Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

Similar documents
Chiral Brønsted Acid Catalysis

Chiral Brønsted Acid Catalysis

Recent applications of chiral binaphtholderived phosphoric acid in catalytic asymmetric reactions

Chiral Bronsted Acids as Catalysts

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

Asymmetric Catalysis by Lewis Acids and Amines

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

Denmark s Base Catalyzed Aldol/Allylation

Lewis Base Catalysis: the Aldol Reaction (Scott Denmark) Tom Blaisdell Friday, January 17 th 2014 Topic Talk

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

Brønsted Acids in Asymmetric Catalysis

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

Stereoselective reactions of enolates

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College

REVIEW Recent Advances in Enantioselective Organocatalytic Reduction of C=N Bonds with Hantzsch Esters as the Hydride Source

Stereoselective reactions of enolates: auxiliaries

CHO. OMe. endo. xylene, 140 o C, 2 h 70% 1. CH 2 (OMe) 2, MeOH TsOH, rt 2. Bu 2 O, 1,2-dichloroethane 140 o C, 2 h 3. 6 M HCl, THF, rt 44%

Electrophilic Carbenes

Additions to Metal-Alkene and -Alkyne Complexes

Strained Molecules in Organic Synthesis

Advanced Organic Chemistry

Development of Small Organic Molecules as Catalysts for Asymmetric

CHT402 Recent Advances in Homogeneous Catalysis Organocatalysis Workshop

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Discussion Addendum for: Trifluoromethylation at the -Position of, -Unsaturated Ketones: 4-Phenyl-3-Trifluoromethyl-2-Butanone

Chiral Supramolecular Catalyst for Asymmetric Reaction

Stereoselective Organic Synthesis

Enantioselective Protonations

"-Amino Acids: Function and Synthesis

Asymmetric Lewis Base Strategies for Heterocycle Synthesis

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris

O + k 2. H(D) Ar. MeO H(D) rate-determining. step?

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)

Spiro Monophosphite and Monophosphoramidite Ligand Kit

Short Literature Presentation 10/4/2010 Erika A. Crane

Use of Cp 2 TiCl in Synthesis

Chiral Anions in Asymmetric Catalysis. Hannah Haley Burke Group Literature Seminar 13 April 2013

Chiral Phosphoric Acid Catalysis: Ac2va2on Modes and Relevant Examples

No Title. Li HUANG August 07, 2008

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Highlights of Schmidt Reaction in the Last Ten Years

Ynolate Chemistry. Jeff Kallemeyn October 22, 2002

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Stereoselective reactions of the carbonyl group

Mechanism Problem. 1. NaH allyl bromide, THF N H

Diels-Alder Reaction

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes

Enantioselective Organic Catalysis: Non-MacMillan Approaches

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Asymmetric Nucleophilic Catalysis

Total synthesis of Spongistatin

Morita Baylis Hillman Reaction. Aaron C. Smith 11/10/04

ChiralIonic Liquids. An Adolescent Technology. Jeremy Henle 1/24/12

Asymmetric Catalysis by Chiral Hydrogen-Bond Donors

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

Graduate Theses and Dissertations

1. Addition of HBr to alkenes

Asymmetric Palladium Catalyzed Cross-Coupling Reactions. Topic Talk September 4 th, 2014 Morken Lab Emma Edelstein 1

[3,3]-Sigmatropic rearrangements

Zr-Catalyzed Carbometallation

Shi Asymmetric Epoxidation

Disulfonimide-Catalyzed Asymmetric Vinylogous and Bisvinylogous Mukaiyama Aldol Reactions

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes

Homogeneous Catalysis - B. List

Enantioselective Synthesis of Pactamycin, a Complex Antitumor Antibiotic

The aza-baylis-hillman Reaction: Mechanism, Asymmetric Catalysis, & Abnormal Adducts. Larry Wolf SED Group Meeting

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Suggested solutions for Chapter 34

CHEM 330. Final Exam December 8, 2010 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed

