Coordination Chemistry

Similar documents
Electronic structure Crystal-field theory Ligand-field theory. Electronic-spectra electronic spectra of atoms

Chapter 21: Transition Metals and Coordination Chemistry

Chapter 24. Transition Metals and Coordination Compounds. Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 25 Transition Metals and Coordination Compounds Part 1

NAME: SECOND EXAMINATION

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes

Ligands: an ion or molecule capable of donating a pair of electrons to the central atom via a donor atom.

Transition Metals and Coordination Chemistry

Transition Metals and Complex Ion Chemistry

Chemistry 201: General Chemistry II - Lecture

Orbitals and energetics

Coordination chemistry and organometallics

Coordination Chemistry II: Bonding

NAME: 3rd (final) EXAM

Practice Problems: Transition Elements and Coordination Chemistry. # Ligands Coordination # Oxidation #

Q.1 Predict what will happen when SiCl 4 is added to water.

RDCH 702 Lecture 4: Orbitals and energetics

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Metallic best heat conductor of heat and e the second. Ionic compounds often contain more than one oxidation state

Ch. 23: Transition metals and Coordination Chemistry

11/9/15. Intermolecular hydrogen bond: Hydrogen bond: Intramolecular hydrogen bond: Induced dipole moment, polarisability

CHEMISTRY Topic #3: Colour in Chemistry Fall 2017 Dr. Susan Findlay See Exercises 12.1 to Fe 2 O 3 Cr 2 O 3 Co 2 O 3 TiO 2.

5.111 Principles of Chemical Science

Transition Metal Chemistry

Downloaded from

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling

Coordination compounds

NAME: FIRST EXAMINATION

Q.1 Predict what will happen when SiCl 4 is added to water.

Transition Metal Chemistry

CHEM J-2 June 2014

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20

If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o.

The d-block elements. Transition metal chemistry is d-orbitals/electrons

489--Lectures 3 and 4. Fundamentals of Inorganic Chemistry

- A polar molecule has an uneven distribution of electron density, making it have ends (poles) that are slightly charged.

CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds

CHAPTER - 9 ORDINATION COMPOUNDS

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 16. Transition Metals Complexes: Structure and Isomers

UNIT IX COORDINATION COMPOUNDS ( 3 : MARKS)

Chapter 24. Chemistry of Coordination Compounds

25 Mn Ni Co Rh Fe Ru Os Uns (262) Une (266) 195.

TRANSITION METAL COMPLEXES Chapter 25, VB/CF Handout

Transition Metals and Coordination Chemistry. 1. In the transition metals section chemical similarities are found within a and across a.

The d -Block Elements & Coordination Chemistry

Guide to the Extended Step-Pyramid Periodic Table

- A polar molecule has an uneven distribution of electron density, making it have ends (poles) that are slightly charged.

- an approach to bonding that is useful for making estimates of E of orbitals in coordination complexes

Section 6 Questions from Shriver and Atkins

Transition Metal Chemistry

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. covalent bond molecule sigma bond exothermic pi bond

Chapter 20 d-metal complexes: electronic structures and properties

Inorganic chemistry 3-stage Lec. 2. Dr- leaqaa

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

Chap 24. Transition Metals and Coordination Compounds. Hsu Fu-Yin

Chapter 25 Transition Metals and Coordination Compounds Part 2

Chapter 21 Coordination chemistry: reactions of complexes

PERIODIC TABLE OF THE ELEMENTS

18-Jul-12 Chemsheets A

I. Multiple Choice Questions (Type-I) ] 2+, logk = [Cu(NH 3 ) 4 O) 4. ] 2+, logk = 8.9

M11/4/CHEMI/SPM/ENG/TZ2/XX CHEMISTRY STANDARD LEVEL PAPER 1. Monday 9 May 2011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

Chapter 21 Transition Metals and Coordination Chemistry

Chapter 21 Transition Metals and Coordination Chemistry

CO-ORDINATION COMPOUNDS AND CHEMICAL BONDING QUESTIONS

CHEM 130 Exp. 8: Molecular Models

Chapter 10 Practice Problems

Q.1 Predict what will happen when SiCl 4 is added to water.

