EPA Vapor Intrusion Database

Similar documents
R.E.A.C.T. Roxbury Environmental Action CoaliTion P.O. Box 244 Ledgewood, N.J Website:

Indoor Air Sampling and Forensic Analysis at Peter Cooper Village and Stuyvesant Town Properties October 2017

JANUARY THROUGH JUNE 2011 DUAL PHASE EXTRACTION SYSTEM OPERATION MAINTENANCE AND MONITORING REPORT #5 EMERSON POWER TRANSMISSION ITHACA, NEW YORK

GAMINGRE 8/1/ of 7

TPH Methods and Measurements and Petroleum Vapor Intrusion (PVI) Risks

Indicators, Tracers, and Surrogates of Chlorinated Vapor Intrusion Pressure and Wind as Indicators

1.0 SOIL GAS MONITORING RESULTS

Allstate October 15, 2011 Location ID TCE (µg/m 3 ) PCE (µg/m 3 ) IA-15 ND ND IA-16 ND ND IA-17 ND ND IA-J9 ND ND IA-M11 ND ND IA-Q11 ND ND

Analysis of Volatile Organic Compounds Using USEPA Method 8260 and the 4760 Purge and Trap and the 4100 Autosampler

SUMMARY REPORT OF AIR MONITORING FOR LEED CERTIFICATION PHASE 2 SWANSFIELD ELEMENTARY SCHOOL 5610 CEDAR LANE COLUMBIA, MD PREPARED FOR:

Validation of USEPA Method Using a Stratum PTC, AQUATek 100 Autosampler, and Perkin-Elmer Clarus 600 GC/MS

Date: March 6, 2008 RWDI Reference #: W B Pages (Including Cover):

Target Compound Results Summary

BIO-CHEM Laboratories, Inc. Work Order Sample Summary. CLIENT: CTRA Project: 6454 T Lab Order: A 6454 Aqueous 3/1/2013.

Validation of Environmental Water Methods on One System: Considerations for Sample Volume, Purge Parameters and Quality Control Parameters

AUTONOMOUS, REAL TIME DETECTION OF 58 VOCS IN THE PANAMA CANAL

Copies: Dave Favero, RACER File

BIO-CHEM Laboratories, Inc. Work Order Sample Summary. CLIENT: Cascade Thornapple River Assoc. Project: Water Analysis Lab Order:

CALA Directory of Laboratories

Roger Bardsley, Applications Chemist; Teledyne Tekmar P a g e 1

ANALYTICAL REPORT. Results relate only to the items tested and the sample(s) as received by the laboratory. Page 1 of 5

F 2: Phase 2 Soil Vapor Investigation for Potential Off Site Vapor Intrusion

US EPA Method with the Tekmar Lumin P&T Concentrator, AQUATek LVA and Agilent 7890B GC/5977A MS

Vapor Intrusion Sampling Options: Performance Data for Canisters, Badges, and Sorbent Tubes for VOCs

Validation of USEPA Method Using a Stratum PTC and the New AQUATek 100 Autosampler

GUIDANCE DOCUMENT. ESTCP Project ER

Roger Bardsley, Applications Chemist; Teledyne Tekmar Page 1

Analysis of Low Level Volatile Organic Compounds in Air Anne Jurek

KSA Environmental Laboratory Inc.

US EPA Method 8260 with the Tekmar Atomx XYZ P&T System and Agilent 7890B GC/5977A MS

Associates. Project No.: October 25, 2017

National Pollutant Discharge Elimination System (NPDES); BADCT Limits for Volatile Organic Compounds

Performance of a Next Generation Vial Autosampler for the Analysis of VOCs in Water Matrices

The following report includes the data for the above referenced project for sample(s) received on 5/15/2017 at Air Toxics Ltd.