Suggested solutions for Chapter 41

Mechanistic Implications in the Morita Baylis Hillman Alkylation: Isolation and Characterization of an Intermediate

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Palladium-Catalyzed Electrophilic Aromatic C H Fluorination

Rhodium Catalyzed Alkyl C-H Insertion Reactions

ROC Exam Problem 1

Chiral Auxiliaries. attach auxiliary Substrate Substrate Auxiliary

Asymmetric Radical Reactions. Zhen Liu 08/30/2018

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July

H H H OH OH H OH H O 1 CH 2 OH

Asymmetric Deprotonation

Chiral phosphine Lewis bases in catalytic, asymmetric aza-morita Baylis Hillman reaction*

Chemistry 335 Supplemental Slides: Interlude 1. Reduction: addition of hydrogen to the substrate. Oxidation: addition of oxygen to the substrate

A 1,3 Strain and the Anomeric Effect. Michael Shaghafi Chem. Topics Feb. 6, 2012

Carbonyl Ylide Cycloadditions

Literature Report IX. Cho, S. H. et al. Org. Lett. 2016, 18, Cho, S. H. et al. Angew. Chem. Int. Ed. 2017, 56,

Recent Advancements in Outer Coordination Sphere Asymmetric Transfer Hydrogenation Emphasis on the Reduction of Prochiral Ketones and Imines

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129,

a-aminoallylation of Aldehydes with Ammonia: Stereoselective Synthesis of Homoallylic Primary Amines

π-alkyne metal complex and vinylidene metal complex in organic synthesis

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide

Development of Chiral Phosphine Olefin Ligands and Their Use in Asymmetric Catalysis

{ReBr(CO) 3 (THF)} 2 (2.5 mol%) 4-Å molecular sieves toluene, 115 o C, 24 h

all advantages of small molecule organocatalyst structural simplicity modularity Advantages of short peptide p catalysts

Studies on Heck and Suzuki Reactions Catalyzed by Palladium(0) and Wacker- Type Oxidative Cyclization Catalyzed by Palladium(II)

Initials: 1. Chem 633: Advanced Organic Chemistry 2011 Final Exam

Transcription:

Chiral Proton Catalysis in rganic Synthesis Samantha M. Frawley rganic Seminar September 14 th, 2005

Seminar utline Introduction Lewis Acid-assisted Chiral Brønsted Acids Enantioselective protonation for silyl enol ethers Chiral Brønsted Acid Catalysis: Polar Covalent Enantioselective synthesis using chiral phosphoric acids Enantioselective synthesis using di-ol Brønsted acids Chiral Brønsted Acid Catalysis: Polar Ionic Difficulties in formation First successful use Enantioselective synthesis using a chiral proton Conclusion

Lewis Acid Catalysis Advantages Structural diversity and reactivity enabling the design for a variety of ligands Easily adapted for asymmetric reactions Disadvantages Many are metals Toxic Expensive reagents Costly waste disposal

Brønsted Acid Catalysis Advantages Mild reaction conditions on-toxic waste Inexpensive and stable catalysts Disadvantages Difficult to accomplish asymmetrically ard to tune for various reactions Dalko,.; Moisan, L. Angew. Chem. Int. Ed. 2001, 40, 3726. List, B.; Lerner,.; Barbas III, C. J. Am. Chem. Soc. 2000, 122, 2395.

Tips From ature 1 + 2 1 2 1 2 * L + 2 1 1 2 L * 1 2

Methods in Chiral Proton Catalysis Lewis Acid-assisted Chiral Brønsted Acids * M + substrate * substrate Chiral Brønsted Acids: Polar Covalent * L + substrate * substrate Chiral Brønsted Acids: Polar Ionic * L + substrate * substrate

Seminar utline Introduction Lewis Acid-assisted Chiral Brønsted Acids Enantioselective protonation for silyl enol ethers Chiral Brønsted Acid Catalysis: Polar Covalent Enantioselective synthesis using chiral phosphoric acids Enantioselective synthesis using di-ol Brønsted acids Chiral Brønsted Acid Catalysis: Polar Ionic Difficulties in formation First successful use Enantioselective synthesis using a chiral proton Conclusion