2 electrons 2s 2 2p 6. 8 electrons (octet rule) 3s 2 3p 6 3d 10

Transition Metal Elements and Their Coordination Compounds

Made the FIRST periodic table

Atomic Structure & Interatomic Bonding

Drawing Lewis Structures

Dr. Fred O. Garces Chemistry 201

Solutions and Ions. Pure Substances

M10/4/CHEMI/SPM/ENG/TZ2/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

Crystal Field Theory History

TM compounds. TM magnetism

PART CHAPTER2. Atomic Bonding

Chapter 19 d-block metal chemistry: general considerations

Transition Metal Chemistry and Coordination Compounds

CO-ORDINATION COMPOUNDS

CHEM 172 EXAMINATION 2. February 12, Dr. Kimberly M. Broekemeier NAME: l = 2r l = 8 1/2 r l = (4/3 1/2 )r. h = 6.

ion can co-ordinate either through nitrogen or through oxygen atom to the central metal atom/ion. If the donor atom is N, it is written as NO 2

Bonding in Transition Metal Compounds Oxidation States and Bonding

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory

M09/4/CHEMI/SPM/ENG/TZ1/XX+ CHEMISTRY. Monday 18 May 2009 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 21. Transition Metals Complexes V: Reaction Mechanisms


AP CHEMISTRY CHAPTERS 5 & 6 Problem Set #4. (Questions 1-13) Choose the letter that best answers the question or completes the statement.

M09/4/CHEMI/HPM/ENG/TZ2/XX+ CHEMISTRY. Monday 18 May 2009 (afternoon) 1 hour INSTRUCTIONS TO CANDIDATES

UNIT 9 Topic: Coordination Compounds

7. Relax and do well.

Chemistry Higher level Paper 1

FACULTY OF HEALTH AND APPLIED SCIENCES DEPARTMENT OF NATURAL AND APPLIED SCIENCES COURSE NAME: INORGANIC CHEMISTRY PAPER: THEORY INSTRUCTIONS PWI JE"

Chapter 8 Test Study Guide AP Chemistry 6 points DUE AT TEST (Wed., 12/13/17) Date:

Chemistry 1B. Fall Lectures Coordination Chemistry

CHEM 251 (Fall-2003) Final Exam (100 pts)

Periodicity & Many-Electron Atoms

Transcription:

Coordination Chemistry 1893 To central atom, more ligands can be bound then is its oxidation number Alfred Werner (1866-1919) P in Chemistry 1913 [Co II (gly) 3 ] - 1

Coordination Compounds [Co(H 3 ) 6 ]Cl 3 [Co(H 3 ) 5 Cl]Cl 2 [Co(H 3 ) 4 Cl 2 ]Cl 3+ 2+ + Metal in oxidation state n+ (primary valence) Complex has coordination number m (secondary valence) Ligands bound to central atom by donor-acceptor bonds 2

Coordination Compounds n+/- Ligands X +/- n Complex charge Central cation / metal atom Anion/cation (opposite charge) Central metal cation / neutral atom surrounded by a set of ligands. Each ligand provides 2 electrons to empty d-orbitals at metal and forms donor-acceptor bond. umber of ligands = Coordination number 3

Inner and uter Coordination Sphere Inner Coordination Sphere = ligands driectly bound to the central atom uter Coordination Sphere = ions asociated with a complex, not bound uter Coordination Sphere Inner Coordination Sphere counterion H 2 S 4 2- H 2 ligand H 2 H 2 Mn 2+ H 2 H 2 Mn 2+ S 3 H 2 H 2 H 2 H 2 H 2 [Mn(H 2 ) 5 (S 4 ) 5 ]: Inner Coordination of S 4 2- [Mn(H 2 ) 6 ][S 4 ]: outer coordination of S 4 2-4

Coordination Compounds K 2 [PtCl 6 ] 5

Energy Level rdering Ar [e] 3s 2 3p 6 (4s 0 ) K [Ar] 4s 1 (3d 0 4p 0 ) Ca [Ar] 4s 2 (3d 0 4p 0 ) Sc [Ar] 3d 1 4s 2 (4p 0 ) Ti [Ar] 3d 2 4s 2 (4p 0 ) 6

