The Laplace Transform

Similar documents
Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Math 266, Practice Midterm Exam 2

K x,y f x dx is called the integral transform of f(x). The function

1 Finite Automata and Regular Expressions

Revisiting what you have learned in Advanced Mathematical Analysis

3.4 Repeated Roots; Reduction of Order

LAPLACE TRANSFORMS AND THEIR APPLICATIONS

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Section 2: The Z-Transform

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Transfer function and the Laplace transformation

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

Relation between Fourier Series and Transform

LAPLACE TRANSFORMS. 1. Basic transforms

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Chapter 12 Introduction To The Laplace Transform

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

can be viewed as a generalized product, and one for which the product of f and g. That is, does

Elementary Differential Equations and Boundary Value Problems

TOPIC 5: INTEGRATION

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

Bicomplex Version of Laplace Transform

Introduction to Laplace Transforms October 25, 2017

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013

Jonathan Turner Exam 2-10/28/03

LaPlace Transform in Circuit Analysis

Chap.3 Laplace Transform

Ch 1.2: Solutions of Some Differential Equations

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

A modified hyperbolic secant distribution

CSE 245: Computer Aided Circuit Simulation and Verification

A Tutorial of The Context Tree Weighting Method: Basic Properties

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Midterm exam 2, April 7, 2009 (solutions)

graph of unit step function t

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

Lecture 21 : Graphene Bandstructure

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01

Lecture 4: Laplace Transforms

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Poisson process Markov process

Final Exam : Solutions

Trigonometric Formula

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

where: u: input y: output x: state vector A, B, C, D are const matrices

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

EEE 303: Signals and Linear Systems

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Lecture 26: Leapers and Creepers

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Instructions for Section 1

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

Name:... Batch:... TOPIC: II (C) 1 sec 3 2x - 3 sec 2x. 6 é ë. logtan x (A) log (tan x) (B) cot (log x) (C) log log (tan x) (D) tan (log x) cos x (C)

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Wave Equation (2 Week)

e t dt e t dt = lim e t dt T (1 e T ) = 1

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

CONTINUITY AND DIFFERENTIABILITY

Partial Fraction Expansion

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series

Equations and Boundary Value Problems

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

SE1CY15 Differentiation and Integration Part B

(1) Then we could wave our hands over this and it would become:

2. The Laplace Transform

UNSTEADY HEAT TRANSFER

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

5.1-The Initial-Value Problems For Ordinary Differential Equations

4.8 Improper Integrals

The Z transform techniques

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

READING ASSIGNMENTS. Signal Processing First. Fourier Transform LECTURE OBJECTIVES. This Lecture: Lecture 23 Fourier Transform Properties

Generalized Half Linear Canonical Transform And Its Properties

EE Control Systems LECTURE 11

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

The Matrix Exponential

10. The Discrete-Time Fourier Transform (DTFT)

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

The Matrix Exponential

Multipath Interference Characterization in Wireless Communication Systems

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Transcription:

Th Lplc Trnform Dfiniion nd propri of Lplc Trnform, picwi coninuou funcion, h Lplc Trnform mhod of olving iniil vlu problm Th mhod of Lplc rnform i ym h rli on lgbr rhr hn clculu-bd mhod o olv linr diffrnil quion. Whil i migh m o b omwh cumbrom mhod im, i i vry powrful ool h nbl u o rdily dl wih linr diffrnil quion wih diconinuou forcing funcion. Dfiniion: L f b dfind for. Th Lplc rnform of f, dnod by or L{f }, i n ingrl rnform givn by h Lplc ingrl: L {f } f d. Providd h hi impropr ingrl xi, i.. h h ingrl i convrgn. Th Lplc rnform i n oprion h rnform funcion of i.., funcion of im domin, dfind on [,, o funcion of i.., of frquncy domin *. i h Lplc rnform, or imply rnform, of f. Toghr h wo funcion f nd r clld Lplc rnform pir. or funcion of coninuou on [,, h bov rnformion o h frquncy domin i on-o-on. Th i, diffrn coninuou funcion will hv diffrn rnform. * Th krnl of h Lplc rnform, in h ingrnd, i uni-l. Thrfor, h uni of i h rciprocl of h of. Hnc i vribl dnoing complx frquncy. 8 Zchry S Tng C- -