Lewis Acid-assisted Chiral Brønsted Acids (LBA) Brønsted acids coordinate to Lewis acids estricting orientation of protons aising the acidity of the protons SnCl 4 Ar Ar SnCl 4 akamura, S.; Kaneeda, M.; Ishihara, K.; Yamamoto,. J. Am. Chem. Soc. 2000, 122, 8120. Ishihara, K.; akashima, D.; iraiwa, Y.; Yamamoto,. J. Am. Chem. Soc. 2003, 125, 24.

Enantioselective Protonation of Silyl Enol Ethers using an LBA Ph SiMe 3 + SnCl 4 toluene -78 o C, 1 h >99% yield Ph Ar Ar Si 3 () LBA Si 3 Ar Cl Sn Cl Cl Cl akamura, S.; Kaneeda, M.; Ishihara, K.; Yamamoto,. J. Am. Chem. Soc. 2000, 122, 8120. Ishihara, K.; akashima, D.; iraiwa, Y.; Yamamoto,. J. Am. Chem. Soc. 2003, 125, 24.

Enantioselective Protonation of Silyl Enol Ethers-esults Ar Si 3 BIL 1-SnCl 4 Ar 3 toluene, -78 o C, 1 h 100 % conv. 4 entry 3 (Ar, 3 Si) ee (%), (config) 1 2 3 4 5 6 3a (Ph, Me 3 Si) 3b (Ph, t-bume 2 Si) 3b (Ph, t-bume 2 Si) 3c (p-mec 6 4, t-bume 2 Si) 3d (p-mec 6 4, Me 3 Si) 3e (2-naphthyl, Me 3 Si) 91, (S) 86, (S) 86, () 82, (S) 96, (S) 91, (S) 7 3f (2-naphthyl, t-bume 2 Si) 91, (S) akamura, S.; Kaneeda, M.; Ishihara, K.; Yamamoto,. J. Am. Chem. Soc. 2000, 122, 8120.

Enantioselective Protonation of Silyl Enol Ethers Acetals Using Various (,)-LBAs SiMe 3 Ar Ph solvent Ph + SnCl 4 Ar -78 o C, 1 h >99% yield entry LBA solvent ee (%) 1 2 1-SnCl 4 2-SnCl 4 toluene-c 2 Cl 2 (1:1) toluene 66 [S] 51 [S] Ar Ar SnCl 4 3 4 5 3-SnCl 4 4-SnCl 4 6-SnCl 4 toluene toluene toluene 35 [S] 96 [S] 96 [S] 1: Ar = Phenyl; = 2: Ar = 3,4,5-F 3 C 6 2 ; = 3: Ar = C 6 F 5 ; = 4: Ar = 3,5-(CF 3 ) 2 C 6 3 ; = 6: Ar = 3,5-(CF 3 ) 2 C 6 3 ; = Bn Ishihara, K.; akashima, D.; iraiwa, Y.; Yamamoto,. J. Am. Chem. Soc. 2003, 125, 24.

Enantioselective Protonation of Ketene Disilyl Acetals Ar C 3 SiMe 3 SiMe 3 SnCl 4 Ar toluene, -78 o C >95% yield C 3 C 2 F 3 C Me 3 Si Ar SiMe 3 Cl Me Cl Sn Cl Cl F 3 C Cl Ar Me Cl Sn Cl Cl SiMe 3 CF 3 CF 3 SiMe 3 Favored Unfavored Ishihara, K.; akashima, D.; iraiwa, Y.; Yamamoto,. J. Am. Chem. Soc. 2003, 125, 24.

