Amines. Amines are organic compounds containing a nitrogen functionality. primary secondary tertiary quaternary

Similar documents
Chapter 19: Amines. Introduction

R N R N R N. primary secondary tertiary

Loudon Chapter 23 Review: Amines CHEM 3331, Jacquie Richardson, Fall Page 1

Amines Reading Study Problems Key Concepts and Skills Lecture Topics: Amines: structure and nomenclature

Loudon Chapter 23 Review: Amines Jacquie Richardson, CU Boulder Last updated 4/22/2018

Ammonia Primary Secondary Tertiary Quarternary Ammonium Ion

Amines. Chapter 24 Organic Chemistry, 8th Edition. John McMurry

Chapter 22: Amines. Organic derivatives of ammonia, NH 3. Nitrogen atom have a lone pair of electrons, making the amine both basic and nucleophilic

Chapter 24. Amines. Based on McMurry s Organic Chemistry, 7 th edition

Chapter 22 Amines. Nomenclature Amines are classified according to the degree of substitution at nitrogen.

Chem 225 Notes Page 128. Chapter 23: Amines

Chemistry of Benzene: Electrophilic Aromatic Substitution

CHAPTER 22: Amines R 2 H N N N R 1. cadeverine N CH 3. nicotine

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

Class XII: Chemistry Chapter 13: Amines Top concepts

Chapter 20. Amines. Nomenclature for amines. Aryl amines

Reactions of Aromatic Compounds. Aromatic compounds do not react like other alkenes. With an appropriate catalyst, however, benzene will react

896 Chapter 21 Amines H H N R R R N R H R N R H O H R 3 N CH 2 NH 2 NHCH 3

Amines. Introduction Organic derivatives of ammonia. Many are biologically active.

AMINES. 3. Secondary When two hydrogen atoms are replaced by two alkyl or aryl groups.

Aromatic Compounds II

1. LiAlH4 :.. :.. 2. H3O +

Alkylamines are compounds of the type shown, where R, R, and R are alkyl groups. One or more of these groups is an aryl group in arylamines.

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

Lecture 13A 05/11/12. Amines. [Sn2; Hofmann elimination; reduction of alkyl azides, amides, nitriles, imines; reductive amination; Gabriel synthesis]

Chapter 20 Amines-part 2

Lecture Notes Chemistry Mukund P. Sibi Lecture 36 Synthesis of Amines

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides:


Examples of Substituted Benzenes

Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution

Downloaded from

Amines. Many low molecular weight amines have foul odors.

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Lecture Notes Chemistry 342 Mukund P. Sibi Lecture 33 Amines

Chem 263 March 28, 2006

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall

Chapter 13 Reactions of Arenes Electrophilic Aromatic Substitution

KOT 222 Organic Chemistry II

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

Synthesis of Amines Amine Alkylation by SN2 reaction II. Reductive Amination

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry

Ammonia and Amines. Four sp 3 hybridized orbitals. Three used for bonding and one for the lone pair of electrons. secondary 2. Et Me.

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Synthesis Using Aromatic Materials

Dr. Munther Abdujaleel M.A. Assist. Prof. Org. Chem.

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Chapter 17. Reactions of Aromatic Compounds

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Chapter 15 Reactions of Aromatic Compounds

12/27/2010. Chapter 15 Reactions of Aromatic Compounds

Amines and Heterocycles. McMurry: Chapter 24

MCAT Organic Chemistry Problem Drill 10: Aldehydes and Ketones

Amines Amines (e.g. RNH 2 ) are organic derivatives of ammonia, NH 3 similar to ammonia

Chapter 17 Reactions of Aromatic Compounds

Dr. Mohamed El-Newehy

Chem 263 Nov 24, Properties of Carboxylic Acids

AMINES. 4. From your knowledge of the effects involved, predict or explain experimental results. Important areas include:

CHAPTER 25 HW: AMINES

Unit 13-NITROGEN CONTAINING ORGANIC COMPOUNDS

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION

Amines (McM chapt 24)

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step

Chapter 7: Alcohols, Phenols and Thiols

ORGANIC - BROWN 8E CH. 22- REACTIONS OF BENZENE AND ITS DERIVATIVES

Reactions at α-position

AMINES. 3. From your knowledge of the effects involved, predict or explain experimental results. Important areas include:

Chapter 12. Reactions of Arenes: Electrophilic Aromatic Substitution. Class Notes. A. The method by which substituted benzenes are synthesized

Carboxylic Acids and Nitriles

I5 ELECTROPHILIC SUBSTITUTIONS OF

Chapter 10: Carboxylic Acids and Their Derivatives

11/30/ Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry

Benzylamine reacts with nitrous acid to form unstable diazonium salt, which in turn gives alcohol with the evolution of nitrogen gas.