Maximizing Sample Throughput In Purge And Trap Analysis

Validation of USEPA Method 8260C Using Teledyne Tekmar Atomx, and Perkin-Elmer Clarus 600 GC/MS

A Comparison of Volatile Organic Compound Response When Using Nitrogen as a Purge Gas

CERTIFICATE OF ANALYSIS

Analysis of Volatile Organic Compounds in Water and Soil by EPA Method 8260 with the Atomx Concentrator/Multimatrix Autosampler

Analysis of Volatile Organic Compounds in Soil Samples by EPA Method 8260 with The Stratum PTC and SOLATek 72 Multi-Matrix Autosampler

EPA TO-17 Volatile Organic Compounds

INNOVATIVE PRODUCTS, SUPERIOR SUPPORT. Presenter: Anne Jurek, Senior Applications Chemist, EST Analytical

Using Hydrogen as An Alternative Carrier Gas for US EPA 8260

Solid Phase Micro Extraction of Flavor Compounds in Beer

Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products.

Ed George and Anaïs Viven Varian, Inc.

Validation of Volatile Organic Compound by USEPA. Method 8260C. Application Note. Abstract. Introduction. Experimental-Instrument Conditions

U.S. EPA VOLATILE ORGANICS METHOD USING PURGE AND TRAP GC/MS

2017 Annual Monitoring Report Area E (PICA-077) Groundwater and Surface Water

Optimal VOC Method Parameters for the StratUm PTC Purge & Trap Concentrator

Amec Foster Wheeler Environment & Infrastructure, Inc BIG SHANTY ROAD, NW, SUITE 100 KENNESAW, GEORGIA (770)

2015 Annual Vapor Intrusion Study Solvent Dock Area Former Lockheed Martin French Road Facility Utica, New York

Determination of Volatile Organic Compounds in Air

McCAMPBELL ANALYTICAL INC Willow Pass Road Pittsburg CA

Optimizing. Abstract: is standardd. procedures. altered to

Jackson County 2018 Weather Data 67 Years of Weather Data Recorded at the UF/IFAS Marianna North Florida Research and Education Center

Time Integrated Indoor Air Sampling using a Membrane Based Passive Sampler

Texas Commission on Environmental Quality INTEROFFICE MEMORANDUM

Former Williams AFB Restoration Advisory Board (RAB)

A Single Calibration for Waters and Soil Samples Performing EPA Method Anne Jurek Applications Chemist

ANALYTICAL REPORT. Job Number: Job Description: Transform Complete

Jackson County 2013 Weather Data

Copyright 2009 PerkinElmer LAS and CARO Analytical Services, Inc.

Des Plaines River Watershed Workgroup. Monitoring/WQ Improvements Committee Meeting. 10/18/2018 1:00 2:00 pm

May 4, Ms. Dianne Thomas. Project Manager

Quarterly Groundwater Monitoring Report Third Quarter 2018

Salem Economic Outlook

Des Plaines River Watershed Workgroup. Monitoring/WQ Improvements Committee Meeting. 10/18/2018 1:00 2:00 pm

OREGON Environmental Laboratory Accreditation Program ORELAP Fields of Accreditation ALS Environmental - Simi Valley

Application Note 116 Monitoring VOCs in Ambient Air Using Sorbent Tubes with Analysis by TD-GC/MS in Accordance with Chinese EPA Method HJ

Date Issued: April 01, 2013 Expiration Date: June 30, 2013

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. SI Base Units. Quantity Base unit Unit abbreviation

Study of Residual Solvents in Various Matrices by Static Headspace

January 19, Dear Mr. Nightingale:

Exploring US EPA Method 524 Purge and Trap Variables: Water Vapor Reduction and Minimizing Cycle Time

Watercare Air Quality Group March 2002 APPENDIX A. Monitoring Site Location Diagrams

Helium conservation in volatile organic compound analysis using U.S. EPA Method 8260C

2017 EPA Method Update Rule and EPA Method 624.1

REPORT ON LABOUR FORECASTING FOR CONSTRUCTION

Maximizing Production While Minimizing Costs

TRIP REPORT FOR THE TCE HAVERTOWN SITE VAPOR INTRUSION ASSESSMENT HAVERTOWN, DELAWARE COUNTY, PENNSYLVANIA. Prepared for

A Single Calibration Method for Water AND Soil Samples Performing EPA Method 8260

Solid Phase Micro Extraction of Flavor Compounds in Beer

Readiness thru Health

Soil Vapor Survey: A Gasoline Plume Beneath A Residence And The Implications For Additional Corrective Action Or Case Closure

David B. Mickunas, U.S. EPA/ERTC Work Assignment Manager SUBJECT: DOCUMENT TRANSMITTAL UNDER WORK ASSIGNMENT #0-298

Jackson County 2014 Weather Data

ANALYTICAL REPORT. Job Number: SDG Number: Job Description: Joint Base Cape Cod

Table 1 Soil and Groundwater Sampling Summary Table

Analysis. Introduction: necessary. presented. Discussion: As part of be carried. consistent and reliable data. (MoRT) to.