Enantioselective Protonation of Ketene Disilyl Acetals with (,)- LBAs 1 SiMe 3 Chiral LBA 2 2 C 2 SiMe toluene, -78 o C 3 >95% yield 1 entry LBA solvent product ee (%) i-pr CF 3 1 2 3 4 5 (,)-6-SnCl 4 (,)-7-SnCl 4 (,)-7-SnCl 4 (,)-8-SnCl 4 (,)-7-SnCl 4 toluene toluene toluene toluene toluene Me Ph i-bu C 2 C 2 C 2 Ph C 2 C 2 76 [S] 86 [S] 90 [S] 90 [S] 85 [S] F 3 C F 3 C CF 3 SnCl 4 6: = Bn 7: = o-fc 6 4 C 2 8: = Me 6 (,)-7-SnCl 4 toluene Ph Me C 2 85 [S] Ishihara, K.; akashima, D.; iraiwa, Y.; Yamamoto,. J. Am. Chem. Soc. 2003, 125, 24.

Final Thoughts on Lewis Acidassisted Chiral Brønsted Acid Advantages Increases the acidity of the proton in the Brønsted acid Preorganizes the orientation of the proton, which improves enantioselectivity Disadvantages Still using metals

Seminar utline Introduction Lewis Acid-assisted Chiral Brønsted Acids Enantioselective protonation for silyl enol ethers Chiral Brønsted Acid Catalysis: Polar Covalent Enantioselective synthesis using chiral phosphoric acids Enantioselective synthesis using di-ol Brønsted acids Chiral Brønsted Acid Catalysis: Polar Ionic Difficulties in formation First successful use Enantioselective synthesis using a chiral proton Conclusion

Polar Covalent ydrogen Bond-An Introduction * L + substrate * substrate rientational flexibility on proton is limited The proton is acidic enough so there is no need for a Lewis acid Facial preference of proton donation can be promoted by chiral acid to yield a enantiomeric/diastereomeric product

Using Chiral Phosphoric Acids to Promote Enantioselectivity BIL-derived phosphoric acid: forcing selective nucleophilic attack P Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.

Mannich-Type eaction Catalyzed by a Chiral Phosphoric Acid 1 + TMS Me 10 mol% P toluene -78 o C, 24 h 1 C 2 Me P uc Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.

Effects of the Aromatic Substituents on Chiral Phosphoric Acids Ar P + TMS Me 30 mol% Ar toluene -78 o C 1 C 2 Me Entry Ar t [hr] Yield [%] ee [%] 1 22 57 0 2 Ph 20 100 27 3 2,4,6-Me 3 C 6 2 27 100 60 4 4-MeC 6 4 46 99 52 5 4-2 C 6 4 4 96 87 Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.

Enantioselective Mannich-type eaction esults 2 P 1 + TMS Me 10 mol% toluene -78 o C, 24 h 2 1 C 2 Me Entry 1 Yield [%] ee [%] 1 Ph 98 89 2 p-mec 6 4 100 89 3 p-fc 6 4 100 85 4 p-clc 6 4 100 80 Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.

Diastereoselective Mannich-Type eaction: Mechanistic Insight 2 + P TMS 10 mol% 3 2 C 2 3 2 + C 2 3 2 2 3 2 TMS P 2 Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.

Diastereoselective Mannich-type eaction esults 2 1 + TMS P 10 mol% 3 2 C 2 3 2 1 2 + C 2 3 1 2 Entry 1 2 3 Yield [%] syn / anti ee [%] 1 2 3 4 5 6 7 8 9 10 Ph p-mec 6 4 p-fc 6 4 p-mec 6 4 2-Thienyl PhC=C Ph p-mec 6 4 PhC=C Ph Me Me Me Me Me Me PhC 2 PhC 2 PhC 2 Ph 3 Si Et Et Et Et Et Et Et Et Et Me 100 100 100 100 81 91 100 92 65 79 87:13 92:8 91:9 94:6 94:6 95:5 93:7 93:7 95:5 100:0 96 88 84 81 88 90 91 87 90 91 Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.

