Radial basis function neural networks model to estimate global solar radiation in semi-arid area

Similar documents
Direct and diffuse solar radiation components estimation based on RBF model: Case study

ESTIMATION OF SOLAR RADIATION USING LEAST SQUARE SUPPORT VECTOR MACHINE

Application of Fully Recurrent (FRNN) and Radial Basis Function (RBFNN) Neural Networks for Simulating Solar Radiation

Assessment of global solar radiation absorbed in Maiduguri, Nigeria

ATMOSPHERIC TURBIDITY STUDY USING GROUND AND ORBIT DATA

Solar radiation in Onitsha: A correlation with average temperature

An Spatial Analysis of Insolation in Iran: Applying the Interpolation Methods

Comparative study of two models to estimate solar radiation on an inclined surface

The Spatial Analysis of Insolation in Iran

OPTIMISING THE TEMPORAL AVERAGING PERIOD OF POINT SURFACE SOLAR RESOURCE MEASUREMENTS FOR CORRELATION WITH AREAL SATELLITE ESTIMATES

Feature Selection Optimization Solar Insolation Prediction Using Artificial Neural Network: Perspective Bangladesh

Chapter 2 Available Solar Radiation

Temporal global solar radiation forecasting using artificial neural network in Tunisian climate

Hourly solar radiation estimation from limited meteorological data to complete missing solar radiation data

Citation for the original published paper (version of record):

An Empirical Method for Estimating Global Solar Radiation over Egypt S. A. Khalil, A. M. Fathy

Direct Normal Radiation from Global Radiation for Indian Stations

An Adaptive Multi-Modeling Approach to Solar Nowcasting

Purdue University Meteorological Tool (PUMET)

Application of Artificial Neural Networks to Predict Daily Solar Radiation in Sokoto

SOIL MOISTURE MODELING USING ARTIFICIAL NEURAL NETWORKS

Estimation of Hourly Global Solar Radiation for Composite Climate

A semi-empirical model for estimating diffuse solar irradiance under a clear sky condition for a tropical environment

OPTIMIZATION OF GLOBAL SOLAR RADIATION OF TILT ANGLE FOR SOLAR PANELS, LOCATION: OUARGLA, ALGERIA

Performance Assessment of Hargreaves Model in Estimating Global Solar Radiation in Sokoto, Nigeria

Solar radiation analysis and regression coefficients for the Vhembe Region, Limpopo Province, South Africa

Correlation for estimation of hourly solar radiation

Evaluation of monthly total global and diffuse solar radiation in Ibi, Taraba state, Nigeria

Classification of Aerosol Types over Ghardaia, Algeria, Based on MODIS Data

A comparative study of ANN and angstrom Prescott model in the context of solar radiation analysis

Average Monthly Solar Radiations At Various Places Of North East India

COMPARISON OF MEASURED AND ESTIMATED SOLAR RADIATION DATA: A CASE STUDY FOR ISTANBUL

TRENDS OF THE GLOBAL SOLAR RADIATION AND AIR TEMPERATURE IN CLUJ-NAPOCA, ROMANIA ( )

Spatiotemporal Analysis of Solar Radiation for Sustainable Research in the Presence of Uncertain Measurements

Page 1. Name:

Using artificial neural network for solar energy level predicting

Effect Of Cloudless Sky Parameters On Global Spectral Solar Radiation Within µm Region

Empirical models for the correlation of clearness index with meteorological parameters in IRAQ

Modeling Of Global Solar Radiation By Using Ambient Air Temperature At Coastal Cities In India

A study of determining a model for prediction of solar radiation

PROJECTING THE SOLAR RADIATION IN NASARAWA-NIGERIA USING REITVELD EQUATION

Vertical Illuminance Measurement for Clear Skies in Tehran

Literature Review. Chapter Introduction

Estimation of Hourly Solar Radiation on Horizontal and Inclined Surfaces in Western Himalayas

Prediction of Global Horizontal Radiation in Vellore using Clearness Index Model

IMPROVED MODEL FOR FORECASTING GLOBAL SOLAR IRRADIANCE DURING SUNNY AND CLOUDY DAYS. Bogdan-Gabriel Burduhos, Mircea Neagoe *

Estimation of Seasonal and Annual Albedo of the Earth s Atmosphere over Kano, Nigeria

Prediction of Hourly Solar Radiation in Amman-Jordan by Using Artificial Neural Networks

