F is n ntiderivtive èor èindeæniteè integrlè off if F 0 èxè =fèxè. Nottion: F èxè = ; it mens F 0 èxè=fèxè ëthe integrl of f of x dee x" Bsic list: xn

Similar documents
5: The Definite Integral

Math 190 Chapter 5 Lecture Notes. Professor Miguel Ornelas

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

Math 8 Winter 2015 Applications of Integration

Final Exam - Review MATH Spring 2017

INTRODUCTION TO INTEGRATION

( ) where f ( x ) is a. AB Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x).

( ) as a fraction. Determine location of the highest

Big idea in Calculus: approximation

AB Calculus Review Sheet

Math 107H Topics for the first exam. csc 2 x dx = cot x + C csc x cotx dx = csc x + C tan x dx = ln secx + C cot x dx = ln sinx + C e x dx = e x + C

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

Test 3 Review. Jiwen He. I will replace your lowest test score with the percentage grade from the final exam (provided it is higher).

Math Calculus with Analytic Geometry II

( ) where f ( x ) is a. AB Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x).

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

1 The Riemann Integral

Section 6: Area, Volume, and Average Value

Math 116 Calculus II

Review of Calculus, cont d

Chapters 4 & 5 Integrals & Applications

Topics Covered AP Calculus AB

Fundamental Theorem of Calculus

4.4 Areas, Integrals and Antiderivatives

MA 124 January 18, Derivatives are. Integrals are.

Chapter 6 Notes, Larson/Hostetler 3e

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

Time in Seconds Speed in ft/sec (a) Sketch a possible graph for this function.

Bob Brown Math 251 Calculus 1 Chapter 5, Section 4 1 CCBC Dundalk

AP Calculus AB Unit 5 (Ch. 6): The Definite Integral: Day 12 Chapter 6 Review

Indefinite Integral. Chapter Integration - reverse of differentiation

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

1 Techniques of Integration

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

Integrals - Motivation

( ) Same as above but m = f x = f x - symmetric to y-axis. find where f ( x) Relative: Find where f ( x) x a + lim exists ( lim f exists.

Interpreting Integrals and the Fundamental Theorem

Stuff You Need to Know From Calculus

Polynomials and Division Theory

Anti-derivatives/Indefinite Integrals of Basic Functions

Math 113 Exam 1-Review

Main topics for the First Midterm

Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx...

Review Exercises for Chapter 4

Sections 5.2: The Definite Integral

( ) where f ( x ) is a. AB/BC Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x).

Overview of Calculus I

Math 360: A primitive integral and elementary functions

1 The fundamental theorems of calculus.

Review of basic calculus

The Riemann Integral

Section 4: Integration ECO4112F 2011

MATH 144: Business Calculus Final Review

The Regulated and Riemann Integrals

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but...

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

Infinite Geometric Series

Section 5.4 Fundamental Theorem of Calculus 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus 1

10 Vector Integral Calculus

MA Exam 2 Study Guide, Fall u n du (or the integral of linear combinations

Math 3B: Lecture 9. Noah White. October 18, 2017

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

We divide the interval [a, b] into subintervals of equal length x = b a n

The Fundamental Theorem of Calculus

5.1 How do we Measure Distance Traveled given Velocity? Student Notes

Math& 152 Section Integration by Parts

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

Chapter 0. What is the Lebesgue integral about?

LECTURE 19. Numerical Integration. Z b. is generally thought of as representing the area under the graph of fèxè between the points x = a and

Math 113 Exam 2 Practice

Improper Integrals. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

x ) dx dx x sec x over the interval (, ).

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

APPROXIMATE INTEGRATION

Section Areas and Distances. Example 1: Suppose a car travels at a constant 50 miles per hour for 2 hours. What is the total distance traveled?

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 1 - Thurs 28th Sept 17 Review of trigonometry and basic calculus

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship

7. Indefinite Integrals

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

and that at t = 0 the object is at position 5. Find the position of the object at t = 2.