Enantioselective ydrophosphonylation of Imines CF 3 CF 3 P CF 3 Me + i-pr P i - -Pr 10 mol% m-xylene rt CF 3 Me P(i-Pr) 2 Akiyama, T.; Morita,.; Itoh, J.; Fuchibe, K. rg. Lett. 2005, 7, 2583.

Enantioselective ydrophosphonylation-esults 1 + Me i-pr 10 mol% chiral Phosphoric Acid P i-pr m-xylene, rt 1 P(i-Pr) 2 Me Entry 1 time (h) Yield [%] ee [%] 1 2 3 4 5 6 7 8 9 Ph o-mec 6 4 o- 2 C 6 4 p-c 3 C 6 4 C=C p-clc 6 4 C=C o-c 3 C 6 4 C=C o-clc 6 4 C=C o- 2 C 6 4 C=C o-cf 3 C 6 4 C=C 24 46 24 170 145 171 70 49 46 84 76 72 88 97 80 82 92 86 52 69 77 86 83 82 87 88 90 F 3 C P F 3 C CF 3 CF 3 Akiyama, T.; Morita,.; Itoh, J.; Fuchibe, K. rg. Lett. 2005, 7, 2583.

Mechanistic Insight and Experimental Support F 3 C F 3 C CF 3 P P Ar CF 3 P CF 3 CF 3 P F 3 C Me P Ph 10 mol% PMP PMP F 3 C + u Ph P() m-xylene 2 rt Entry u Yield [%] ee [%] 1 2 P(-i-Pr) 2 P(-i-Pr) 3 92 23 84 3 Akiyama, T.; Morita,.; Itoh, J.; Fuchibe, K. rg. Lett. 2005, 7, 2583.

Enantioselective eduction of Imines Using antzsch Dihydropyridine Et Et 2 1 Ar P 2 * 1 5 mol% Ar ueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M. rg. Lett. 2005, 7, 3781.

Catalytic cycle for the Transfer ydrogenation Et Et 2 1 * Ar P Ar Et Et * Ar P Ar 2 * Ar P 1 Ar 2 Et Et * 1 ueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M. rg. Lett. 2005, 7, 3781.

Catalytic Enatioselective eduction esults Me Et Et Me C 3 benzene, 60 o C 5 mol% Bronsted acid * C 3 Entry Yield [%] ee [%] F 3 C 1 p-cf 3 C 6 4 71 72 2 Ph 76 74 CF 3 3 4 o-fc 6 4 o-c 3 C 6 4 82 74 84 78 P 5 2,4-Me 2 C 6 3 91 78 CF 3 6 7 biphenyl p-mec 6 4 71 76 74 72 F 3 C 8 m-brc 6 4 62 72 9 o-cf 3 C 6 4 46 82 ueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M. rg. Lett. 2005, 7, 3781.

Seminar utline Introduction Lewis Acid-assisted Chiral Brønsted Acids Enantioselective protonation for silyl enol ethers Chiral Brønsted Acid Catalysis: Polar Covalent Enantioselective synthesis using chiral phosphoric acids Enantioselective synthesis using di-ol Brønsted acids Chiral Brønsted Acid Catalysis: Polar Ionic Difficulties in formation First successful use Enantioselective synthesis using a Chiral proton Conclusion

Chiral Brønsted Acid Catalyzed Asymmetric Morita-Baylis-illman Ph + 2 mol% Bronsted acid Et 3 P TF, 0 o C entry catalyst % yield %ee 1 2 1 5 74 32 Ph X C 3 3 4 5 6 5a 5b 6a 73 73 43 48 79 5c 36 74 3 X 5a X = 5b X = Br 5c X = CPh 2 7 C 3 Ar 7 8 6b 15 7 13 5 3 X 9 10 11 12 13 8a 8b 8c 8e 69 70 84 9 86 88 86 8d 68 86 31 6a X = 6b X = Br C 3 X Ar 8a Ar = Ph 8b Ar = 3,5 Me 2 Ph 8c Ar = 3,5 (CF 3 ) 2 Ph 8d Ar = biphenyl 8e Ar = 2,4,6 Me 3 Ph McDougal,.; Trevellini, W.; odgen, S.; Kliman, L.; Schaus, S. Adv. Synth. Catal. 2004, 346, 1231.

