TRV Problem With IEEE C By Thomas Field Southern Company Services

Similar documents
PI5A3158. SOTINY TM Low Voltage Dual SPDT An a log Switch 2:1 Mux/DeMux Bus Switch. Features. Description. Connection Diagram.

ES 250 Practice Final Exam

Industrial Technology: Electronic Technology Crosswalk to AZ Math Standards

Chemistry 112 Midterm January 30, 2006

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution:

A3-107 INCREASED PERFORMANCE OF CAPACITOR BANK CIRCUIT BREAKERS BY CONTROLLED OPENING

METAL OXIDE VARISTORS TNR TM

non-linear oscillators

Transients on Integrated Power System

Microprocessor Based Characteristics and adjustments

Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives:

EE221 - Practice for the Midterm Exam

SHORT QUESTIONS AND ANSWERS. Year/ Semester/ Class : III/ V/ EEE Academic Year: Subject Code/ Name: EE6501/ Power System Analysis

TUTORIAL: STATE VARIABLES and MATLAB

METAL OXIDE VARISTORS TNR

Micrologic Control units 2.0 and 5.0 Low Voltage Products

16PESGM2316 Characterizing Transmission System Harmonic Impedances with R-X Loci Plots. David Mueller

Modeling of Transmission Line and Substation for Insulation Coordination Studies

4.5 (A4.3) - TEMPERATURE INDEPENDENT BIASING (BANDGAP)

A L A BA M A L A W R E V IE W

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

UNIVERSITY OF CALIFORNIA AT BERKELEY

Generators. What its all about

Elevated Neutral to Earth Voltages Due to Harmonics A T&D Update

Electronic Circuits Summary

ESE319 Introduction to Microelectronics. Feedback Basics

SN54HC393, SN74HC393 DUAL 4-BIT BINARY COUNTERS

Parallel Circuits. Chapter

Physics 3A: Basic Physics I Shoup Sample Midterm. Useful Equations. x f. x i v x. a x. x i. v xi v xf. 2a x f x i. y f. a r.

EE 6501 POWER SYSTEMS UNIT I INTRODUCTION

Inductor Energy Storage

Dynamic simulation of a five-bus system

ECE 585 Power System Stability

An Innovative Simple Test Circuit for Single-Phase Short Circuit Making Test of High-Voltage Switching Devices

Request Ensure that this Instruction Manual is delivered to the end users and the maintenance manager.

Refinements to Incremental Transistor Model

n i exp E g 2kT lnn i E g 2kT

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

and cables for offshore wind connection

3VT4 Molded Case Circuit Breakers up to 1000 A

Evaluation of the risk of failure due to switching overvoltages of a phase to phase insulation

EE202 Circuit Theory II , Spring. Dr. Yılmaz KALKAN & Dr. Atilla DÖNÜK

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

THE EFFECT OF REVERSAL ON CAPACITOR LIFE

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

PI5A3157. SOTINY TM Low Voltage SPDT Analog Switch 2:1 Mux/Demux Bus Switch. Features. Descriptio n. Applications. Connection Diagram Pin Description

Fault Analysis Power System Representation

LabQuest 24. Capacitors

ESE319 Introduction to Microelectronics. Output Stages

Metallized Polyester Film Capacitors (MKT-S)

5SJ4...-.HG Circuit Breakers to IEC and UL 489

Effects of Capacitor Bank Installation in a Medium Voltage (MV) Substation

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1

2002 HKAL Physics MC Suggested Solution 1. Before the cord is cut, tension in the cord, T c = 2 mg, tension in the spring, T s = mg

KINGS COLLEGE OF ENGINEERING Punalkulam

SN54HC4060, SN74HC STAGE ASYNCHRONOUS BINARY COUNTERS AND OSCILLATORS

Self-heat Modeling of Multi-finger n-mosfets for RF-CMOS Applications

Chapter 8: Unsymmetrical Faults

Silicon Diffused Power Transistor

Physics 2D Lecture Slides. Oct 15. UCSD Physics. Vivek Sharma

Basics of Network Theory (Part-I)

Physics 20 Lesson 5 Graphical Analysis Acceleration

Section 5. TADS Data Reporting Instruction Manual DRAFT Section 5 and Associated Appendices With Proposed Event Type Numbers