Stability of Half- / Filled d-rbitals Cr [Ar] 3d 5 4s 1 (4p 0 ) Cu [Ar] 3d 10 4s 1 (4p 0 ) 7

xidation States of TMs Sc Ti V Cr Mn Fe Co i Cu Zn 3 2,3 4 1,2,3 4,5 1,2, 3,4, 5,6 1,2, 3,4, 5,6,7 2,3, 4,5,6 1,2,3,4 1,2 3,4 1,2 2 8

d-electron Count umber of electrons in valence level Cr [Ar] 3d 5 4s 1 (4p 0 ) umber of electrons removed during cationt formation: electrons of s-orbital are removed first Cr 3+ umber of electrons remaining in d- orbitals Cr 3+ [Ar] 3d 3 4s 0 (4p 0 ) Cr 3+ is a d 3 cation 9

ox = - - 1 2 3 4 5 6 7 8 9 10 11 12 en = H 2 H 2 Complex x.o. (Ligand) x.o. (M) o. d-electrons [Cr 2 7 ] 2- -2 +6 d 0 [Mn 4 ] - -2 +7 d 0 [Ag(H 3 ) 2 ] + 0 +1 d 10 [Ti(H 2 ) 6 ] 3+ 0 +3 d 1 [Co(en) 3 ] 3+ 0 +3 d 6 [PtCl 2 (H 3 ) 2 ] -1, 0 +2 d 8 [V(C) 6 ] 4- -1 +2 d 3 [Fe(ox) 3 ] 3- -2 +3 d 5 10

Donor-Acceptor Bond donor-acceptor bond is equivalent to a covalent bond Acceptor Empty orbital Donor Free e pair Covalent Bond 11

VB theory H H H + F Donor-Acceptor Bond B F F F H F B H F H F H F B H F H H 3 + BF 3 H 3 _ > BF 3 Donor-Acceptor Bond 12

Donor-Acceptor Bond H 3 + BF 3 H 3 _ > BF 3 VB theory F F F F F F F F F H H H H H H H H H B M theory 13

VB theory Donor-Acceptor Bond "Lewis Base" [Co(H 3 ) 6 ] 3+ H 3 3+ 6 H H H + Co 3+ H 3 H 3 H 3 H 3 Each ligand provides 2 electrons "Lewis Acid" H 3 14

Pt 2+ [Xe] 4f 14 5d 8 4s 0 d s p PtCl 4 2- dsp 2 hybrid orbitals Electrons from Cl -, square planar d s p i 2+ [Ar] 3d 8 4s 0 icl 4 2- sp 3 hybrid orbitals Electrons from Cl -, tetrahedral 15

Co 3+ [Ar] 3d 6 4s 0 d s p CoF 6 3- Co 3+ [Ar] 3d 6 4s 0 Co(H 3 ) 6 3+ d s sp 3 d 2 hybrid orbitals Electrons from F -, octahedral p L L L L L d 2 sp 3 hybrid orbitals Electrons from H 3, octahedral L 16

Monodentate Ligands C Carbon dioxide Cr C i(c) 4, Fe(C) 5, Mo(C) 6 H 3 ammonia P PPh 3 phosphane H 2 water SR 2 thioether 17

HSAB = Hard and Soft Acids and Bases R. Pearson 1963 High oxidation states of central atoms are stabilised by F, 2 Low oxidation states are stabilised by C, C Hard Soft Acid Base 18

HARD donor atoms HSAB SFT donor atoms H 3, F -, H 2, H -, C 2-3 Small donor atoms High electronegativity Difficult to polarize Weak C, PPh 3, I -, C 2 H 4, SRH, C -, SC - Large donor atoms Low electronegativity Easily polarized Stabile complexes complexes Stabile complexes Hard metals Fe(III), Mg(II), Cr(III), Al(III) Small atoms (1st trans. row) Large charge Soft metals Ag(I), Cu(I), Hg(II), Au(I) Large atoms (2nd and 3rd transition row) Small charge 19

eutral Bidentate Ligands H 2 H 2 [PtCl 2 (en)] Five-membered chelate cycle square planar complex 1,2-diaminoethane = ethylendiamine = en Ph 2 P PPh 2 1,2-difenylphosphinoethane dppe 2,2'-bipyridine bipy 1,10-phenanthroline phen 20