Chapter 21. Organic Chemistry 4 th Edition Paula Yurkanis Bruice. More About Amines. Heterocyclic Compounds

Chapter 23 Amines Review of Concepts azide synthesis synthesis reductive amination sodium cyanoborohydride Hofmann elimination

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or

Ch 16 Electrophilic Aromatic Substitution


Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Reactivity of Benzene

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16

Lecture 27 Organic Chemistry 1

Properties of Amines

Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2

21.1 Introduction Carboxylic Acids Nomenclature of Carboxylic Acids. Acids Structure and Properties of Carboxylic Acids.

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi

Chapter 2 Acids and Bases. Arrhenius Acid and Base Theory. Brønsted-Lowry Acid and Base Theory

Benzenes & Aromatic Compounds

Chapter 8. Acidity, Basicity and pk a

CHE1502. Tutorial letter 201/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry CHE1502/201/1/2016

CHEM Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W

Chapter 9 Aldehydes and Ketones Excluded Sections:

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions

Lecture'15:'March'21,'2013

Chapter 17 Aromati ti S u stit tit t u i tion Reactions

2016 Pearson Education, Inc. Isolated and Conjugated Dienes

Transcription:

Amines Amines are organic compounds containing a nitrogen functionality Depending upon the number of alkyl, or aryl, groups attached to nitrogen determines its classification, or order 2 primary secondary tertiary quaternary The order also affects the number of hydrogens attached to nitrogen (and charge with a quaternary nitrogen)

Alkaloids Alkaloids refer to amines that are produced by plants They are often used for medicinal or physiological purposes (the plant makes them to cause an effect when an animal eats them for protection) 3 C morphine codeine heroin Examples of opium alkaloids compounds bind to receptor sites in the brain

omenclature Common names name the amine by indicating each alkyl substituent with amine suffix IUPAC names similar to alcohol names, find longest continuous chain and name amine as a suffix Use -alkyl to name substituents attached to nitrogen

ther Common ames There are a number of compounds with historic names 2 aniline pyridine pyrrolidine These compounds, and others seen in aromatic compounds, use common names Substituents are named with the common name as the root 4-methylpyridine C 3

Structure With a saturated amine, the lone pair resides in a sp 3 hybridized orbital 3 C C 3 C 3 With conjugation, the lone pair will reside in a p orbital to allow overlap 3 C 3 C C 3 C 3 C C 3 C 3

itrogen Inversion While a saturated amine is sp 3 hybridized, the nitrogen atom can undergo a rehybridization to cause an inversion of configuration Any sp 3 hybridized center is chiral with four different substituents S--ethyl--methyl-1-propanamine With nitrogen inversion, however, we usually cannot isolate stereoisomers S configuration Planar sp 2 hybridization R configuration

itrogen Inversion Changes the Chiralty Siince this inversion happens at room temperature for nitrogen cannot isolate pure form of either enantiomer Can prevent nitrogen inversion by two ways: 1) Create quaternary nitrogen nitrogen is prevented to invert with four covalent bonds will invert cannot invert 2) Strain prevents formation of sp 2 hybridized nitrogen Strain of ring hinders sp 2 hybridization

Properties of Amines Amines typically have a relatively high dipole 3 C C 3 C 3 et dipole ave dipole for both from nitrogen to lone pair and for each carbon-nitrogen bond In addition, hydrogen bonding causes amines to have a relatively higher boiling point C 3 C 3 C 3 C 3

Basicity Another major factor with amines is the basicity The lone pair of electrons on nitrogen can act as an acceptor (hence Brønsted-Lowry base) R 2 K b R Can determine pk b values (just like pk a values for acids) pk a + pk b = 14 Therefore strong bases are weak conjugate acids, and vice versa