EE 435. Lecture 3 Spring Design Space Exploration --with applications to single-stage amplifier design

6.003 Homework #8 Solutions

p h a s e - o u t Three Phase Rectifier Bridge with IGBT and Fast Recovery Diode for Braking System VVZB 135 = 1600 V = 135 A Recommended replacement:

Chapter 2: Principles of steady-state converter analysis

ELECTRICAL ENGINEERING

Chapter 3. Chapter 3

Figure 5.2 Instantaneous Power, Voltage & Current in a Resistor

New Algorithms for Removal of DC Offset and Subsynchronous. Resonance terms in the Current and Voltage Signals under Fault.

x i v x t a dx dt t x

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

Frequency Dependent Aspects of Op-amps

POWER SYSTEM STABILITY

Lecture 400 Discrete-Time Comparators (4/8/02) Page 400-1

Electric Currents and Circuits

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM

POWER SEMICONDUCTOR BASED ELECTRIC DRIVES

Power System Stability GENERATOR CONTROL AND PROTECTION

EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation

Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines)

DATA SHEET MULTILAYER CERAMIC CAPACITORS CC Series Y5V 10 V TO 50 V

ECE 2100 Circuit Analysis

Cambridge International Examinations Cambridge International Advanced Level

University of TN Chattanooga Physics 1040L 8/18/2012 PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB

CHEMISTRY. Chapter 13. Chapter Outline. Factors Affecting Rate

EE 230 Lecture 24. Waveform Generators. - Sinusoidal Oscillators

0-2 Operations with Complex Numbers

/ \ ( )-----/\/\/\/ \ / In Lecture 3 we offered this as an example of a first order LTI system.

Equivalent Circuits. Henna Tahvanainen. November 4, ELEC-E5610 Acoustics and the Physics of Sound, Lecture 3

Introduction. HFSS 3D EM Analysis S-parameter. Q3D R/L/C/G Extraction Model. magnitude [db] Frequency [GHz] S11 S21 -30

0-2 Operations with Complex Numbers

Silicon Diffused Power Transistor

CHAPTER 2 OVERVOLTAGE DUE TO SELF-EXCITATION AND INRUSH CURRENT DUE TO CAPACITOR SWITCHING

Physics 2D Lecture Slides Lecture 11: Jan 27 th 2004

A FAMILY OF THREE-LEVEL DC-DC CONVERTERS

Transcription:

RV Problem With IEEE C37.013-1997 By homas Field Southern Company Services

Question Asked of IEEE about Standard C37.013-1997 How do I use the values in ables 5, 6, 7, and 8 along with Figure 15 to draw a circuit breaker RV capability curve so that the actual system RV curve can be compared to the capability curve?

Presentation Outline Utility RV Standard Applications Standard C37.013-1997 RV Problem Similar Problem in Proposed Changes to C37.011 RV Standard Solutions to Problems

Utility Application of RV Standards Generate Ideal Breaker Capability Curve Generate System RV Response Curve Comparison of Ideal and System Curve

Ideal Breaker Capability Curve Ideal Breaker Capability Curve represents the Minimum Requirements for Circuit Breakers Actual Circuit Breakers Response May be Greater than the Standards Minimum Computer Programs Used For Curve Reproduction

EMP Curve Generation Equations Defining Continuous Minimum Capability of Breaker Defined in Standard Curve Generated Based on Equations Curve Compared to System Response on Single Graph

