ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION

Similar documents
Global Attractivity of a Rational Difference Equation

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM

Chapter 10. The singular integral Introducing S(n) and J(n)

ON THE GLOBAL ATTRACTIVITY AND THE PERIODIC CHARACTER OF A RECURSIVE SEQUENCE. E.M. Elsayed

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park

The Matrix Exponential

The Matrix Exponential

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Derangements and Applications

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

2008 AP Calculus BC Multiple Choice Exam

Exercise 1. Sketch the graph of the following function. (x 2

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH.

Combinatorial Networks Week 1, March 11-12

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Limiting value of higher Mahler measure

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

Dynamics of a Rational Recursive Sequence

On the irreducibility of some polynomials in two variables

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Square of Hamilton cycle in a random graph

Homotopy perturbation technique

Einstein Equations for Tetrad Fields

ON A CONJECTURE OF RYSElt AND MINC

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

Equidistribution and Weyl s criterion

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.

Research Article Norm and Essential Norm of an Integral-Type Operator from the Dirichlet Space to the Bloch-Type Space on the Unit Ball

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P

An Extensive Study of Approximating the Periodic. Solutions of the Prey Predator System

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction

Another view for a posteriori error estimates for variational inequalities of the second kind

ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS

INCOMPLETE KLOOSTERMAN SUMS AND MULTIPLICATIVE INVERSES IN SHORT INTERVALS. xy 1 (mod p), (x, y) I (j)

SCHUR S THEOREM REU SUMMER 2005

An Application of Hardy-Littlewood Conjecture. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.China

2.3 Matrix Formulation

cycle that does not cross any edges (including its own), then it has at least

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12

State-space behaviours 2 using eigenvalues

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

That is, we start with a general matrix: And end with a simpler matrix:

10. The Discrete-Time Fourier Transform (DTFT)

Finding low cost TSP and 2-matching solutions using certain half integer subtour vertices

Some remarks on Kurepa s left factorial

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases.

Deift/Zhou Steepest descent, Part I

Exponential inequalities and the law of the iterated logarithm in the unbounded forecasting game

The Equitable Dominating Graph

EXISTENCE OF POSITIVE ENTIRE RADIAL SOLUTIONS TO A (k 1, k 2 )-HESSIAN SYSTEMS WITH CONVECTION TERMS

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018

Some Results on E - Cordial Graphs

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden

ON THE DISTRIBUTION OF THE ELLIPTIC SUBSET SUM GENERATOR OF PSEUDORANDOM NUMBERS

Hydrogen Atom and One Electron Ions

Spectral Synthesis in the Heisenberg Group

Superposition. Thinning

EXST Regression Techniques Page 1

ANALYSIS IN THE FREQUENCY DOMAIN

EEO 401 Digital Signal Processing Prof. Mark Fowler

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming

A Simple Formula for the Hilbert Metric with Respect to a Sub-Gaussian Cone

(Upside-Down o Direct Rotation) β - Numbers

Calculus concepts derivatives

First derivative analysis

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS

A. Limits and Horizontal Asymptotes ( ) f x f x. f x. x "±# ( ).

Review Article Solution and Attractivity for a Rational Recursive Sequence

VALUING SURRENDER OPTIONS IN KOREAN INTEREST INDEXED ANNUITIES

1 N N(θ;d 1...d l ;N) 1 q l = o(1)

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation

Chapter 1. Chapter 10. Chapter 2. Chapter 11. Chapter 3. Chapter 12. Chapter 4. Chapter 13. Chapter 5. Chapter 14. Chapter 6. Chapter 7.

Abstract Interpretation: concrete and abstract semantics

Network Congestion Games

On the number of pairs of positive integers x,y H such that x 2 +y 2 +1, x 2 +y 2 +2 are square-free

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Dynamics and behavior of a higher order rational recursive sequence

A Propagating Wave Packet Group Velocity Dispersion

Supplementary Materials

Inference Methods for Stochastic Volatility Models

On spanning trees and cycles of multicolored point sets with few intersections

Ewald s Method Revisited: Rapidly Convergent Series Representations of Certain Green s Functions. Vassilis G. Papanicolaou 1

ON THE RATIONAL RECURSIVE SEQUENCE X N+1 = γx N K + (AX N + BX N K ) / (CX N DX N K ) Communicated by Mohammad Asadzadeh. 1.

u 3 = u 3 (x 1, x 2, x 3 )

Symmetric centrosymmetric matrix vector multiplication

1997 AP Calculus AB: Section I, Part A

Calculus II (MAC )

Strongly Connected Components

BSc Engineering Sciences A. Y. 2017/18 Written exam of the course Mathematical Analysis 2 August 30, x n, ) n 2

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac.