Effects of Basicity The base strength for amines follow many of the same trends as already observed R pk b = 4.74 pk b = 3.36 Primary amines are more basic than unsubstituted amines, electron donating alkyl groups stabilize ammonium compound after protonation A difference with amines, however, is that secondary and tertiary amines are approximately the same basicity as primary amines due to hydration effects

Resonance Effects Amines in resonance are less basic than saturated amines 2 pk b = 9.40 Protonation prevents the lone pair from conjugation Also remember resonance considerations for aromatic rings pk b = 15 Protonation makes aromatic compound nonaromatic

ybridization As the percent s character increases for the orbital holding the lone pair of electrons, the electrons are held more closely to the positively charged nucleus Therefore a sp 2 hybridized amine have the electrons closer to the nucleus than a sp 3 hybridized amine Thus the sp 2 hybridized amine is harder to protonate (and form a positive charge) than a sp 3 hybridized amine (other factors like resonance being equal) 2 3 C C pk b = 3.36 pk b = 8.75 pk b = 24

Amine Salts There are many advantageous uses of amine salts First, the salt form of aniline changes the substituent from strongly activating to strongly deactivating, therefore changing the regiochemistry and reactivity 2 + 3 Second, the amine salt changes solubility Amines are soluble in organic phase, salts are soluble in aqueous phase

Phase Transfer Catalysis (PTC) Amine salts are also used to catalyze a variety of organic reactions that feature two components that are soluble in different liquid phases (e.g. organic and aqueous) Br high organic solubility low aqueous solubility ac low organic solubility high aqueous solubility Low rate in either organic or aqueous solutions Adding a phase transfer catalyst will accelerate the rate (often use quaternary amine salts which have solubility in both phases)

Reactions of Amines Some reactions have already seen in earlier chapters covering ketones and aromatic substitution R 2 + R 2 E+ 2 2 E E

Pyridine Pyridine is a strongly deactivating ring system Many reactions do not work with pyridine due to the strongly deactivating system Those that do react occur with meta substitution 3 2 2 S 4 Consider the arenium ion to understand this regiopreference

ucleophilic Aromatic Substitution Since pyridine is a strong deactivating group, leaving groups ortho or para to nitrogen will leave in a nucleophilic substitution Cl ac 3 C 3 Again consider charged intermediate for this reaction to predict regiopreference Also remember leaving group ability for these nucleophilic aromatic substitution reactions follow electronegativity trends ( F > Cl > Br > I )

Alkylation of Amines The lone pair of electrons on amines can react in a nucleophilic manner 2 C 3 I Yield is best with methyl or primary halide (this is a S 2 reaction) ne problem with this reaction is often polyalkylation occurs C 3 I Will continue until quaternary amine is obtained

To prevent over alkylation reaction is run with excess of amine 2 10 equivalents C 3 I The other option is to run the reaction with excess of alkyl halide In that case the product will be the quaternary salt where the amine has been fully alkylated

Acylation The amines can also be reacted with acid chlorides to generate amides The amide does not generally react further because the lone pair of electrons is delocalized

Acylation to Modify Aromatic Reactivity Remember that aniline is highly reactive and the amine is basic With acylation, however, the compound can be reacted under acidic conditions without protonating the amine

ydrolysis of Aryl Acetyl Group nce used, the acetyl group can be hydrolyzed off in either acidic or basic conditions Thus the acetylation of aniline derivatives are quite useful to modify reactivity

Sulfonamides Sulfonamides are widely used as antibacterial agents (called sulfa drugs ) To synthesize sulfonamides follow similar reactivity as acylation reactions Use sulfonyl chloride instead of acid chloride

ofmann Elimination Remember E2 mechanisms where eliminations occurred with either Saytzeff or ofmann preference For these reactions the Saytzeff was generally favored due to the more stable product ofmann was observed when the base was too bulky to abstract the hydrogen from the more substituted carbon

The ofmann product in these E2 reactions is named after amine elimination reactions When an amine is alkylated with excess alkyl halide, a quaternary amine is obtained 2 C 3 I excess The amine is now a good leaving group! base When heated with base, the amine can leave to generate an alkene

When different alkenes can form, the less substituted alkene is preferred (C 3 ) 3 Ag 2 A very common base to use in ofmann eliminations is Ag 2, the silver oxide reacts with halide of amine salt to form silver halide (AgI) and hydroxide The reason for this preference compared to other E2 reactions is the bulkiness of the quaternary amine leaving group C 3 (C 3 ) 3 (C 3 ) 3 Steric bulk E2 reactions must be anticoplanar