C37.011-1994 Curve Equations hree Phase Bus Fault Short ine Fault

C37.011-1994 hree Phase Fault

EMP Program for Ideal Response ACS HYBRID C C ENER HE BREAKER VOAGE RAING IN VOS 11VRA 13000. C ENER HE BREAKER CURREN RAING IN AMPS 11IRA 40000. C ENER HE BREAKER IME IN SECONDS 11.00060 C ENER HE BREAKER R VAUE IN VOS/SECOND C this comes from table 5 of ansi c37.06-1979 11R 1.8E9 C C ENER HE ACUA FAU CURREN IN AMPS C 11CUR 30544. C C DEERMINE HE FRACION OF RAED CURREN 99EV = (VRA.E.7500) 99EV1 = (VRA.G.7500) 99F1 = EV*.5 + EV1*5. 99F = EV*1.5 + EV1*. 99F3 = EV*1.0 + EV1*3. 99F4 = EV*.5 + EV1*1. 99E = CUR/IRA 99E1 = (E.GE.0.AND. E.E..3) 99E = (E.G..3.AND. E.E..6) 99E3 = (E.G..6.AND. E.E.1.0) 99KR = (E1*0.) + (E*((E-.3)/.3)*) + (E3*(-(E-.6)/.4)) 99KR = (EV*0.) + (EV1*KR) 99K = (E1*F1) + (E*(F+F3*((.6-E)/.3))) + (E3*(F-F4*(E-.6)/.4)) 99KE = 1+((1-E)/.55)*.1 C 99E1 = 1.5*SQR(./3.)*VRA 99E = (EV*1.88*VRA) + (EV1*1.76*VRA) 99B = /K 99EB = E*KE 99RB = R*KR C C C CACUAE HE RV C C this is equation ) on page 5 of C37.011-1994 C the form is (E/.0)*k1*(1-cos(pi*t*K/) C ke is k1 and K is 1/kt C the different equations for the value under, kt, are not presented C but are in figure 5 and able 1 99BRKRX =EB/.*(1-COS(PI/B*IMEX)) C this is equation 1) on page 5 of C37.011-1994 C the form is E1*(1-e**(1R*Kr*t/E1)) 99BRKRZ =E1*(1.-EXP(-RB*IMEX/E1)) IF (BRKRX.G.BRKRZ) HEN 98FAG =1 ENDIF IF (FAG.EQ.1)HEN 98BRKRV =BRKRX ESE 98BRKRV =BRKRZ ENDIF C 33BRKRVBRKRXBRKRZ C C <Name-<>InitialVal<- 77FAG 0.0 C...^...^..

EMP Output of Ideal Response

C37.011-1994 Short ine Fault

Short ine Fault Boundary Equations

System RV Response System Fault Modeled in Simulation Program Response across First Pole o Open Graphed Graph Compared to Minimum Breaker Capability Curve Capacitance added if Minimum Breaker Capability Curve Exceeded

Simple System Fault Model Pre-Opening Current Injected Model Capacitances and Inductances Fault hree Phases Monitor Voltage Across First Open Contact

Drawing of Simple Fault Circuit

Program for Circuit Simulation C <Bus M<Bus K<Bus 3<Bus 4<----R<----<----C<---R<---<---C<---R3<---3<---C3 SOURA 0.100 SOURB 0.100 SOURC 0.100 C...^...^...^...^...^...^...^...^...^...^...^...^...^ C <Bus M<Bus K<Bus 3<Bus 4<----R<----<----C<---R<---<---C<---R3<---3<---C3 SOURA.50000 SOURB.50000 SOURC.50000 C...^...^...^...^...^...^...^...^...^...^...^...^...^ C <Bus M<Bus K<Bus 3<Bus 4<----R<----<----C<---R<---<---C<---R3<---3<---C3 INEA 5.500 INEB 5.500 INEC 5.500 C...^...^...^...^...^...^...^...^...^...^...^...^...^ C <Bus M<Bus K<Bus 3<Bus 4<----R<----<----C<---R<---<---C<---R3<---3<---C3 INEA.55000 INEB.55000 INEC.55000 C...^...^...^...^...^...^...^...^...^...^...^...^...^ C BANK CARD ENDING BRANCH DAA C SWICHES C C <Bus K<Bus M<---close<----open<-------Ie<---Vflash<-Special-<-Bus5<-Bus6<--O SOURA INEA 1. 1. C...^...^...^...^...^...^...^...^...^...^ C <Bus K<Bus M<---close<----open<-------Ie<---Vflash<-Special-<-Bus5<-Bus6<--O INEA INEB 0. 1. INEB INEC 0. 1. C...^...^...^...^...^...^...^...^...^...^ BANK CARD ENDING SWICHES C C SOURCE C C <--Bus<V<Amplitude<-----Freq<----Phase<-------A1<-------1<---start<----stop 14SOURA -1-157871. 60. 90. 14INEA -1 157871. 60. 90. C...^.^...^...^...^...^...^...^...^ BANK CARD ENDING SOURCE CARDS C OUPU SPECIFICAION CARDS C <Bus 1<Bus <Bus 3<Bus 4<Bus 5<Bus 6<Bus 7<Bus 8<Bus 9<Bus10<Bus11<Bus1<Bus13 INEA SOURA C...^...^...^...^...^...^...^...^...^...^...^...^...^ BANK CARD C POS CARDS BANK CARD BANK CARD BEGIN NEW DAA CASE BANK CARD