Unit #10 De+inite Integration & The Fundamental Theorem Of Calculus

Main topics for the Second Midterm

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

sec x over the interval (, ). x ) dx dx x 14. Use a graphing utility to generate some representative integral curves of the function Curve on 5

Evaluating Definite Integrals. There are a few properties that you should remember in order to assist you in evaluating definite integrals.

First midterm topics Second midterm topics End of quarter topics. Math 3B Review. Steve. 18 March 2009

Calculus II: Integrations and Series

Overview of Calculus

Chapter 6 Techniques of Integration

How can we approximate the area of a region in the plane? What is an interpretation of the area under the graph of a velocity function?

10. AREAS BETWEEN CURVES

k ) and directrix x = h p is A focal chord is a line segment which passes through the focus of a parabola and has endpoints on the parabola.

The practical version

Transcription:

Mth 70 Topics for third exm Chpter 3: Applictions of Derivtives x7: Liner pproximtion nd diæerentils Ide: The tngent line to grph of function mkes good pproximtion to the function, ner the point of tngency. Tngent line to y = fèxè tèx 0 ;fèx 0 è : Lèxè =fèx 0 è+f 0 èx 0 èèx, x 0 è fèxè ç Lèxè for x ner x 0 Ex.: p 7 ç 5+ æ 5 è7, 5è, using fèxè =p x è + xè k ç +kx, using x 0 =0 æf = fèx 0 +æxè, fèx 0 è, then fèx 0 +æxè ç Lèx 0 +æxè trnsltes to æf ç f 0 èx 0 è æ æx diæerentil nottion: df = f 0 èx 0 èdx So æf ç df, when æx = dx is smll In fct, æf, df = èdiærnce quot,f 0 èx 0 èèæx = èsmllèæèsmllè = relly smll, goes like èæxè x8: Newton's method A relly fst wy to pproximte roots of function. Ide: tngent line to the grph of function ëpoints towrds" root of the function oots of ètngentè lines re esy to ænd! Lèxè =fèx 0 è+f 0 èx 0 èèx, x 0 è ; root is x = x 0, fèx 0è f 0 èx 0 è Now use x s strting point for new tngent line; keep repeting! x n+ = x n, fèx nè f 0 èx n è Bsic fct: if x n pproximtes root to k deciml plces, then x n+ tends to pproximte it to k deciml plces! BUT: Newton's method might ænd the ëwrong" root: Int Vlue Thm might ænd one, ut N.M. ænds diæerent one! Newton's method might crsh: if f 0 èx n è = 0, then we cn't ænd x n+ èhorizontl lines don't hve roots!è Newton's method might wnder oæ to inænity, if f hs horizontl symptote; n initil guess too fr out the line will generte numers even frther out. Newton's method cn't ænd wht doesn't exist! If f hs no roots, Newton's method will try to ëænd" the function's closest pproch to the x-xis; ut everytime it gets close, nerly horizontl tngent line sends it zooming oæ gin! Chpter 4: Integrtion x: Antiderivtives Integrl clculus is ll out ænding res of things, e.g. the re etween the grph of function f nd the x-xis. This will, in the end, involve ænding function F whose derivtive is f.

F is n ntiderivtive èor èindeæniteè integrlè off if F 0 èxè =fèxè. Nottion: F èxè = ; it mens F 0 èxè=fèxè ëthe integrl of f of x dee x" Bsic list: xn dx = xn+ + C èprovided n 6=,è n +, cosèkxè sinèkxè dx = + C k sinèkxè cosèkxè dx = + C k sec x dx = tn x + C csc x dx =, cot x + C sec x tn x dx = sec x + C csc x cot x dx =, csc x + C Most diæerentition rules cn e turned into integrtion rules èlthough some re hrder thn others; some will even wit until Clc II!è Bsic integrtion rules: sum nd constnt multiple rules re esy to reverse k=constnt k æ = k èfèxè æ gèxè dx = æ gèxè dx x3: Integrtion y sustiution The ide: reverse the chin rule! if gèxè =u, then d dx fègèxèè= d dx fèuè =f 0 èuè du dx so f 0 èuè du dx dx = f 0 èuè du = fèuè+c fègèxèèg 0 èxè dx ; set u = gèxè then du = g 0 èxè dx, so fègèxèèg 0 èxè dx = intfèuè du, where u = gèxè Exmple: xèx +, 3è 4 dx ; set u = x, 3, so du=x dx. Then xèx +, 3è 4 dx = èx +, 3è4 x dx = u 4 du j u=x,3 = u 5 5 + c j u=x,3 = èx, 3è 5 + c 0 The three most importnt points:. Mke sure tht you clculte ènd then set sideè your du efore doing step!. Mke sure everything gets chnged from x's to u's 3. Don't push x's through the integrl sign! They're not constnts! x4: Estimting things with sums Ide: lot of things cn estimted y dding up lot of tiny pieces. Sigm nottion: forml properties: k i = k i i = + æææ n ; just dd the numers up

