of type 2 u 2 4 1 from Lemma 2.1. Give each point of the GDD weight 4. By Lemma 2.2, there is a pair of kite-gdds of type 4 3 with α common blocks and α+β common triangles, (α,β) {(0,0),(0,12),(12,0)}. Then we obtain a pair of kite-gdds of type 8 u 2 16 1 with x α i common blocks and x (α i + β i ) common triangles, where x = 2(u+1)(u 2) 3 is the number of blocks of the 3-GDD of type 2 u 2 4 1 and (α i,β i ) {(0,0),(0,12),(12,0)} for 1 i x. Define A(8+c) = A 8+c, where c {2,3,4} and A 8+c is taken from Table 6 of Lemma 3.3 in Appendix. When c {5,6,7}, define A(8 + c) = M 8+c, where M 8+c is taken from Table 5 of Lemma 3.1 in Appendix. By Lemmas 3.1 and 3.3, there is a pair of (K 8+a \K a,g)-designs with the same vertex set and the same subgraph K a removed with γ j common blocks and γ j +ω j common triangles, where (γ j,ω j ) A(8+a), 1 j u 2, and a {2,3,,7}. By Lemmas 1.8 1.9, there is a pair of minimum kite coverings of order 16+a with γ u 1 common blocks and γ u 1 + ω u 1 common triangles, (γ u 1,ω u 1 ) Adm(16 + a). So we obtain a pair of minimum kite coverings of order v = 8u + a with x α i + u 1 j=1 γ j common blocks and x (α i +β i )+ u 1 j=1 (γ j +ω j ) common triangles. Thus we have Fin(v) {( x u 1 α i + γ j, j=1 x ) u 1 β i + ω j j=1 : (α i,β i ) {(0,0),(0,12),(12,0)},1 i x, (γ j,ω j ) A(8+a),1 j u 2,(γ u 1,ω u 1 ) Adm(16+a) { x u 1 = (α i,β i )+ (γ j,ω j ) : (α i,β i ) {(0,0),(0,12),(12,0)},1 i x, j=1 (γ j,ω j ) A(8+a),1 j u 2,(γ u 1,ω u 1 ) Adm(16+a) =x {(0,0),(0,12),(12,0)}+(u 2) A(8+a)+Adm(16+a). Next by similar arguments as those in Lemma 2.3, we have Adm(v) Fin(v). Proof of Theorem 0.2 When v 0, 1(mod 8) and v 8, it is shown in [10] that Fin(v) = Adm(v)\{(b v 1,0),(b v 1,1)}. When v 2,3,,7(mod 8) and v 4, combining the results of Lemmas 2.3 2.4, we have Fin(v) = Adm(v). 3 Appendix Lemma 3.1 [29] Let G be a kite and M v be defined in Table 5. Let (s,t) M v and 6, if v = 11,14, 5, if v = 12,13, h v = 7, if v = 15, 10, if v = 18,23, 12, if v = 21. } }

5,, : The Fine Triangle Intersection Problem for Minimum Kite Coverings 689 Then there is a pair of (K v \K hv,g)-designs with the same vertex set and the same subgraph K hv removed, which intersect in s blocks and t+s triangles. Table 5 Fine triangle intersections for (K v \ K hv,g)-designs v M v 11 {(s,t) : s+t 10,s {0,1,10},t is a nonnegative integer} {(4,6),(5,0),(5,2),(6,4),(7,0),(8,1)} 12 ({(s,t) : s+t 14,s {0,3,8,12,14},t is a nonnegative integer} \{(3,9),(3,10),(8,2),(8,4),(8,5),(12,1)}) {(4,10),(5,9),(6,0), (6,2),(6,5),(6,8),(7,4),(7,7),(9,5),(10,0),(10,2),(10,4)} 13 ({(s,t) : s+t 17,s {0,3,6,9,15,17},t is a nonnegative integer} \{(0,15),(3,12),(6,8),(6,9),(9,4),(9,5),(9,7),(15,1)}) {(2,15),(5,11), (7,7),(8,9),(10,5),(11,4),(11,6),(12,0),(12,3),(13,0),(13,2),(14,3)} 