Solid Phase Microextraction of Cyanogen Chloride and Other Volatile Organic Compounds in Drinking Water with Fast Analysis by GC-TOFMS

2. September 2015 Sub-Concrete Slab Soil Investigation

1. Introduction. 2. Sampling Activities

Comparison of Particulate Monitoring Methods at Fort Air Partnership Monitoring Stations

A Micro-GC Based Chemical Analysis System

Former Guterl Specialty Steel Site

Annual Average NYMEX Strip Comparison 7/03/2017

COMPLIANCE EMISSIONS TEST California Dept. of Public Health Standard Method Version 1.1 and FloorScore Flooring Evaluation

Optimizing of Volatile Organic Compound Determination by Static Headspace Sampling

CALA Directory of Laboratories

Transcription:

EPA Vapor Intrusion Database Preliminary Analysis of Attenuation Factors Helen Dawson, Ph.D US EPA, Region 8, Denver, CO Vapor Intrusion Workshop AEHS Spring 2008, San Diego, CA

Acknowledgments Ian Hers Golder and Associates, Vancouver, B.C., Canada Robert Truesdale RTI International, Research Triangle Park, NC, USA William Wertz New York State Department of Environmental Conservation, NY, USA Todd McAlary Geosyntec Consultants, Toronto, Ontario, Canada 2

Presentation Outline Database evaluation considerations Impact of background on attenuation factors Groundwater-to-indoor air attenuation Soil gas-to-indoor air attenuation Subslab-to-indoor air attenuation Crawlspace-to-indoor air attenuation 3

Database Evaluation Considerations Data quality Handling of data reported below a given reporting limit Differences in site conditions and the types of data compiled Spatial and temporal variability in media concentrations 4

Differences in Site Conditions and Types of Data Compiled 100% 90% 80% 70% 60% Soil 4 V. Coarse Multi-Use >200 2 3 2 4 8 Non-Residential 10-50 25 Coarse 50% 40% 30% 37 Groundwater 34 Residential 31 <10 20% 10% 0% 13 Fine Vapor Source Soil Type Building Use Num. Buildings 5

Spatial & Temporal Variability Spatial Variability Temporal Variability Graphics by EnviroGroup Limited 6

Indoor Air Spatial Variability 1,1 DCE REF Indoor Air REF REF REF Redfield Facility REF Denver, CO D. Folkes, 2000 1,1 DCE RESULTS (µg/cubic meter) >45 REF REF 4.6 to 45 0.46 to 4.5 <=0.46 NEGATIVE NUMBER INDICATES RESULT BELOW DETECTION LIMIT REF REFUSED ACCESS FOR SAMPLING/NO RESPONSE APPROXIMATE EXTENT OF DETECTED VOLATILE ORGANIC COMPOUND IN GROUNDWATER FORMER REDFIELD FACILITY D. Folkes 7

Indoor Air Temporal Variability Lowry Air Force Base, CO Indoor Air Concentration (ug/m3) 60 50 40 30 20 10 0 UA03 UA22 UA25 H. Dawson Jan-00 Apr-00 Jul-00 Sep-00 Dec-00 Mar-01 T. McAlary 8

Sub-Slab Spatial Variability New York State Dept. of Health C TCE Soil Vapor & Sub-slab Vapor (ug/m3) K. Anders 9

Subslab Spatial Variability 1,1,1-TCA 1,1-DCE TCE c-1,2-dce 76 64 17 1.4 1,1,1-TCA 1,1-DCE TCE c-1,2-dce 542 480 189 46 1,1,1-TCA 1,1-DCE TCE c-1,2-dce 52 31 31 9.5 D. DiGiulio 10

Sub-Slab Temporal Variability 10000 Sub-Slab Concentration (ug/m3) 1000 100 10 UA03 UA05 UA18 UA21 UA22 UA24 UA28 1 Mar-00 May-00 Jun-00 Aug-00 Oct-00 Nov-00 Jan-01 Feb-01 Date H. Dawson 11