è i æ i è= i æ i Some things worth dding up: length of curve: pproximte curve y collection of stright line segments y=f(x) length of curve ç P èlength of line segmentsè distnce trvelled = èverge velocityèètime of trvelè over short periods of time, vg. vel. ç instntneous vel. so distnce trvelled ç P èinst. vel.èèshort time intervlsè E.g., sètè=position, vètè=velocity, use velocity 4 times per second dist. trvelled = sè0è, sè5è ç verge vlue of function X0 vè5 + i 4 èè 4 è verge of n numers: dd the numers, divide y n for function, dd up lots of vlues of f, divide y numer of vlues vg. vlue of f ç n fèc i è x5: Deænite integrls The most importnt thing to pproximte y sums: re under curve. Ide: pproximte region èw curve nd x-xis y things whose res we cn esily clculte: rectngles! 3

y=f(x) Are etween grph nd x-xis ç P ères of the rectnglesè = fèc i èæx i We deæne the re to e the limit of these sums s the numer of rectngles goes to èi.e., the width of the rectngles goes to 0è, nd cll this the deænite integrl of f from to : = lim n! When do such limits exist? fèc i èæx i Theorem If f is continuous on the intervl ë; ë, then exists. èi.e., the re under the grph is pproximted y rectngles.è x6: Properties of deænite integrls Fisrt note: the sum used to deæne deænite integrl does need to hve fèxè ç 0; the limit still mkes sense. When f is igger thn 0, we interpret the integrl s re under the grph. Bsic properties of deænite integrls: Z Z =0 =, k = k fèxè æ gèxè dx = + Z c = æ Z c If m ç fèxè ç M for ll x in ë; ë, then mè, è ç ç Mè, è gèxè dx More generlly, iffèxè ç gèxè for ll x in ë; ë, then ç gèxè dx 4

Averge vlue of f : formlize our old ide! Z vgèfè =, Men Vlue Theorem for integrls: If f is continuous in ë; ë, then Z there is c in ë; ë sotht fècè =, x7: The fundmentl theorem of clculus then Formlly, Z x depends on nd. Mke this explicit: fètè dt = F èxè is function of x. F èxè = the re under the grph of f, from to x. Fund. Thm. of Clc èè è: If f is continuous, then F 0 èxè =fèxè èf is n ntiderivtive off!è Since ny two ntiderivtives diæer y constnt, nd F èè = Ex: fètè dt, we get Fund. Thm. of Clc èè è: If f is continuous, nd F is n ntiderivtive of f, Z ç 0 Z x = F èè, F èè = F èxè j sin x dx = è, cos çè, è, cos 0è = Building ntiderivtives: p p F èxè= sin t dt is n ntiderivtive of fèxè = sin x Z 3 x p Gèxè = +t dt = F èx 3 è, F èx è, where x F 0 èxè = p +x,sog 0 èxè = F 0 èx 3 èè3x è, F 0 èx èèxè... x8: sustitution nd deænite integrls We cn use u-sustitution directly with deænite integrl, provided we rememer tht Ex: u =5; so relly mens Z Z x= x= nd we rememer to chnge ll of the x's to u's! Z xè + x è 6 dx; set u =+x, du =x dx. when x =,u =;when x =, xè + x è 6 dx = Z 5 u 6 du =... 5