Output of System Response

Comparison of Breaker Capability Curve and System Response P3P>SOURA -INEA (ype 8) 50000 P3P>SOURA -INEA (ype 8) P3P>ACS -BRKRV(ype 9) 00000 150000 Voltage (V) 100000 50000 0 0 50 100 150 00 50 300 ime (us)

C37.013-1997 RV Problem Minimum Range Specified For Circuit Breakers Capability Curve No Boundary Defined for System Response No Equations for Minimum Circuit Breaker Capability Curve Unable to Determine System Capacitance Needed

Minimum Range Specified Rate of Rise ime Delay Peak Voltage angent in Undefined Region op of Curve Function Described No Defining Equations

Minimum Breaker Requirements

Minimum Breaker Requirements

System Source Fault ong Delay Short arge Window for System Response 1-cos Waveshape Fits Into Window

System Source Fault

System Source Fault Simulation GEN>SOURA -INEA (ype 8) GEN>SOURA -INEA (ype 8) GEN>ACS -SOPE1(ype 9) 40000 GEN>ACS -SOPE(ype 9) 30000 Voltage (V) 0000 10000 0 0 5 10 15 0 ime (us)

Generator Source Fault Short Delay ong Small Window 1-cos Waveshape Does Not Fit in Window

Generator Source Fault

Generator Source Fault Simulation GEN>INEA -SOURA (ype 8) GEN>INEA -SOURA (ype 8) GEN>ACS -SOPE1(ype 9) 40000 GEN>ACS -SOPE(ype 9) 30000 Voltage (V) 0000 10000 0 0 10 0 30 40 50 ime (us)

Problem Area In ast Graph GEN>INEA -SOURA (ype 8) GEN>INEA -SOURA (ype 8) GEN>ACS -BRKCOS(ype 9) GEN>ACS -SOPE1(ype 9) GEN>ACS -SOPE(ype 9) 6956 Voltage (V) 16956 9 ime (us)

Similar Problem With C37.011 Proposed Changes IEC Harmonization with IEEE IEC Standard 56 Waveshapes to Replace Defined Functions Parameter Function 4 Parameter Function Circuit Breaker Range No System Response Boundary Defined

Parameter Function of IEC 56 (Similar to IEEE C37.013-1997)

4 Parameter Function of IEC 56

Possible Solutions to Problem IEC Reference Waveshape Delay ine to E Delay ine to %1 and then ROR ine Delay ine to %1 and then Slope to ROR ine at % Delay ine to %1, then Slope to ROR ine at %, then Curve to E at

Delay ine to %1 and then ROR ine

Delay ine to %1 and then Slope to % ROR ine

Delay ine to %1, then Slope to ROR ine at %, then Curve to E at

otal Suggested Solution

Possible Generic Solution

( ) ( ) t E c t E c t Rt t ae t ae be t d d t R d t + + = = + = = = + + + + = 5 1) ( 5 5 cos 1 ) (1 4 5 4 3 4 1 1) ( 1 4 1 ) ( 1 0 0 0 4 3 1 0 π π

Without imit on Cosine PROP>ACS -INEDR(ype 9) 30000 PROP>ACS -INEDR(ype 9) PROP>ACS -INROR(ype 9) 5000 0000 Current (A) 15000 10000 5000 0 0 4 6 8 10 ime (us)

imit on Cosine PROP>ACS -INEDR(ype 9) 30000 PROP>ACS -INEDR(ype 9) PROP>ACS -INROR(ype 9) 5000 0000 Current (A) 15000 10000 5000 0 0 4 6 8 10 ime (us)