Cope Elimination Another method to have an amine elimination from a compound is the Cope elimination Instead of an E2 base mechanism, the Cope occurs through an oxidation mechanism A tertiary amine is oxidized to an amine oxide oxidation (primary amines are oxidized to nitro and secondary amines are oxidized to hydroxylamines) Amine oxides will eliminate without base (C 3 ) 2

Diazonium Salts Primary amines will react with nitrous acid to form diazonium salts The key step is that the nitrogen will leave to generate a carbocation

Arenediazonium Salts While the generation of alkyl carbocations with this method is unnecessary (there are many other more efficient ways to generate alkyl carbocations), it is a unique method to generate aryl substituted products First the arenediazonium salt is generated from an aniline derivative 2 a 2 Cl

The nitrogen leaving group ( 2 ) can then be replaced in a second step Example of unique potential products: 2 S 4! Convenient method to generate phenol derivatives (other method is usually a nucleophilic aromatic substitution) It is difficult to generate an oxygen electrophile to perform a typical electrophilic aromatic substitution

Generation of Aryl Fluorides Briefly saw in aromatic substitution chapter that fluorine substituted aromatic rings can be obtained through an arenediazonium pathway BF 4 F There are few other methods to add fluorine in a preferred regio manner to an aromatic ring

Sandmeyer Arenediazonium salts are often reacted with Cu(I) salts This reaction is called a Sandmeyer reaction CuCl Cl CuBr Br CuC C Common substituents to add are chlorine, bromine or cyano with this route

Replacing Diazonium group with ydrogen 3 P 2 Allows an amine to be used as a directing group and then subsequently removed Br Br 2 2 FeBr 2 3 Br 1) a 2, Cl 2) 3 P 2 Br Br Br Br Would not be able to synthesize bromines meta to each other without this type of method

Synthesis of Amines Instead of alkylating amines, which lead to overalkylation problems, amines can be created from imine sources 2 + LA 2 To synthesize primary amines, react ketone or aldehyde with hydroxylamine to generate an oxime nce oxime is synthesized, it can be reduced to form an amine Use different ketones or aldehydes to add different alkyl groups to amine

Secondary Amines C 3 2 + LA Instead of reacting hydroxylamine, react with primary amine to form imine then reduce Tertiary Amines (C 3 ) 2 a(c 3 C 2 ) 3 B + imminium salt React carbonyl with secondary amine to form an imminium salt, the imminium salt is unstable and must be reduced in situ, therefore a weaker reducing agent is used

Acylation-Reduction Another route to substituted amines is to first acylate and then reduce C 3 2 LA Cl With the amide functionality, reduction with LA yields the amine Can therefore generate either a 1, 2 or 3 amine depending upon amide used in acylation step

Gabriel Synthesis Sometimes is is easier to use an alkyl halide than to obtain the necessary ketone, aldehyde or acid chloride needed in the previous steps The problem with using alkyl halides with an amine was the issue of polyalkylation Gabriel synthesis uses a phthalimide to prevent overalkylation base C 3 Br C 3 2 2 C 3 2 The hydrazine reacts with the phthalimide carbonyls to have the substituted amine as a leaving group

Another Synthetic Route: Reduce other itrogen Containing ucleophiles There are a couple of other strong nucleophile that can be reduced to an amine Azides itriles Both of these routes use a S 2 reaction followed by reduction to amine Realize that cyano (nitrile) route adds one additional carbon to framework

Reduction of itro Group Both alkyl and aryl nitro groups can be reduced to an amine 2 2, catalyst 2 This reduction can occur under a wide variety of conditions Usually see either 2 and a catalyst (Pt, Pd and i are common) or Use active metal with + source (e.g. Sn, 2 S 4 or Zn, Cl)

ofmann Rearrangement The main advantage of this method is to generate amines on 3 carbons Realize that with S 2 methods cannot place amine on 3 carbon ofmann rearrangement starts with primary amide that can be generated from the acid chloride Upon introduction of basic halide solution (Br 2 or Cl 2 ) an amine is obtained The reaction is driven by loss of carbon dioxide

Mechanism Key is formation of the isocyanate (R-=C= structure) which reacts in basic conditions to form carbamic acid, which subsequently decarboxylates to amine