Anionic Bidentate Ligands H 3 C acetate = ac - - - oxalate = ox 2- R R 1 H Pd H R 1 complex Pd(II)-oxim R π-donor bidentate ligand Fe C C C [Fe(C) 3 (h 4 -C 4 H 6 )] 21

Tridentate Ligands H 2 H H 2 diethylentriamine dien 2,2':6',2"-terpyridine tpy 1,2,4-triazacyclononane Macrocyclic ligand H H H 22

Tetradentate Ligands H 2 H 2 H 2 tris(2-aminoethyl)amine tren H H H H porfyrine ftalocyanine 23

Multidentate Ligands tetraanion of ethylendiamintetraacetic acid EDTA - - - - M Hexadentate 24

omenclature of Coordination Complexes H 2 -Aqua H 3 -Ammine C-Carbonyl -itrosyl CH 3 H 2 -Methylamine C 5 H 5 -Pyridine F - -Fluoro Cl - -Chloro Br--Bromo I - -Iodo 2- -xo H - -Hydroxo C - -Cyano S 4 2- -Sulfato S 2 3 2- -Thiosulfato 2- -itrito-- - -itrito-- SC - -Thiocyanato-S- CS - -Thiocyanato-- 25

Stability of Complexes Stability constant of a complex = equilibrium constant of its formation High value of K = stabile complex 26

Stability of Complexes Stability constant of a complex ML n 27

Stability of Complexes Total stability constant of a complex ML n 28

Chelate Effect logk = 8.61 [i(h 2 ) 6 ] 2+ + 6 H 3 [i(h 3 ) 6 ]2+ + 6 H 2 logk = 18.28 [i(h 2 ) 6 ] 2+ + 3 en [i(en) 3 ] 2+ + 6 H 2 ΔG = - RT lnk = ΔH - TΔS ΔH same for both reactions (i- i-) ΔS high for chelate, more product particles 29

Chelates, Macrocycles, Cryptates P in Chemistry 1987 Donald J. Cram Jean-Marie Lehn Charles J. Pedersen 30

Chelates, Macrocycles, Cryptates EDTA tetraanion of ethylendiamintetraacetic acid CH CH HC CH Co Chelatation therapy of Pb poisoning Chelatometry Dissolves CaC 3 31

Chelates, Macrocycles, Cryptates Metalloporphyrins: M = Fe (hem, cytochrom c), Mg (chlorophyl), Co (B 12 ) R 9 R 8 R 1 R 7 R 2 R 12 M R 10 R 6 R 3 R 5 R 11 R 4 32

Hemoglobine 33

6C 2 + 6H 2 C 6 H 12 6 + 6 2 Mg chlorophyl 34

Chelates, Macrocycles, Cryptates Valinomycine 35

Geometry of Complexes L L L L L M L L L M L L ctahedral complexes h Tetrahedral complexs T d 36

Geometry of Complexes Tetrahedral 109 o 28' C.. 4 Square planar 90 o C.. 4 Trigonal bipyramidal 120 o + 90 o C.. 5 Square pyramidal 90 o C.. 5 ctahedral 90 o C.. 6 37

Isomers of Complexes Structural isomers Bonding Coordination Ionization Stereo isomers Geometric ptical 38

Structural Isomers Bonding : SC -, 2-, C - 2+ 2+ H 3 H 3 H 3 H 3 Co H 3 H 3 H 3 H 3 H 3 Co H 3 nitro- nitrito- 39

Structural Isomers Coordination [Pt(H 3 ) 4 ][CuCl 4 ] [Cu(H 3 ) 4 ][PtCl 4 ] Ionization [Co(H 3 ) 5 S 4 ]Br [Co(H 3 ) 5 Br]S 4 40