14 ({(s,t) : s+t 19,s {0,4,8,17,19},t is a nonnegative integer} \{(4,13),(8,8),(8,9),(8,10),(17,1)}) {(7,9),(7,11),(10,5),(10,9), (11,6),(12,0),(12,1),(12,2),(13,6),(14,0),(14,3),(15,2),(16,3)} 15 {(0,0),(0,1),,(0,16),(0,18),(0,21),(4,17),(6,0),(6,1),,(6,8),(6,12),(8,13), (9,8),(12,0),(12,4),(12,6),(12,9),(13,2),(13,8),(17,1),(17,4),(18,0),(21,0) 18 {(0,0),(0,1),,(0,17),(0,27),(27,0),(3,24),(6,21),(8,0),(9,18), (12,5),(12,15),(15,0),(15,12),(18,9),(21,0),(24,3)} 21 {(0,0),(0,1),,(0,19),(0,24),(0,36),(36,0),(6,30),(7,0),, (7,7),(12,5),(12,24),(13,11),(18,18),(24,0),(24,12),(30,6)} 23 {(0,0),(0,1),,(0,18),(7,0),(7,6),(7,7),(7,10),(10,6),(0,22), (0,26),(0,34),(0,42),(0,52),(3,49),(5,21),(5,29),(5,37),(6,46), (7,19),(9,43),(10,24),(10,32),(12,14),(12,40),(14,0),(14,12), (15,19),(15,27),(15,37),(18,8),(18,34),(19,15),(20,22),(21,5), (21,31),(22,0),(22,20),(24,10),(24,28),(26,0),(27,15),(27,25), (28,24),(29,5),(31,21),(32,10),(34,0),(34,18),(37,5),(37,15), (40,12),(42,0),(43,9),(46,6),(49,3),(52,0)} Lemma 3.2 [29] Let M 22 = {(0,0),(0,1),,(0,20),(10,0),(10,1),,(10,6),(13,7), (0,28),(0,40),(7,33),(11,17),(14,26),(17,11),(21,19),(26,14),(28,0),(33,7),(40,0)}. Let(s,t) M 22. Then there is a pair of kite-gdds of type 8 2 6 1 with the same group set, which intersect in s blocks and t+s triangles. Lemma 3.3 [29] Let G be a kite and (v,a) {(10,2),(11,3),(12,4)}. Let A v be defined in Table 6 and (s,t) A v. Then there is a pair of (K v \K a,g)-designs with the same vertex set and the same subgraph K a removed, which intersect in s blocks and t+s triangles. Table 6 Fine triangle intersections for (K v \ K a,g)-designs (v,a) A v (10,2) {(s,t) : s+t 11,s {0,11},t is a nonnegative integer}\{(0,9)} (11,3) {(s,t) : s+t 13,s {0,13},t is a nonnegative integer}\{(0,10),(0,12)} (12,4) {(s,t) : s+t 15,s {0,15},t is a nonnegative integer}\{(0,12),(0,13)} References [1] Adams, P., Billington, E.J., Bryant, D.E. and Mahmoodian, E.S., The three-way intersection problem for Latin squares, Discrete Math., 2002, 243(1/2/3): 1-19. [2] Baker, C., The intersection problem for Latin squares with holes of size 2 and 3, Ph.D. Thesis, Auburn: Auburn University, 2009. [3] Billington, E.J., The intersection problem for combinatorial designs, Congr. Numer., 1993, 92: 33-54. [4] Billington, E.J., Gionfriddo, M. and Lindner, C.C., The intersection problem for K 4 e designs, J. Statist. Plann. Inference, 1997, 58(1): 5-27. [5] Billington, E.J., and Kreher, D.L., The intersection problem for small G-designs, Australas. J. Combin., 1995, 12: 239-258. [6] Billington, E.J., Yazici, E.S. and Lindner, C.C., The triangle intersection problem for K 4 e designs, Utilitas Math., 2007, 73: 3-21.