Exmpl: L f, hn, >. L{f } f d d Th ingrl i divrgn whnvr. Howvr, whn >, i convrg o. Exmpl: L f, hn, >. [Thi i lf o you n xrci.] Exmpl: L f, hn, >. L{f } d d Th ingrl i divrgn whnvr. Howvr, whn >, i convrg o. 8 Zchry S Tng C- -

Dfiniion: A funcion f i clld picwi coninuou if i only h finily mny or non whovr coninuou funcion i conidrd o b picwi coninuou! diconinuii on ny inrvl [, b], nd h boh on-idd limi xi pproch ch of ho diconinuiy from wihin h inrvl. Th l pr of h dfiniion mn h f could hv rmovbl nd/or jump diconinuii only; i cnno hv ny infiniy diconinuiy. Thorm: Suppo h. f i picwi coninuou on h inrvl A for ny A >.. f K whn M, for ny rl conn, nd om poiiv conn K nd M. Thi mn h f i of xponnil ordr, i.. i r of growh i no fr hn h of xponnil funcion. Thn h Lplc rnform, L{f }, xi for >. No: Th bov horm giv ufficin condiion for h xinc of Lplc rnform. I i no ncry condiion. A funcion do no nd o ify h wo condiion in ordr o hv Lplc rnform. Exmpl of uch funcion h nvrhl hv Lplc rnform r logrihmic funcion nd h uni impul funcion. 8 Zchry S Tng C- -

Som propri of h Lplc Trnform. L {}. L {f ± g} L {f } ± L {g}. L {c f } c L {f }, for ny conn c. Propri nd oghr mn h h Lplc rnform i linr.. [Th driviv of Lplc rnform] L {f } or, quivlnly L { f } Exmpl: L { d } L {} d In gnrl, h driviv of Lplc rnform ify L { n f } n or, quivlnly L { n f } n n Wrning: Th Lplc rnform, whil linr oprion, i no mulipliciv. Th i, in gnrl L {f g} L {f } L {g}. Exrci: U propry bov, nd h fc h L { }, o dduc h L { }. b Wh will L { } b? 8 Zchry S Tng C- -

Exrci C-.: U h ingrl rnformion dfiniion of h Lplc rnform o find h Lplc rnform of ch funcion blow... 6. co. in.* iα, whr i nd α r conn, i. 6 8 Ech funcion blow i dfind by dfini ingrl. Wihou ingring, find n xplici xprion for ch. [Hin: ch xprion i h Lplc rnform of crin funcion. U your knowldg of Lplc Trnformion, or wih h hlp of bl of common Lplc rnform o find h nwr.] 6. 7 d 7. d 8. in 6 d 9. L f b coninuou funcion nd b i Lplc rnform. Suppo f for. Show h i qul o h r of h rgion undr h curv y f,. b Vrify hi fc by compring h vlu of wih h r undr h curv obind h uul wy i.. by ingrion for ch of h funcion,, nd. 8 Zchry S Tng C- -

Anwr C-.:.. 6.. 9 α. i α α No: Sinc h Eulr formul y h iα co α i in α, hrfor, L{ iα } L{co α i in α}. Th i, h rl pr of i Lplc rnform corrpond o h of co α, h imginry pr corrpond o h of in α. Chck i for yourlf! 6. 7 7. 8. 6 9. S in h dfiniion f d o how h f d A. 8 Zchry S Tng C- - 6

Soluion of Iniil Vlu Problm W now hll m h nw Sym : how h Lplc rnform cn b ud o olv linr diffrnil quion lgbriclly. Thorm: [Lplc rnform of driviv] Suppo f i of xponnil ordr, nd h f i coninuou nd f i picwi coninuou on ny inrvl A. Thn L {f } L {f } f Applying h horm mulipl im yild: L {f } L {f } f f, L {f } L {f } f f f, : : L {f n } n L {f } n f n f f n n f n f. Thi i n xrmly uful pc of h Lplc rnform: h i chng diffrniion wih rpc o ino muliplicion by nd, n lil rlir, diffrniion wih rpc o ino muliplicion by, on h ohr hnd. Eqully impornly, i y h h Lplc rnform, whn pplid o diffrnil quion, would chng driviv ino lgbric xprion in rm of nd h rnform of h dpndn vribl ilf. Thu, i cn rnform diffrnil quion ino n lgbric quion. W r now rdy o how h Lplc rnform cn b ud o olv diffrniion quion. 8 Zchry S Tng C- - 7