ACS HYBRID C C ENER VAUE (in us) 11I 7. C ENER E VAUE (in kv) 11EI 7.6 C ENER HE IME DEAY (in us) 11ID 1.0 C ENER CONSAN A IN % 11AICON 10.0 C ENER CONSAN B IN % 11BICON 30.0 C ENER CONSAN C IN % 11CICON 50.0 C 99 =I/1000000.0 99D =ID/1000000.0 99E =EI*1000.0 99ACON =AICON/100.0 99BCON =BICON/100.0 99CCON =CICON/100.0 993 =0.85* 99ROR =E/3 991 =(ACON*E/ROR)+D 994 =BCON*E/ROR 995 =CCON*E/ROR C IF (IMEX.. D) HEN 98INEDR =0.0 ENDIF IF (IMEX.GE. D.AND.IMEX..1) HEN 98INEDR =ROR*(IMEX-D) ENDIF IF (IMEX.G. 1.AND.IMEX..4) HEN 98INEDR =((BCON-ACON)*E/(4-1))*(IMEX-1)+ACON*E ENDIF IF (IMEX.G. 4.AND.IMEX..5) HEN 98INEDR =ROR*IMEX ENDIF IF (IMEX.G.5)HEN 98EMP1 =(1-CCON)*E 98ARGCS =(PI/.0)*(IMEX-5)/(-5)+PI/.0 98EMP =EMP1*(1-COS(ARGCS)) 98INEDR =EMP+((*CCON)-1.0)*E ENDIF 98CHECK =ROR*IMEX IF (INEDR.G. CHECK) HEN 98INEDR =CHECK ENDIF IF (IMEX.. 3) HEN 98INROR =ROR*IMEX ESE 98INROR =E ENDIF C C <name1<name<name3<name4<name5<name6<name7<name8<name9<nam10<nam11<nam1<nam13< 33INEDRINROR C...^...^...^...^...^...^...^...^...^...^...^...^...^.

A=30%, B=50%, C=70% PROP3>ACS -INEDR(ype 9) 30000 PROP3>ACS -INEDR(ype 9) PROP3>ACS -INROR(ype 9) 5000 0000 Current (A) 15000 10000 5000 0 0 4 6 8 10 ime (us)

Cosine Oscillation PROP4>ACS -INEDR(ype 9) 30000 PROP4>ACS -INEDR(ype 9) PROP4>ACS -INROR(ype 9) 5000 0000 Current (A) 15000 10000 5000 0 0 5 10 15 0 ime (us)

( ) ( ) t E c t E c t ae t ae be t d d t R d t + + = + = = = + + + + = 4 1) ( 5 5 cos 1 ) (1 4 4 1 1) ( 1 4 1 ) ( 1 0 0 0 4 3 1 0 π π

4 Segment Method a=10%, b=90%, c=67.5% PROP5>ACS -INEDR(ype 9) 30000 PROP5>ACS -INEDR(ype 9) PROP5>ACS -INROR(ype 9) 5000 0000 Current (A) 15000 10000 5000 0 0 5 10 15 0 ime (us)

ACS HYBRID C C ENER VAUE (in us) 11I 7. C ENER E VAUE (in kv) 11EI 7.6 C ENER HE IME DEAY (in us) 11ID 1.0 C ENER CONSAN A IN % 11AICON 10.0 C ENER CONSAN B IN % 11BICON 80.0 C ENER CONSAN C IN % 11CICON 67.5 C 99 =I/1000000.0 99D =ID/1000000.0 99E =EI*1000.0 99ACON =AICON/100.0 99BCON =BICON/100.0 99CCON =CICON/100.0 993 =0.85* 99ROR =E/3 991 =(ACON*E/ROR)+D 994 =BCON*E/ROR 995 =CCON*E/ROR C IF (IMEX.. D) HEN 98INEDR =0.0 ENDIF IF (IMEX.GE. D.AND.IMEX..1) HEN 98INEDR =ROR*(IMEX-D) ENDIF IF (IMEX.G. 1.AND.IMEX..4) HEN 98INEDR =((BCON-ACON)*E/(4-1))*(IMEX-1)+ACON*E ENDIF IF (IMEX.G.4)HEN 98EMP1 =(1-CCON)*E 98ARGCS =(PI/.0)*(IMEX-5)/(-5)+PI/.0 98EMP =EMP1*(1-COS(ARGCS)) 98INEDR =EMP+((*CCON)-1.0)*E ENDIF 98CHECK =ROR*IMEX IF (INEDR.G. CHECK) HEN 98INEDR =CHECK ENDIF IF (IMEX.. 3) HEN 98INROR =ROR*IMEX ESE 98INROR =E ENDIF C C <name1<name<name3<name4<name5<name6<name7<name8<name9<nam10<nam11<nam1 <nam13< 33INEDRINROR