Stereo Isomers Geometric: cis-trans, diastereomers 41

Stereo Isomers Geometric: cis-trans diastereomers cis trans Cl H 3 H 3 Pt Cl Cl Pt Cl H 3 H 3 42

Antitumor Medicine H 3 Cl Pt H 3 Cl Cisplatin H 3 H 3 Pt Carboplatin H 3 H 3 Pt edaplatin H 2 Pt H 2 xaliplatin Inactive H 2 H 3 Cl Cl Pt Pt H 3 H Cl H 2 43

Cisplatin = cancerostatics Stereo Isomers H 2 H H 3 H H Pt H 3 H H H H H 2 P - H H DA H P H H - 44

Stereo Isomers Geometric: mer-fac, diastereomers fac A B mer A B A M B A M B A B B A S fac mer S L S M L M L L L L 45

ptical: enantiomers Stereo Isomers 46

ptical: enantiomers Stereo Isomers [Co(en) 3 ] 3+ o S n S 1 = symmetry plane S 2 = inversion center 47

ptical Rotation 48

1) VB Bonding in Complexes 2) CFT = Crystal Field Theory 1929 Hans Bethe Electrostatic interactions between ligands and metal 3) LFT = Ligand Field Theory 1935 modification J. H. Van Vleck covalence 4) M 49

ctahedral complex Ligand Field Theory z Central atom in the center of octahedron y x Ligands as negative point charges 50

d-rbitals in ctahedral Ligand Field 51

Splitting of d-levels in h Field e g Destabilization 0.6 Δ o 5 degenerate d-orbitals in isolated cation t 2g Stabilization 0.4 Δ o 52

CFSE = Crystal Field Stabilization Energy Δ o Δ o Weak field Δ o < P (pairing energy) High spin complexes Strong field Δ o > P (pairing energy) Low spin complexes 53

Crystal Field Stabilization Energy Weak field Strong field Δ o increases 54

Weak field Strong field e CFSE e CFSE d 1 t 2g 1 1 0.4 Δ o t 2g 1 1 0.4 Δ o d 2 t 2g 2 2 0.8 Δ o t 2g 2 2 0.8 Δ o d 3 t 2g 3 3 1.2 Δ o t 2g 3 3 1.2 Δ o d 4 t 2g 3 e g 1 4 0.6 Δ o t 2g 4 2 1.6 Δ o d 5 t 2g 3 e g 2 5 0.0 Δ o t 2g 5 1 2.0 Δ o d 6 t 2g 4 e g 2 4 0.4 Δ o t 2g 6 0 2.4 Δ o d 7 t 2g 5 e g 2 3 0.8 Δ o t 2g 6 e g 1 1 1.8 Δ o d 8 t 2g 6 e g 2 2 1.2 Δ o t 2g 6 e g 2 2 1.2 Δ o CFSE = (n t 2g ) 0.4 Δ o (n e g ) 0.6 Δ o e = number of unpaired electrons 55

Splitting of d-levels in h Field e g 3/5Δ o 2/5Δ o 10Dq t 2g [Ti(H 2 ) 6 ] 3+ d 1 t 2g1 e g 0 t 2g e g 1 pink 243 kj mol 1 (Δ o ) 56

UV-vis Absorption Spectrum of [Ti(H 2 ) 6 ] 3+ 57

Electronic Transitions Electronic Transition This energy is just sufficient to excite electron Energy increases 58

59

Splitting of d-levels in T d Field t 2 2/5Δ t 3/5Δ t e Δ t = 4/9 Δ o T d complexes are always high spin o d-orbital points directly to ligands = weaker interaction 60

d-rbitals in Tetrahedral Ligand Field 61

Splitting of d-levels in Square Planar Field (d 8 ) i(c) 4 2-,PdCl 4 2-, x2 -y2 x 2 -y2 b 1g Pt(H 3 ) 4 2+,PtCl 4 2-, e g AuCl 4 - z 2 xy b 2g t 2g xy z 2 a 1g d 8 xz, yz xz, yz e g Removing ligands in z direction 62