Solving iniil vlu problm uing h mhod of Lplc rnform To olv linr diffrnil quion uing Lplc rnform, hr r only bic p:. Tk h Lplc rnform of boh id of n quion.. Simplify lgbriclly h rul o olv for L{y} Y in rm of.. ind h invr rnform of Y. Or, rhr, find funcion y who Lplc rnform mch h xprion of Y. Thi invr rnform, y, i h oluion of h givn diffrnil quion. Th nic hing i h h m -p procdur work whhr or no h diffrnil quion i homognou or nonhomognou. Th fir wo p in h procdur r rhr mchnicl. Th l p i h hr of h proc, nd i will k om prcic. L g rd. 8 Zchry S Tng C- - 8

8 Zchry S Tng C- - 9

Exmpl: y 6y y, y, y [Sp ] Trnform boh id L{y 6y y} L{} L{y} y y 6L{y} y L{y} [Sp ] Simplify o find Y L{y} L{y} 6 L{y} L{y} 6 L{y} 9 6 L{y} 9 L{y} 9 6 [Sp ] ind h invr rnform y U pril frcion o implify, L{y} 9 6 b 9 6 b 9 b b b 8 Zchry S Tng C- -

Equing h corrponding cofficin: b 9 b b Hnc, L{y} 9 6. Th l xprion corrpond o h Lplc rnform of. Thrfor, i mu b h y. Mny of h obrvn udn no doub hv noicd n inring pc ou of mny of h mhod of Lplc rnform: h i find h priculr oluion of n iniil vlu problm dircly, wihou olving for h gnrl oluion fir. Indd, i uully k mor ffor o find h gnrl oluion of n quion hn i k o find priculr oluion! Th Lplc Trnform mhod cn b ud o olv linr diffrnil quion of ny ordr, rhr hn ju cond ordr quion in h prviou xmpl. Th mhod will lo olv nonhomognou linr diffrnil quion dircly, uing h xc m hr bic p, wihou hving o prly olv for h complmnry nd priculr oluion. Th poin r illurd in h nx wo xmpl. 8 Zchry S Tng C- -

Exmpl: y y, y. [Sp ] Trnform boh id L{y y} L{ } L{y} y L{y} L{ } [Sp ] Simplify o find Y L{y} L{y} L{y} L{y} L{y} 8 L{y} [Sp ] ind h invr rnform y By pril frcion, 8 L{y} b c. 8 Zchry S Tng C- -

8 Zchry S Tng C- - 8 c b c b c c c c b b c b c b c b 8 b c c L{y} 8. Thi xprion corrpond o h Lplc rnform of. Thrfor, y. No: L { n }! n n

Exmpl: y y y, y, y [Sp ] Trnform boh id L{y} y y L{y} y L{y} L{ } [Sp ] Simplify o find Y L{y} L{y} L{y} L{y} / L{y} / L{y} L{y} 6 6 [Sp ] ind h invr rnform y By pril frcion, L{y} 6. Thrfor, y. 8 Zchry S Tng C- -

or h nx xmpl, w will nd h following Lplc rnform: L {co b} b b L {in b} b, >, > L { co b} b b L { in b} b, >, > No: Th vlu of nd b in h l wo xprion dnominor cn b drmind wihou uing h mhod of compling h qur. Any irrducibl qudric polynomil B C cn lwy b wrin in h rquird from of b by uing h qudric formul o find ncrily complx-vlud roo. Th vlu i h rl pr of, nd h vlu b i ju h bolu vlu of h imginry pr of. Th i, if λ ± µ i, hn λ nd b µ. 8 Zchry S Tng C- -

8 Zchry S Tng C- - 6 Exmpl: y y y co, y, y [Sp ] Trnform boh id L{y} y y L{y} y L{y} L{co} [Sp ] Simplify o find Y L{y} L{y} L{y} L{y} / L{y} / L{y} L{y} [Sp ] ind h invr rnform y By pril frcion, L{y} 6 which corrpond o [ ] in co in co y

8 Zchry S Tng C- - 7 Exmpl: ind h invr Lplc rnform of ch i 8 Rwri : 9 Anwr: in 9 co f ii U pril frcion o rwri : 6 Anwr: f