Measurements of the angular distribution of diffuse irradiance

P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES. Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski #

Modeling Solar Radiation at the Earth's Surface

COMPARISON OF CLEAR-SKY MODELS FOR EVALUATING SOLAR FORECASTING SKILL

Global solar radiation characteristics at Dumdum (West Bengal)

EE-588 ADVANCED TOPICS IN NEURAL NETWORK

Insolation and Temperature variation. The Sun & Insolation. The Sun (cont.) The Sun

On a Probability Distribution Convolution Approach to Clear-Sky Index and a Generalized Ångström Equation

Prediction of Global Solar Radiation Using Artificial Neural Network

Estimation of Monthly Average Daily Solar Radiation from Meteorological Parameters: Sunshine Hours and Measured Temperature in Tepi, Ethiopia

Solar Radiation Measurements and Model Calculations at Inclined Surfaces

Estimation of clearness index from different meteorological

Global Solar Dataset for PV Prospecting. Gwendalyn Bender Vaisala, Solar Offering Manager for 3TIER Assessment Services

A FIRST INVESTIGATION OF TEMPORAL ALBEDO DEVELOPMENT OVER A MAIZE PLOT

Estimation of Solar Radiation using Daily Low and High Temperature

SOLAR RADIATION ESTIMATION AND PREDICTION USING MEASURED AND PREDICTED AEROSOL OPTICAL DEPTH

Uncertainty of satellite-based solar resource data

Three Structures of a Multilayer Artificial Neural Network for Predicting the Solar Radiation of Baghdad City- Iraq

Hottel s Clear Day Model for a typical arid city - Jeddah

Calculating equation coefficients

Journal of Applied Research and Technology 14 (2016)

Estimation of Diffuse Solar Radiation for Yola, Adamawa State, North- Eastern, Nigeria

Impact of aerosol on air temperature in Baghdad

ME 430 Fundamentals of Solar Energy Conversion for heating and Cooling Applications

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean

Introducing NREL s Gridded National Solar Radiation Data Base (NSRDB)

CLOUD NOWCASTING: MOTION ANALYSIS OF ALL-SKY IMAGES USING VELOCITY FIELDS

Asian Journal on Energy and Environment

Reading, UK 1 2 Abstract

COMPARISON OF CLEAR-SKY MODELS FOR EVALUATING SOLAR FORECASTING SKILL

Comparison of meteorological data from different sources for Bishkek city, Kyrgyzstan

Evaluation of cloudiness/haziness factor for composite climate

Journal of Asian Scientific Research

GHI CORRELATIONS WITH DHI AND DNI AND THE EFFECTS OF CLOUDINESS ON ONE-MINUTE DATA

SUNY Satellite-to-Solar Irradiance Model Improvements

TRENDS IN DIRECT NORMAL SOLAR IRRADIANCE IN OREGON FROM

ON-LINE SOLAR RADIATION MONITORING SYSTEM, IN CLUJ NAPOCA, ROMANIA

Radial Basis Function Networks. Ravi Kaushik Project 1 CSC Neural Networks and Pattern Recognition

Hourly Solar Radiation Analysis of Buildings within 48 Facings in FuZhou, China

Conference Presentation

Prediction of Global Solar Radiation in UAE

Solar Radiation in Port Harcourt: Correlation with Sunshine Duration.

Solar Nowcasting with Cluster-based Detrending

Study of Models for Predicting the Mean Hourly Global Radiation from Daily Summations

Neural Networks Lecture 4: Radial Bases Function Networks

Application of Artificial Neural Networks for Global Solar Radiation Forecasting With Temperature

Estimation of solar radiation power using reference evaluation of solar transmittance, 2 bands (REST 2) model

1 A 3 C 2 B 4 D. 5. During which month does the minimum duration of insolation occur in New York State? 1 February 3 September 2 July 4 December

BUFR Table D - List of common sequences

Perez All-Weather Sky Model Analysis

TOTAL COLUMN OZONE AND SOLAR UV-B ERYTHEMAL IRRADIANCE OVER KISHINEV, MOLDOVA

WMO Aeronautical Meteorology Scientific Conference 2017

Transcription:

Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 27, July-December 2015 p. 177-184 Radial basis function neural networks model to estimate global solar radiation in semi-arid area Abdelaziz RABEHI *, Mawloud GUERMOUI, Djelloul DJAFER, and Mohamed ZAIANI Research Unit Applied Renewable Energy, URAER, Renewable Energy Development Centre, CDER, 47133, Ghardaïa, Algeria E-mails: Rab_ehi@hotmail.fr, rabhi_abdelaziz@uraer.dz Corresponding author, phone: 00(213)029 87 01 26; fax: 00(213)029 87 01 46 Abstract For many developing countries, solar radiation measurements are only available for selected stations due to the cost of the measurement equipment and techniques involved. In this study, a simple model based on Radial Basis Function neural networks is proposed to estimate the Daily Global Solar Radiation using a limited meteorological data measured at Ghardaïa station. The study covered three years from 2012 (1 st January) to 2014 (28 th October). The obtained results show that the Radial Basis Function neural network model predicts the Daily Global Solar Radiation of clear and perturbed days with a good accuracy. The difference between the measured and the predicted values show a Root Mean Square Error of 0.014. Keywords Global solar radiation; Prediction; Neural network; Regression; Radial Basis Function (RBF) Introduction The Sun is the driving force for all atmospheric processes. Solar radiation intensity is the expression of that input of energy upon the planet Earth. Therefore, the ability to understand and quantify its value and distribution accurately is important in the initial 177

Radial basis function neural networks model to estimate global solar radiation in semi-arid area Rabehi ABDELAZIZ, Guermoui MAWLOUD, Djafer DJELLOUL, and Zaiani MOHAMED understanding and modeling of any other thermodynamic or dynamic process in the Earthocean-atmosphere system. Unfortunately, too little is known about the spatial and temporal distribution of incoming solar radiation. A more complete and precise description of that distribution will prove usefulness to many fields of study that rely on atmospheric energy input, such as agricultural, architectural and engineering planning [1]. To assess the availability of solar radiation at different locations, measurements of global radiation, diffuse radiation, beam radiation, Sun shine hours, bright Sun shine hours, maximum and minimum temperature, humidity, pressure, visibility, wind speed and its direction, gust speed, water precipitation and air mass are very important parameters for designers of solar energy systems. For these reasons, several papers previously published on different types of clear sky models, analysis, and validation for various measurement locations. Each paper has its own benefit for looking at differing complexities, models for each component of irradiance and accuracy for a given location or geographic region. Gueymard analyzed eleven clear sky irradiance models for predicting beam, diffuse and global radiation on a horizontal surface [2]. Bird and Hulstrom analyzed six atmospheric clear sky models for direct, diffuse sky, diffuse sky/ground and Global Horizontal Irradiance [3]. Badescu looked at five very simple clear sky models for GHI for two cities in Romania [4]. Younes and Muneer evaluated four clear sky models for six locations in UK, Spain and India [5]. Gueymard and Wilcox did a very detailed study on 18 broadband radioactive clear sky models that predict direct, diffuse and global irradiances under clear skies from atmospheric data [6]. In the present work, we propose a simple model based on Radial Basis Function (RBF) neural networks to estimate Global Solar Radiation (GSR) using a limited meteorological data measured at Ghardaïa station. Material and method RBF neural networks Radial-Basis Function Networks (RBFN) can be used for a wide range of applications, primarily because they can approximate any function and their training faster compared to Multi-Layer Perceptors (MLP). This fast learning speed comes from the fact that RBFN have just two layers (see Figure 3) of parameters (centers, widths and weights). The RBFN is based 178

Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 27, July-December 2015 p. 177-184 on the idea of approximating a function F(x) through a linear combination of radial basis functions Ψ [7-10]. (1) where P, λ j, and c j are the number, the weight and the center (prototype) of the radial functions, respectively A typical choice for the radial basis function is the Gaussian kernel: (2) where σ j is the width parameter of the j th hidden unit (basis function) of the hidden layer For a given RBFN architecture based on the Gaussian kernel (i.e., for a fixed value of P), the training algorithm consists in finding the parameters λ j, c j and σ j such that its the desired function F(x) as best as possible. Since F(x) is unknown, the goodness of fit is measured empirically by means of the available training samples. Briefly, the training of the hidden layer, which is equivalent to the computation of the kernel parameters (c j and σ j ), is performed by applying the k-means clustering algorithm (with k = P) to the available training samples. Figure 1. Architecture of a radial basis function neural network (RBFN) In this work, for the sake of simplicity, we will assume that all kernel functions have the same width (σ j = σ) [11, 12]. The training of the output layer (i.e., the estimation of the λ j parameter) is accomplished by formulating the estimation problem as a linear system of 179