18-electron Rule umber of d-electrons of neutral metal + 2 e neutral ligands + 1 e anionic ligands Sum 18 for stabile complexes Cr(C) 6 Cr d 6 6 C 6 2 = 12 Sum 18 [Co(H 3 ) 3 Cl 3 ] Co d 9 3 H 3 3 2 = 6 3 Cl 3 1 = 3 Sum 18 63

Properties of Complexes e g Ligand field splitting t 2g 64

Spectrochemical Series: Ligand Field Splitting Factors I - < Br - < S 2- < SC - < Cl - < 3-, F - < H - < ox, 2- < H 2 < CS - < py, H 3 < en < bpy, phen < 2- < CH 3-, C 6 H 5- < C - < C Central atom: 3d < 4d < 5d 2+ < 3+ < 4+ Mn 2+ < i 2+ < Co 2+ < Fe 2+ < V 2+ < Fe 3+ < Co 3+ < Mn 3+ < Mo 3+ < Rh 3+ < Ru 3+ < Pd 4+ < Ir 3+ < Pt 4+ Type of coordination 4/9 Δ = Δ t Bond length and strength M-L 65

66

Bonding in Complexes by M 3 x np 1x ns 5x (n 1) d rbitals of metal SALCA rbitals of ligands 67

Metal Valence rbitals z s p x p y p z d xy d xz d yz x y d x2-y2 d z2 68

e g 3 x np t 1u M-L Sigma bonds a 1g 69

onbonding d-rbitals t 2g There is no suitable combination of As of ligands (for sigma bonding) 70

71

t 1u * (n+1)p t 1u a 1g * (n+1)s a 1g e g * nd e g,t 2g Δ o t 2g a 1g, e g, t 1u e g t 1u a 1g M ML 6 6L 72

t 2 * (n+1)p t 2 a 1 * (n+1)s a 1 t 2 * nd e, t 2 Δ t e a 1, t 2 a 1 t 2 M ML 4 4L(LGs) 73

(n+1)p a 2u,e u e u * a 1g * a 2u (n+1)s a 1g b 1g * a 1g nd e g,a 1g,b 1g,b 2g Δ b 2g,e g a 1g, e g, t 1u e u b 1g M ML 4 (D 4h ) 4L(LGs) a 1g 74

M in π-bonding pπ-dπ R -, RS -, 2-, F -, Cl -, Br -, I -, R 2 - dπ-dπ R 3 P, R 3 As, R 3 S C H H dπ-π* C, RC, pyridine, C -, 2, 2 -, ethylene dπ-σ* H 2, R 3 P, alkanes 75

Pi base Pi acid 76

Ligands with pi rbitals Pi base Pi acid 77

Back pi donation M C Sigma donation M C 78

Kinetics [M(H 2 ) n ] x+ + H 2 * [M(H 2 * )(H 2 ) n-1 ] x+ + H 2 τ (s) H 2 10 8 6 4 2 0-2 -4-6 -8-10 10 10 10 10 10 10 10 10 10 10 10 IERT Metal ion Ir Rh Cr Ru 3+ 3+ 3+ 3+ Ru 2+ Be 2+ 3+ 3+ At Fe Ga V 3+ 3+ i Mg Ti 2+ 3+ 3+ In Tm Yb 3+ 3+ 2+ 2+ Fe V 2+ 2+ Co Mn K Rb a+ Cs Li + + Ca Er 2+ 3+ 2+ + Sr Ba Ho 3+ Cr + 2+ 2+ Dy Tb Gd Cu 2+ 3+ 3+ 3+ 2+ LABILE Pt 2+ Pd 2+ 2+ 2+ Zn Cd Hg 2+ -10-8 -6-4 -2 0 2 4 6 8 10 10 10 10 10 10 10 10 10 10 10 10 1 k H 2 (s ) 79

Mechanisms of Complex Reactions Mechanism Dissociative (D) W(C) 6 W(C) + 5 C W(C) + 5 PPh 3 W(C) 5 (PPh 3 ) Associative (A) [i(c) 4 ] 2- + 14 C - [i(c) 4 ( 14 C) ] 3- [i(c) 4 ( 14 C) ] 3- [i(c) 3 ( 14 C) ] 2- + C - 80

81