Appndix A Som Addiionl Propri of Lplc Trnform I. Suppo f i diconinuou, hn h Lplc rnform of i driviv bcom L {f } L {f } lim f. II. Suppo f i priodic funcion of priod T, h i, f T f, for ll in i domin, hn L {f } T T f d. Commn: Thi propry i convnin whn finding h Lplc rnform of diconinuou priodic funcion, who diconinuii ncrily hr r infinily mny, du o h priodic nur of h funcion would mk h uul pproch of ingring from o unwildy. III. L c > b conn, h im-cling propry of Lplc rnform h L {f c } c c. IV. W hv known h L { f }. Tking h invr rnform on boh id yild f L { }. Thrfor, f L { }. 8 Zchry S Tng C- - 8

Th i, if w know how o invr h funcion, hn w lo know how o find h invr of i ni-driviv. ormlly, L { f } u du. V. Similrly, dividing by corrponding n ingrl wih rpc o. L { f u du }. Commn: Thrfor, dividing funcion by i indpndn vribl h h ffc of ni-diffrniion wih rpc o h ohr indpndn vribl for Lplc rnform. Th wo propri IV nd V r h counr pr of h muliplicion-corrpond-o-diffrniion propri n rlir. VI. Afr lrning h fc h L {f g} L{f } L{g}, on migh hv wondrd whhr hr i n oprion of wo funcion f nd g who rul h Lplc rnform qul o h produc of h individul rnform of f nd g. Such oprion do xi: L { f g d } L{f }L{g}. Th ingrl on h lf i clld convoluion, uully dnod by f * g h rik i h convoluion opror, no muliplicion ign!. Hnc, L{f * g} L{f } L{g}. urhrmor, L{f * g} L{g * f }. 8 Zchry S Tng C- - 9

8 Zchry S Tng C- - Exmpl: L f nd g, find f * g nd g * f. f * g d d 6 6 6 g * f d d 6 6 6 In ddiion, obrv h, by king h invr Lplc rnform of boh id h propry VI, w hv d g f L {L{f }L{g}}. In ohr word, w cn obin h invr Lplc rnform of impl funcion of h i ilf produc of Lplc rnform of wo known funcion of by king h convoluion of h wo funcion of. Exmpl: ind h invr Lplc rnform of. ir, no h L{}L{in } Thrfor, i invr cn b found by h convoluion ingrl ling f nd g in :

8 Zchry S Tng C- - co co co in d co. Th nwr cn b ily vrifid uing h uul invr chniqu. Exmpl: ind h invr Lplc rnform of. Sinc i produc of h Lplc rnform of nd, i follow h f * d d.

Exrci C-.: ind h Lplc rnform of ch funcion blow.. f. f co 6 in 6. f. f 7 6. f in in b f in co 6. f co b f co 7. f co b, b f in b 8. f co 9. f co α β b f in α β. f in Hin: in α inα in α 9 ind h invr Lplc rnform of ch funcion blow... 6 8.. 7. 6. 8 6 6 7. 8. 8 9. α β 8 Zchry S Tng C- -

U h mhod of Lplc rnform o olv ch IVP.. y y, y. y y, y. y 6y in, y. y y, y 6, y. y y y, y, y. y y y, y, y 6. y 8y y, y, y 8 7. y 6y y, y, y 8. y y 8co 8, y, y 9. y y y 8 6, y, y. y y y, y, y. y y y y, y 7, y 7, y. y y y, y, y 7, y. y y y y 6, y, y, y. Prov h im-cling propry propry III, Appndix A. Hin: L u c, nd v / c, hn how L {f c } vu f u du. c. U propry IV of Appndix A o vrify h L {rcn / } in. 6. Apply propry V of Appndix A o f co b f n, n poiiv ingr 8 Zchry S Tng C- -

8 Zchry S Tng C- - Anwr C-.:. 6. 6.. 7 6. b 6 6., b 7. b b, b b b 8. 96 6 9. in co α β α β, b co in α β α β. 8. f co in. f 8 8. in 7 co f. f 7 6 6. f in 8 8 6. f co 7. f 8. in co f 9. f β α β α. y

. y. y 6 co in. y 6. y. y 6. y co in 7. y co in 8. y co in in 9. y. y. y 7. y. y co in 8 Zchry S Tng C- -