Soil Gas Spatial Variability Soil Gas (ug/m3) Lowry Air Force Base 1000 100 10 1 0.1 0.01 0.1 1 10 Indoor Air (ug/m3) 12

Soil Gas Temporal Variability Endicott, NY Soil Gas Groundwater W. Wertz 13

Exterior Soil Gas vs. Subslab Depth bgs (m) 0-1 -2-3 -4-5 -6-7 -8 Css 0.5 0.6 0.8 0.9 Cnb 0.4 0.3 0.2 0.1 0.01 1E-3 0 2 4 6 8 10 12 Cnb: near building soil gas concentration Css: subslab concentration 1E-6 1E-5 1E-4 x (m) L. Abreu, 2006 14

Exterior Soil Gas vs. Subslab 1.E+05 Subslab Concentration (ug/m3) 1.E+04 1.E+03 1.E+02 1.E+01 Subslab > Soil Gas 1.E+00 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 Soil Gas Concentration (ug/m3) H. Dawson 15

Impact of Background on Empirical Attenuation Factors AF emp = (C ia-vi + C ia-bkgd )/C subsurface 10000.0 PCE 111TCA TCE 11DCE 1000.0 100.0 Max 10.0 95th % 1.0 50th % 0.1 0.0 Background Database Background Database Background Database Background Database 16 Concentration (ug/m3)

Impact of Background on Empirical Attenuation Factors 10000 Indoor Air Concentration (ug/m3) 1000 100 10 1 0.1 Plateau from Background Influence Background conc. No Background Influence 0.01 1 10 100 1000 10000 100000 1000000 Source Vapor Concentration (ug/m3) 17

Background Indoor Air Concentrations Compound N Studies N Samples %Detect RL Range 25% N 50% N 75% N 90% N 95% N Max N Benzene 16 2672 87 0.05-1.6 1.5 7 2.4 16 4.7 9 10 11 16 5 36 14 Carbon Tetrachloride 5 873 88 0.15-0.25 0.4 2 0.5 5 0.7 2 0.9 4 1.1 1 2.6 3 Chloroform 11 2210 73 0.02-2.4 0.6 4 1.0 11 2.4 6 4.1 8 6.8 5 10.6 9 Dichloroethane,1,1-5 1309 0.3 0.08-2.0 <RL 5 <RL 5 <RL 5 <RL 5 <RL 4 0.9 5 Dichloroethene, 1,1-5 957 10 0.01-2.0 <RL 4 <RL 5 0.4 5 0.8 5 1.4 3 4.1 5 Dichloroethene, cis 1,2-4 975 3 0.25-2.0 <RL 4 <RL 4 <RL 4 <RL 4 1.2 3 7.4 4 Dichloroethene, trans 1,2-3 575 0 0.8-2.0 <RL 3 <RL 3 <RL 3 <RL 3 <RL 2 <RL 3 Ethylbenzene 12 1541 81 0.01-2.0 1.2 4 2.2 12 2.8 5 8.9 7 13 3 35 10 Methyl tert-butyl ether (MTBE) 4 502 47 0.05-1.8 <RL 3 0.8 4 6.2 4 32 4 72 2 248 4 Methylene chloride 7 1,649 73 0.4-3.5 0.46 3 1.10 7 3.2 5 11 7 16 4 163 6 Tetrachloroethene 15 2369 65 0.03-3.4 <RL 7 0.7 13 1.4 6 3.8 10 7.5 5 42.0 13 Toluene 14 2122 96 0.03-2.0 7 5 13 14 25 7 54 9 90 4 139 12 Trichloro-1,2,2-trifluoroethane, 1 1 400 56 0.25 <RL 1 0.5 1 1.1 1 1.8 1 3.4 1 7 1 Trichloroethane, 1,1,1-9 1877 60 0.12-2.7 1.1 7 1.8 9 2.6 7 3.1 7 6.9 5 102 8 Trichloroethene 14 2435 44 0.02-2.7 0.06 6 0.2 11 0.1 6 0.5 9 0.8 5 19 11 Vinyl chloride 6 1684 7 0.01-1.3 <RL 6 <RL 6 0.02 6 0.03 6 0.05 5 0.4 6 Xylene, m/p- 10 1920 90 0.4-2.2 2.5 6 4.0 10 7.6 7 21 9 38 4 279 8 Xylene, o- 14 2061 85 0.11-2.2 1.4 6 2.2 14 3.3 7 11 9 13 4 44 12 18