Asymmetric Morita-Baylis-illman eaction esults Ar + 10 mol % catalyst Et 3 P TF -10 o C Ar 8b Ar = 3,5 Me 2 Ph 8c Ar = 3,5 (CF 3 ) 2 Ph Entry Aldehyde Catalyst Yield [%] % ee 1 Ph 8c 88 90 2 n-pent 8b 86 91 3 8b 80 90 Et 4 8b 72 96 5 Bn 8c 74 82 6 Bn 8b 56 55 7 8b 71 96 Entry Aldehyde Catalyst Yield [%] % ee 8 8b 82 95 9 8c 70 92 10 8b 40 67 11 2 8b 30 34 12 Ph 8b 39 81 McDougal,.; Trevellini, W.; odgen, S.; Kliman, L.; Schaus, S. Adv. Synth. Catal. 2004, 346, 1231.

Brønsted Acid vs. Lewis Acid Catalyzed Morita-Baylis-illman Bronsted Acid Catalyzed esults Entry Aldehyde Time (h) Yield [%] % ee 1 48 88 90 Ph 2 48 71 96 3 48 82 95 4 Ph 48 40 67 eterobimetallic Catalyst esults Time (h) Yield [%] % ee 240 48 288 120 49 71 94 32 58 63 99 15 B s-bu s-bu Li Ar Ar 8b Ar = 3,5 Me 2 Ph 8c Ar = 3,5 (CF 3 ) 2 Ph Matsui, K.; Takizawa, S.; Sasai,. Tetrahedron Lett. 2005, 46, 1943. McDougal,.; Trevellini, W.; odgen, S.; Kliman, L.; Schaus, S. Adv. Synth. Catal. 2004, 346, 1231.

Brønsted Acid Catalyzed Enantioselective itroso Aldol eaction ' ' n + (30mol%) toluene -78 o C, 2h n Momiyama,.; Yamamoto,. J. Am. Chem. Soc. 2005, 127, 1080.

-itroso Aldol Synthesis esults X X = C: 1b X = : 1c X = S: 1d ' ' n + (30mol%) toluene -78 o C, 2h entry enamine n, % Yield % ee n 1 1b 0, <1 1e 2 3 4 5 6 1b 1b 1b 1b 1c 1 1 1 2 1, Me, Me _ (C 2 C 2 ) _,, 81 78 63 67 91 83 82 91 65 79 7 1d 1, 88 77 8 1e 1, 81 80 Momiyama,.; Yamamoto,. J. Am. Chem. Soc. 2005, 127, 1080.

Final Thoughts on Chiral Brønsted Acids: Polar Covalent Advantages o more metals in the reaction The acid works to activate the substrate and control the stereochemistry Mild reaction conditions Limitations Very dependant on acidity Substrate dependent

Seminar utline Introduction Lewis Acid-assisted Chiral Brønsted Acids Enantioselective protonation for silyl enol ethers Chiral Brønsted Acid Catalysis: Polar Covalent Enantioselective synthesis using chiral phosphoric acids Enantioselective synthesis using di-ol Brønsted acids Chiral Brønsted Acid Catalysis: Polar Ionic Difficulties in formation First successful use Enantioselective synthesis using a chiral proton Conclusion

Developing Enantioselective Polar Ionic ydrogen Bonds * L + substrate * substrate Benefits o acidity/basicity catalyst limitations Ligands serve only as a binding pocket to deliver a proton asymmetrically to the substrate Challenges Spherical nature of empty 1s orbital Proton s nucleus is more promiscuous than other Lewis acids Chiral complex leads to achiral catalysis by solventcoordinated Brønsted acid ugent, B.; Yoder,.; Johnston, J. J. Am. Chem. Soc. 2004, 126, 3418.