690 «42Æ [7] Chang Y.X., Feng T. and Lo Faro, G., The triangle intersection problem for S(2,4,v) designs, Discrete Math., 2010, 310(22): 3194-3205. [8] Chang Y.X., Feng T., Lo Faro, G. and Tripodi, A., The triangle intersection numbers of a pair of disjoint S(2, 4, v), Discrete Math., 2010, 310(21): 3007-3017. [9] Chang Y.X., Feng T., Lo Faro, G. and Tripodi, A., The fine triangle intersection problem for (K 4 e)-designs, Discrete Math., 2011, 311(21): 2442-2462. [10] Chang Y.X., Feng T., Lo Faro, G. and Tripodi, A., The fine triangle intersection problem for kite systems, Discrete Math., 2012, 312(3): 545-553. [11] Chang Y.X., Feng T., Lo Faro, G. and Tripodi, A., Enumerations of (K 4 e)-designs with small orders, Quaderni di Matematica (special volume dedicated to the memory of Lucia Gionfriddo), in press. [12] Chang Y.X. and Lo Faro, G., Intersection numbers of Kirkman triple systems, J. Combin. Theory Ser. A, 1999, 86(2): 348-361. [13] Chang Y.X. and Lo Faro, G., Intersection numbers of Latin squares with their own orthogonal mates, Australas. J. Combin., 2002, 26: 283-304. [14] Chee, Y.M., Ling, A.C.H. and Shen H., The fine intersection problem for Steiner triple systems, Graphs and Combin., 2008, 24(3): 149-157. [15] Colbourn, C.J., Hoffman, D.G. and Lindner, C.C., Intersections of S(2, 4, v) designs, Ars Combin., 1992, 33: 97-111. [16] Colbourn, C.J., Hoffman, D.G. and Rees, R.S., A new class of group divisible designs with block size three, J. Combin. Theory Ser. A, 1992, 59(1): 73-89. [17] Fu, C.-M. and Fu, H.-L., The intersection problem of Latin squares, J. Combin. Inform. System Sciences, 1990, 15(1/2/3/4), 89-95. [18] Fu, H.-L., On the construction of certain types of Latin squares having prescribed intersections, Ph.D. Thesis, Auburn: Auburn University, 1980. [19] Gionfriddo, M. and Lindner, C.C., Construction of Steiner quadruple systems having a prescribed number of blocks in common, Discrete Math., 1981, 34(1): 31-42. [20] Hartman, A., and Yehudai, Z., Intersections of Steiner quadruple systems, Discrete Math., 1992, 104(3): 227-244. [21] Hoffman, D.G. and Lindner, C.C., The flower intersection problem for Steiner triple systems, Ann. Discrete Math., 1987, 34: 243-258. [22] Kramer, E.S. and Mesner, D.M., Intersections among Steiner systems, J. Combin. Theory Ser. A, 1974, 16(3): 273-285. [23] Lefevre, J.G. and McCourt, T.A., The disjoint m-flower intersection problem for Latin squares, Electr. J. Combin., 2011, 18(1): #P42. [24] Lindner, C.C. and Rosa, A., Steiner triple systems having a prescribed number of triples in common, Canad. J. Math., 1975, 27(5): 1166-1175. Corrigendum: Canad. J. Math., 1978, 30(4): 896. [25] Lindner, C.C. and Yazici, E.S., The triangle intersection problem for kite systems, Ars Combin., 2005, 75: 225-231. [26] Mahmoodian, E.S. and Soltankhah, N., Intersection of 2-(v, 4, 1) directed designs, J. Combin. Math. Combin. Comput., 1996, 20: 225-236. [27] Rosa, A., Intersection properties of Steiner systems, Ann. Discrete Math., 1980, 7: 115-128. [28] Teirlinck, L., On making two Steiner triple systems disjoint, J. Combin. Theory Ser. A, 1977, 23(3): 349-350. [29] Zhang G.Z., Chang Y.X. and Feng T., The fine triangle intersections for maximum kite packings, Acta Mathematica Sinica, English Series, 2013, 29(5): 867-882. ¾ kite ±²¹ ¼½»º 1,2, 1, 1 (1. Å,, 100044; 2.,,, 021008) : ÈÇ kite ÏÁ ÎÄ Ã.  Fin(v) = {(s,t) : Æ s Ì À s+t ÎÄ v Å kite ÏÁ}.  Adm(v) = {(s,t) : s+t b v,s,t }, Ê b v = v(v 1) 8. ÉÇ Í v 0,1(mod 8) Ë v 8, Fin(v) = Adm(v) \{(b v 1,0),(b v 1,1)}; Í v 2,3,,7(mod 8) Ë v 4, Fin(v) = Adm(v). ³µ : kite ÏÁ; ÎÄ Ã ; ÎÄ Ã