Actual Breaker RV

Final Proposed Solution Specify a, b, and c for breakpoints in 5 segment curve Specify the point that the 1-cosine curve should be centered around Calculate the start of last segment based on time in curve instead of start of zero cosine point

Modified Equations 0, 1,, and 3 remain the same Parameters a, b, and c remain the same Add parameter d for percent of E that the 1-cosine curve is centered around Modify 4 by replacing 5 in cosine argument with parameter x Calculate x based on point in wave that 1-cosine centered around de equals ce

( ) ( ) t E d x x t E d t Rt t ae t ae be t d d t R d t + + = = + = = = + + + + = 5 1) ( cos 1 ) (1 4 5 4 3 4 1 1) ( 1 4 1 ) ( 1 0 0 0 4 3 1 0 π π d c d d c d x = 1 cos 5 1 cos 1 1 1 π π

Curve FromC37.013 a=10, d=90, c=90, d=67.5 FIN>ACS -INEDR(ype 9) 30000 FIN>ACS -INEDR(ype 9) FIN>ACS -INROR(ype 9) 5000 0000 Current (A) 15000 10000 5000 0 0 5 10 15 0 ime (us)

ACS HYBRID C C ENER VAUE (in us) 11I 7. C ENER E VAUE (in kv) 11EI 7.6 C ENER HE IME DEAY (in us) 11ID 1.0 C ENER CONSAN A IN % 11AICON 10.0 C ENER CONSAN B IN % 11BICON 90.0 C ENER CONSAN C IN % (place to start 1-cos wave) 11CICON 90.0 C ENER CONSAN D IN % (center of 1-cos wave) 11DICON 67.5 99 =I/1000000.0 99D =ID/1000000.0 99E =EI*1000.0 99ACON =AICON/100.0 99BCON =BICON/100.0 99CCON =CICON/100.0 99DCON =DICON/100.0 993 =0.85* 99ROR =E/3 991 =(ACON*E/ROR)+D 994 =BCON*E/ROR 995 =CCON*E/ROR 99DUMV1 =(.0/PI)*(ACOS(DCON-CCON)/(1-DCON)) 99X =(1.0/DUMV1)*(*(DUMV1-1.0)-5) IF (IMEX.. D) HEN 98INEDR =0.0 ENDIF IF (IMEX.GE. D.AND.IMEX..1) HEN 98INEDR =ROR*(IMEX-D) ENDIF IF (IMEX.G. 1.AND.IMEX..4) HEN 98INEDR =((BCON-ACON)*E/(4-1))*(IMEX-1)+ACON*E ENDIF IF (IMEX.G. 4.AND.IMEX..5) HEN 98INEDR =ROR*IMEX ENDIF IF (IMEX.G.5)HEN 98EMP1 =(1-DCON)*E 98ARGCS =(PI/.0)*(IMEX-X)/(-X)+PI/.0 98EMP =EMP1*(1-COS(ARGCS)) 98INEDR =EMP+((*DCON)-1.0)*E ENDIF 98CHECK =ROR*IMEX IF (INEDR.G. CHECK) HEN 98INEDR =CHECK ENDIF IF (IMEX.. 3) HEN 98INROR =ROR*IMEX ESE 98INROR =E ENDIF C <name1<name<name3<name4<name5<name6<name7<name8<name9<nam10<nam11<nam1<nam13< 33INEDRINROR 5 DCON CCON X C...^...^...^...^...^...^...^...^...^...^...^...^...^. C <Name-<>InitialVal<- 77INEDR 0.0 C...^...^..

Conclusions Minimum RV Curves Should Be Specified For C37.013 5 Segment Curve Suggested Exact Values/Equations Must Be Determined From est Data C37.011 Use of IEC RV Standard May Have Similar Problem as C37.013 if Minimum RV Curve Not Specified