The First Use of Polar Ionic Bonds as Stereocontrol Elements Me + ' C 2 Cl 2 4-5 o C -27 o C * Me 5a + Me 6a 3 C( 2 C) 14 2 catalyst (5a + ent-5a): (equiv) % yield (6a + ent-6a) %ee of 5a %ee of 6a 7 2 no catalyst 7a (1) 8a (1) 9a (1) <3 46 70 83 <0.1:1 2.4:1 2.5:1 2.8:1 0 11 22 9a * (1) 73 2.8:1 26 0 0 0 15 28 33 9b (1) 35 1.0:1 1 2 a: Counterion = tetrakis(3,5-bis(trifouoromethyl)phenyl)borate b: Counterion = picrate 8 9 Schuster, T.; Bauch, M.; Dürner, G.; Göbel, M. rg. Lett. 2000, 2, 179.

Mechanistic Insight on Major Product Formation The diene is shielded from the backside due to the phenylnaphthalene moiety Cycloaddition occurs at the front unfavored favored Schuster, T.; Bauch, M.; Dürner, G.; Göbel, M. rg. Lett. 2000, 2, 179.

Enantioselective Diels-Alder with Amidinium Ions-esults Me + ' C 2 Cl 2 4-5 o C -27 o C * Me 5b + Me 6b entry catalyst (equiv) % yield (5b + ent-5b): (6b + ent-6b) %ee of 5b %ee of 6b 1 7(1) 33 2.8:1 0 0 2 3 4 5 9a (0.1) 9a (0.25) 9a (0.5) 9a (1) 20 70 89 83 3.1:1 3.1:1 3.0:1 2.9:1 39 40 40 40 42 44 45 46 6 9a (1) * 94 3.2:1 43 50 3 C( 2 C) 14 2 7 2 Schuster, T.; Bauch, M.; Dürner, G.; Göbel, M. rg. Lett. 2000, 2, 179. 9a

Did Polar Ionic ydrogen Bonds eally Play a ole in the Enantioselectivity? The amidinium ion induced facial selectivity based on one face was sterically blocked When a stronger counterion was used, the stereoselectivity disappeared This work lead to the thought can we design a chiral proton?

Enantioselective Aza-enry eaction using a Polar Ionic ydrogen Bond 10 mol% Tf 1 -C 6 4 Boc Boc + 2 2 1 -C 6 2 4-20 o C 2 Boc 2 2 ugent, B.; Yoder,.; Johnston, J. J. Am. Chem. Soc. 2004, 126, 3418.

Aza-enry esults 1 -C 6 4 Boc 10 mol% Boc Quin-BAM-Tf + 2 2-20 o 1 -C 6 2 4 C 2 entry 1 2 % Yield dr % ee 1 57-60 2 p- 2 61-82 Tf 3 4 5 m- 2 p-cf 3 C 3 C 3 65 69 53-14:1 19:1 95 59 81 6 p-cl C 3 59 17:1 82 7 m- 2 C 3 51 11:1 89 8 o- 2 C 3 62 7:1 82 9 p-cf 3 C 3 50 19:1 84 10 p- 2 C 3 60 7:1 90 ugent, B.; Yoder,.; Johnston, J. J. Am. Chem. Soc. 2004, 126, 3418.

Final Thoughts on Chiral Brønsted Acids: Polar Ionic Advantages: source of a chiral proton Ability to circumnavigate previous problems associated with forming a chiral proton Chiral proton is used both to activate and control stereochemistry Limitations Substrate dependent-has to fit in the binding pocket of the acid in order to be efficient

Conclusion Chiral Brønsted acids are successful at enantioselective proton donation Advantages o metals eusable catalyst Mild reaction conditions Disadvantages eactions are very substrate dependent equires different catalyst for different reactions Development of other reactions Development of new catalysts

Acknowledgements Dr. Wagner Dr. Tepe Group Members Vasudha Teri Jason Chris Adam Manasi James Gwen Sam 2 Brandon