Impact of Background on Empirical Attenuation Factors 1.E+04 Indoor Air Concentration (ug/m3) 10000 1000 100 10 1 0.1 Background Influence No Background Influence 0.01 1 10 100 1000 10000 100000 1000000 Source Vapor Concentration (ug/m3) Indoor Air Concentration (ug/m3) Indoor Air Concentration (ug/m3) 1.E+03 1.E+02 1.E+01 1.E+00 1.E-01 1.E-02 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 Subslab (ug/m3) 1.E+04 1.E+03 1.E+02 1.E+01 1.E+00 1.E-01 1.E-02 EPA Data (IA > RL) EPA Data (IA < RL) Alpha = 1.0 Alpha = 1E-1 Alpha = 1E-2 Alpha = 1E-3 Alpha = 1E-4 Alpha = 1E-5 EPA Data (IA > RL) Alpha = 1.0 Alpha = 1E-1 Alpha = 1E-2 Alpha = 1E-3 Alpha = 1E-4 Alpha = 1E-5 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 Subslab (ug/m3) 19

2008 Database Attenuation Factor Type 2002 Database Attenuation Factors Screening Data Quality Screen a Subsurface Concentration Screen b Data Set 1 Data Consistency Screen c Data Set 1: Subsurface and indoor air concentrations >RL Data Set 2 95 th Percentile Background Screen d groundwater to indoor air 1,058 1,026 910 596 soil gas to indoor air 237 226 218 86 subslab to indoor air 1,584 1,553 991 311 crawlspace to indoor air 110 110 110 45 Total 2,989 2,915 2,229 1,038 Data Set 2: Sbset of Data Set 1 (2002) > geomean background 20

Groundwater-to-Indoor Air Attenuation Cumulative Percentile Plots 1.0E+00 Data Set 1 2002 vs 2008 Groudwater Attenuation Factor 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 Data Set 1 (2002) Data Set 1 (2008) 1.0E-07 0% 20% 40% 60% 80% 100% Cumulative Percentile 1.0E+00 Data Set 2 2002 vs 2008 Groudwater Attenuation Factor 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 Data Set 2 (2002) Data Set 2 (2008) 1.0E-07 0% 20% 40% 60% 80% 100% Cumulative Percentile 21

Groundwater-to-Indoor Air Attenuation 1.E+04 Data Set 1 2008 Indoor Air Concentration (ug/m3) 1.E+03 1.E+02 1.E+01 1.E+00 1.E-01 1.E-02 EPA Data (IA > RL) EPA Data (IA < RL) Alpha = 1.0 Alpha = 1E-1 Alpha = 1E-2 Alpha = 1E-3 Alpha = 1E-4 Alpha = 1E-5 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 Groundwater Vapor (ug/m3) 1.E+04 Data Set 2 2008 Indoor Air Concentration (ug/m3) 1.E+03 1.E+02 1.E+01 1.E+00 1.E-01 1.E-02 EPA Data (IA > RL) Alpha = 1.0 Alpha = 1E-1 Alpha = 1E-2 Alpha = 1E-3 Alpha = 1E-4 Alpha = 1E-5 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 Groundwater Vapor (ug/m3) 22

Groundwater-to-Indoor Air Attenuation Box Whisker Plots 1.0E+00 1.0E-01 1.0E-02 Max 1.0E-03 95th% 1.0E-04 50th% 1.0E-05 1.0E-06 5th% Min 1.0E-07 Data Set 1 (2002) Data Set 1 (2008) Data Set 2 (2002) Data Set 2 (2008) 23 Groundwater AF