Radial basis function neural networks model to estimate global solar radiation in semi-arid area Rabehi ABDELAZIZ, Guermoui MAWLOUD, Djafer DJELLOUL, and Zaiani MOHAMED equations solved according to the pseudo-inverse technique. Site location and solar radiation data The data used to perform the present study have been recorded at the Applied research Unit for Renewable Energies (URAER) situated in the south of Algeria far from Ghardaïa city of about 18 km. The latitude, longitude and altitude above the sea level of the URAER are respectively +32.37, +3.77 and 450 m above (see the top of Figure 2) [13,14]. They are recorded every 5 minute and consist in data of temperature, direct, diffuse, and global solar irradiance. The radiometric station used to measure the three components of irradiance (direct, diffuse and global) is show on Figure 2 [15]. The daily variation of GSR during the years 2012-2014, is shown on Figure 3. Figure 2. Location of Ghardaïa city (left). Instrumentation station (right) for measuring the global, the direct and the diffuse solar radiation: (1) Pyranometer for measuring the global solar irradiance. (2) Pyranometer for measuring the diffuse irradiance component. (3) Peryheliometer for measuring the direct irradiance component. (4) The ball used to permanently hide the pyranometer (2). (5) The 2-axis solar tracker [15]. 1 GSR From 1-Janaury-2012 To 28-October-2014 0.8 0.6 Training Validation Test 0.4 0.2 GSR 0-0.2-0.4 2012 2013 2014-0.6-0.8-1 0 100 200 300 400 500 600 700 800 900 1000 Days Figure 3. Daily global solar radiation at Ghardaïa city 180

Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 27, July-December 2015 p. 177-184 Results and discussion In order to obtain the optimal model for prediction of the global solar irradiance, firstly we normalize the data to [-1,1], Then divides the data into two sets named as learning and test sets (see Figure 3). The learning set is divided in its turn to two sets: (i) training set which is used to train the model and (ii) validation set which is used to validate the performance of the model. The Learning data is divided according to the following percentages: 75% for the training set and 25% for validation set. Finally, the test set (data of 2014) is used to verify the performance of the obtained model. The RBF prediction algorithm is shown on Figure 4. Figure 4. The RBF prediction algorithm To perform this work, four parameters were used as input to the RBF neural network which are: (1) the day of the year, (2) the maximum temperature, (3) the mean temperature (4) the sunshine duration in hour and one output which is the Daily Global Solar Radiation (DGSR). The list of the training parameters is shown in Table.1. Table 1. The training parameters of the proposed RBF model Nbr of Training and Validation Samples 700 Nbr of Testing Samples 271 Nbr of Inputs 4 Nbr of Outputs 1 Coarse Search of the width σ j [0.1:0.1:1] Nbr of Neurons in hidden Layer [1:25] After several tests, the RBF model with three neurons in the hidden layer and an optimal width of the Gaussian equal to 2 can model the DGSR with high accuracy and the error is 181

Radial basis function neural networks model to estimate global solar radiation in semi-arid area Rabehi ABDELAZIZ, Guermoui MAWLOUD, Djafer DJELLOUL, and Zaiani MOHAMED about 0.014. Figure 5 shows the error of the trained process and it is minimal value. The data from 2014 was used for testing the performance of the model. The estimated DGSR values were compared with the measured data as shown on Figure 6. The root mean square error (RMSE) between the estimated and the calculated values of the DGSR is found to be 0.014. 0.023 0.022 RMSE Best Model 1 0.8 GSR From 1-Janaury-2014 To 28-October-2014 Mesured Data RBF Model 0.021 0.6 0.4 RMSE 0.02 0.019 0.018 Normalised GSR 0.2 0-0.2 0.017-0.4-0.6 0.016-0.8 0.015 0 50 100 150 200 250 300 350 400 450 500 Nbr of Iteration Figure 5. The ERROR of the training process as a function of the number of iterations -1 0 50 100 150 200 250 300 Days Figure 6. The predicted DGSR (red) superposed to the measured DFSR (blue) From the obtained results, the selected model can predict the DGSR with good accuracy. The Root Mean Square Error (RMSE) between the measured and the predicted values is equal to 0.014. This small difference can be explained the fact by using perturbed and clear day. According to Figure 6, the prediction of DGSR of the perturbed day is difficult to obtain by the model. This phenomenon can be seen by the presence of outliers. In order to estimate the DGSR of the perturbed day by the model, more meteorological data rather than the temperature are needed such as relative humidity, wind speed, pressure and turbidity parameters (Linke factor, angstrom coefficient and exponent coefficient) [16] that characterize the state of the atmosphere. The use of all these parameters together will certainly ameliorate the performance of the model. In this paper a simple RBF neural network model have presented for the prediction the DGSR using both clear and perturbed days and the available meteorological data at the semiarid area of Ghardaïa. The obtained results shows that model predict the DGSR with good accuracy. The Root Mean Square Error (RMSE) between the measured and the predicted values is equal to 182

Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 27, July-December 2015 p. 177-184 0.014.This small difference can be explained the fact by using perturbed and clear day together. In addition, the prediction of the DGSR of the perturbed day is difficult to obtain by the model due to the few parameters available. In order to estimate the DGSR of the perturbed day by the model, more meteorological data rather than the temperature are needed such as relative humidity, wind speed, pressure and turbidity parameters (Linked factor, angstrom coefficient and exponent coefficient). In future work will be used all these parameters as soon as we acquire the instruments that record them to model the GSR and to study the importance of each parameter in the model. Acknowledgments We would like to thank and acknowledge the support of the team at the Research Unit on Renewable Energies of Ghardaïa who collected the data used in the present study. References 1. Pandey C. K., Katiya A. K., Solar Radiation: Models and Measurement Techniques, Journal of Energy, 2013, 2013, Article ID 305207. 2. Gueymard C. A., Critical analysis and performance assessment of clear sky solar irradiance models using theoretical and measured data, Solar Energy, 1993, 51(2), p. 121-138. 3. Bird R. E., Hulstrom R. L., A Simplified Clear Sky Model for Direct and Diffuse Insolation, SERI/TR, 1981, p. 642-761. 4. Badescu V., Verification of some very simple clear and cloudy sky models to evaluate global solar irradiance, Solar Energy, 1997, 61, p. 251-264. 5. Younes S., Muneer T., Clear-sky classification procedures and models using a worldwide data-base, Applied Energy, 2007, 84(6), p. 623-645. 6. Gueymard C. A., Wilcox S. M., Assessment of spatial and temporal variability in the US solar resource from radiometric measurements and predictions from models using ground-based or satellite data, Solar Energy, 2011, 85(5), p. 1068-1084. 7. Benoudji N., Cools E., Meurens M., Verleysen M., Chemometric calibration of infrared spectrometers: selection and validation of variables by non-linear models, Chemometrics 183

Radial basis function neural networks model to estimate global solar radiation in semi-arid area Rabehi ABDELAZIZ, Guermoui MAWLOUD, Djafer DJELLOUL, and Zaiani MOHAMED and Intelligent LaboratorySystems, 2004, 70(1), p. 47-53. 8. Park J., Sandberg I., Approximation and radial-basis-function networks, Neural computation, 1993, 5(2), p. 305-316. 9. Howlett R. J., Jain L. C., Physica -Verlag Heidelberg Printed in Germany, 1st edition, 2001. 10. Zhao Z., Wu X., Lu C., Glotin H., Gao J., Optimizing widths with PSO for center selection of Gaussian radial basis function networks, Science China Information Sciences, 2014, 57(5), p.1-17. 11. Orr M., Introduction to Radial Basis Function Networks, Technical Reports, (1996). Online: http://www.anc.ed.ac.uk/mjo/papers/intro.ps 12. Ng W. W. Y., Yeung D. S., Firth M., Tsang E. C., Wang X. Z., Feature selection using localized generalization error for supervised classification problems using RBFNN, Pattern Recognition, 2008, 41(12), p. 3706-3719. 13. Gairaa K., Characterization and evaluation of solar radiation in Ghardaïa site University of Annaba, Annaba, Algeria, 2012. 14. Gairaa K., Benkaciali S., Analysis of solar radiation measurements at Ghardaïa area, South Algeria, Energy Procedia, 2011, 6, p. 122-129. 15. Djafer D., Irbah A., Estimation of atmospheric turbidity over Ghardaïa city, Atmospheric Research, 2013, 128, p. 76-84. 16. Liu X., Mei X., Li Y., Wang Q., Jensen J. R., Zhang Y., Porter J. R., Evaluation of temperature-based global solar radiation models in China, Agricultural and Forest Meteorology, 2009, 149(9), p. 1433-1446. 184