Groundwater-to-Indoor Air Attenuation 1.0E-01 Chemical 1.0E-01 Building Use 1.0E- 01 Soil Type Under Slab Groundwater AF 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 Max 95th% 50th% 5th% Min Groundwater AF 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 Max 95th% 50th% 5th% Min Groundwater AF 1.0E- 02 1.0E- 03 1.0E- 04 1.0E- 05 1.0E- 06 Max 95th% 50th% 5th% Min 1.0E-07 All CHCs 11DCE TCE PCE cis12dce All PHCs 1.0E-07 Residential Commercial 1.0E- 07 Fine Coarse V.Coarse 24

1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 1.0E-07 Groundwater-to-Indoor Air Attenuation Individual Site Box Whisker Plots Groundwater AF for Individual Sites 25 Groundwater AF > 500 X BKG Allepo BillingsPCE BP Site CDOT Davis Eau Claire Endicott Fresh Water Lens Grants Hamilton- Sundstrand Harcros/Tri State Hopewell Precision Jackson LAFB Lakeside Village Lockwood All MADEP Moffet MCH Mount Holly Mountain View Rapid City Redfield SCM - Cortlandville Stafford Twins Inn Uncasville Wall West Side Corporation WZ CA Bay

Soil Gas-to-Indoor Air Attenuation 1.E+04 Data Set 1 2008 Indoor Air Concentration (ug/m3) 1.E+03 1.E+02 1.E+01 1.E+00 1.E-01 1.E-02 EPA Data (IA > RL) EPA Data (IA < RL) Alpha = 1.0 Alpha = 1E-1 Alpha = 1E-2 Alpha = 1E-3 Alpha = 1E-4 Alpha = 1E-5 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 Soil Gas (ug/m3) 1.E+04 Data Set 2 2008 Indoor Air Concentration (ug/m3) 1.E+03 1.E+02 1.E+01 1.E+00 1.E-01 1.E-02 EPA Data (IA > RL) Alpha = 1.0 Alpha = 1E-1 Alpha = 1E-2 Alpha = 1E-3 Alpha = 1E-4 Alpha = 1E-5 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 Soil Gas (ug/m3) 26

Soil Gas-to-Indoor Air Attenuation Box Whisker Plots 1.0E+01 1.0E+00 Soil Gas AF 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 Max 95th% 50th% 5th% Min 1.0E-06 Data Set 1 (2008) Data Set 2 (2008) 27

1.0E+01 1.0E+00 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 Soil Gas-to-Indoor Air Attenuation Individual Site Box Whisker Plots Soil Gas AF for Individual Sites Max 95th% 50th% 5th% Min 28 Soil Gas AF > RL Alameda Allepo Alliant BP Site CA Dry Cleaners Endicott Fresh Water Lens Georgetown Grants Harcros/Tri State Jackson MADEP1 Mountain View Rapid City SCM - Cortlandville Stafford Uncasville West Side Corporation

Subslab-to-Indoor Air Attenuation Cumulative Percentile Plots 1.0E+00 Data Set 1 (2002) Data Set 1 2002 vs 2008 Subslab Attenuation Factor 1.0E-01 1.0E-02 1.0E-03 1.0E-04 Data Set 1 (2008) 1.0E-05 0% 20% 40% 60% 80% 100% Cumulative Percentile 1.0E+00 Data Set 2 (2002) Data Set 2 2002 vs 2008 Subslab Attenuation Factor 1.0E-01 1.0E-02 1.0E-03 1.0E-04 Data Set 2 (2008) 1.0E-05 0% 20% 40% 60% 80% 100% Cumulative Percentile 29

Subslab-to-Indoor Air Attenuation 1.E+04 Data Set 1 2008 Indoor Air Concentration (ug/m3) 1.E+03 1.E+02 1.E+01 1.E+00 1.E-01 1.E-02 EPA Data (IA > RL) EPA Data (IA < RL) Alpha = 1.0 Alpha = 1E-1 Alpha = 1E-2 Alpha = 1E-3 Alpha = 1E-4 Alpha = 1E-5 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 Subslab (ug/m3) 1.E+04 Data Set 2 2008 Indoor Air Concentration (ug/m3) 1.E+03 1.E+02 1.E+01 1.E+00 1.E-01 1.E-02 EPA Data (IA > RL) Alpha = 1.0 Alpha = 1E-1 Alpha = 1E-2 Alpha = 1E-3 Alpha = 1E-4 Alpha = 1E-5 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 Subslab (ug/m3) 30

Subslab-to-Indoor Air Attenuation 1.E+04 Data Set 2 2008 Indoor Air Concentration (ug/m3) 1.E+03 1.E+02 1.E+01 1.E+00 1.E-01 1.E-02 EPA Data (IA > RL) Alpha = 1.0 Alpha = 1E-1 Alpha = 1E-2 Alpha = 1E-3 Alpha = 1E-4 Alpha = 1E-5 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 Subslab (ug/m3) 1.E+04 Data Set 2 2008 & SS > 50xBkgd Indoor Air Concentration (ug/m3) 1.E+03 1.E+02 1.E+01 1.E+00 1.E-01 1.E-02 EPA Data (IA > RL) Alpha = 1.0 Alpha = 1E-1 Alpha = 1E-2 Alpha = 1E-3 Alpha = 1E-4 Alpha = 1E-5 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 Subslab (ug/m3) 31

1.0E+00 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 Subslab-to-Indoor Air Attenuation Box Whisker Plots Max 95th% 50th% 5th% Min Data Set 1 (2002) Data Set 1 (2008) Data Set 2 (2002) Data Set 2 (2008) 32 Subslab AF

Subslab-to-Indoor Air Attenuation Subslab AF and Vapor Source Strength 1.0E+00 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 > RL > 1 X BKG > 10 X BKG > 50 X BKG > 100 X BKG > 500 X BKG Subslab AF Max 95th% 50th% 5th% Min 33

1.0E+00 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 Subslab-to-Indoor Air Attenuation Individual Site Box Whisker Plots Subslab AF for Individual Sites Max 95th% 50th% 5th% Min 34 Subslab AF > 50 X BKG Alameda BillingsPCE DenverPCEBB Endicott Georgetown Harcros/Tri State Hopewell Precision LAFB Orion Park Raymark SCM - Cortlandville Stafford West Side Corporation

Crawlspace-to-Indoor Air Attenuation 1.E+04 Data Set 1 2008 Indoor Air Concentration (ug/m3) 1.E+03 1.E+02 1.E+01 1.E+00 1.E-01 1.E-02 EPA Data (IA > RL) Alpha = 1.0 Alpha = 1E-1 Alpha = 1E-2 Alpha = 1E-3 Alpha = 1E-4 Alpha = 1E-5 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 Crawlspace (ug/m3) 1.E+04 Data Set 2 2008 Indoor Air Concentration (ug/m3) 1.E+03 1.E+02 1.E+01 1.E+00 1.E-01 1.E-02 EPA Data (IA > RL) Alpha = 1.0 Alpha = 1E-1 Alpha = 1E-2 Alpha = 1E-3 Alpha = 1E-4 Alpha = 1E-5 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 Crawlspace (ug/m3) 35

1.0E+01 1.0E+00 1.0E-01 1.0E-02 Crawlspace-to-Indoor Air Attenuation Max 95th% 50th% 5th% Min Data Set 1 (2008) Data Set 2 (2008) 36 Crawlspace AF

Crawlspace-to-Indoor Air Attenuation Individual Site Box Whisker Plots 1.0E+01 Crawlspace AF for Individual Sites Max 1.0E+00 1.0E-01 1.0E-02 > RL Grants Jackson LAFB Lockwood Crawlspace AF 95th% 50th% 5th% Min 37

Summary & Conclusions 1.0E+01 Data Set 1 1.0E+00 Attenuation Factor 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 Max 95th% 50th% 5th% Min 1.0E-06 1.0E-07 Groundwater Soil Gas Subslab Crawlspace 38

Summary & Conclusions 1.0E+01 Data Set 2 1.0E+00 1.0E-01 Max 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 1.0E-07 GW > RL SG > RL SS > RL CS > RL Attenuation Factor 95th% 50th% 5th% Min 39

Summary & Conclusions 41 sites, 15 states, 913 buildings, 21 chemicals: mostly groundwater vapor sources, chlorinated hydrocarbons, residential buildings. Influence of background sources on indoor air concentrations needs to be considered in vapor intrusion investigations The range of attenuation factors for any given site spans several orders of magnitude; attributed to spatial and temporal variability and/or nonrepresentative samples The attenuation factor distributions obtained for each of the media are generally consistent with the conceptual model for vapor intrusion. 40