EXPONENTIAL ENTROPY ON INTUITIONISTIC FUZZY SETS

10. Limits involving infinity

Journal of Modern Applied Statistical Methods May, 2007, Vol. 6, No. 1, /07/$ On the Product of Maxwell and Rice Random Variables

Direct Approach for Discrete Systems One-Dimensional Elements

MA 262, Spring 2018, Final exam Version 01 (Green)

1973 AP Calculus AB: Section I

Transcription:

Hacttp Journal of Mathmatics and Statistics Volum 41(6) (2012), 867 874 ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION Nourssadat Touafk Rcivd 06:07:2011 : Accptd 26:12:2011 Abstract In this papr, w invstigat th stability of th following diffrnc quation x n+1 = ax4 n +bx nx 3 n 1 +cx 2 nx 2 n 1 +dx 3 nx n 1 +x 4 n 1, Ax 4 n +Bx nx 3 n 1 +Cx2 nx 2 n 1 +Dx3 nx n 1 +Ex 4 n 1 n = 0,1,..., whr th paramtrs a, b, c, d,, A, B, C, D, E ar positiv ral numbrs and th initial valus x 0,x 1 ar arbitrary positiv numbrs. Kywords: Diffrnc quations, Global stability. 2000 AMS Classification: 39 A 10. 1. Introduction and prliminaris Considr th following scond-ordr diffrnc quation (1.1) x n+1 = ax4 n +bx nx 3 n 1 +cx 2 nx 2 n 1 +dx 3 nx n 1 +x 4 n 1, n = 0,1,..., Ax 4 n +Bx nx 3 n 1 +Cx2 nx 2 n 1 +Dx3 nx n 1 +Ex 4 n 1 whr th initial conditions x 0, x 1 (0, ) and th paramtrs a, b, c, d,, A, B, C, D, E (0, ). In this papr w study th global stability of th uniqu positiv quilibrium point, and th bounddnss and th convrgnc of th solutions of Equation (1.1). Nonlinar diffrnc quations appar naturally, for xampl, from crtain modls in cology, conomy, automatic control thory, and thy ar of grat importanc in applications whr th (n+1) st stat of th modl dpnds on th prvious k stats. Rcntly, thr has bn a lot of attntion givn to studying th global bhavior of nonlinar diffrnc quations by many authors, S for xampl [1-3,5-19] and th rfrncs citd thrin. Now, w rviw som dfinitions (s for xampl [11-12]), which will b usful in th squl. Dpartmnt of Mathmatics, Jijl Univrsity, Algria. E-mail: nstouafk@yahoo.fr

868 N. Touafk Lt I b an intrval of ral numbrs and lt F : I I I b a continuously diffrntiabl function. Considr th diffrnc quation (1.2) x n+1 = F(x n,x n 1) with initial valus x 1, x 0 I. 1.1. Dfinition. A point x I is calld an quilibrium point of (1.2) if x = F(x,x). 1.2. Dfinition. Lt x b an quilibrium point of (1.2). Th quilibrium x is calld locally stabl if for vry ǫ > 0, thr xist δ > 0 such that for all x 1, x 0 I with x 1 x + x 0 x < δ, w hav x n x < ǫ, for all n 1. Th quilibrium x is calld locally asymptotically stabl if it is locally stabl, and if thr xists γ > 0 such that if x 1, x 0 I and x 1 x + x 0 x < γ thn lim xn = x. n + Th quilibrium x is calld a global attractor if for all x 1, x 0 I, w hav lim xn = x. n + Th quilibrium x is calld global asymptotically stabl if it is locally stabl and a global attractor. Th quilibrium x is calld unstabl if it is not stabl. Lt p = F x (x,x) and q = F y (x,x). Thn th quation (1.3) y n+1 = py n +qy n 1, n = 0,1,... is calld th linarizd quation of (1.2) about th quilibrium point x. Th nxt rsult, which was givn by Clark [4], provids a sufficint condition for th locally asymptotically stability of (1.2). 1.3. Thorm. Considr th diffrnc quation (1.3). Thn, p + q < 1 is a sufficint condition for th locally asymptotically stability of (1.2). 1.4. Dfinition. Th diffrnc quation (1.2) is said to b prmannt if thr xist numbrs α,β with 0 < α β < such that for any initial valus x 1, x 0 I thr xists a positiv intgr N which dpnds on th initial conditions such that α x n β for all n N. 2. Main rsults Lt us dfin th following ral numbrs: r 1 = ab ba, r 2 = ac ca, r 3 = ad da, r 4 = ae A, r 5 = be B, r 6 = cb bc, r 7 = ce C, r 8 = db bd, r 9 = dc cd, r 10 = de D. 2.1. Rmark. Equation (1.1) has a uniqu positiv quilibrium point which is givn by x = a+b+c+d+ A+B +C +D +E. Lt f : (0,+ ) 2 (0,+ ) b th function dfind by f(x,y) = ax4 +bxy 3 +cx 2 y 2 +dx 3 y +y 4 Ax 4 +Bxy 3 +Cx 2 y 2 +Dx 3 y +Ey 4.

On a Scond Ordr Rational Diffrnc Equation 869 2.2. Lmma. (1) Assum that (a) a max( d, c, b ), (b) min( d, c, b ), (c) 3r 1 +r 9 0, (d) 2r 4 +r 8 0, () r 6 +3r 10 0. Thn f is incrasing in x for ach y and it is dcrasing in y for ach x. (2) Assum that (a) a min( d, c, b ), (b) max( d, c, b ), (c) 3r 1 +r 9 0, (d) 2r 4 +r 8 0, () r 6 +3r 10 0. Thn f is dcrasing in x for ach y and it is incrasing in y for ach x. Proof. (1) W hav, 3r 1 +r 9 0, 2r 4 +r 8 0 and r 6 +3r 10 0. Using th fact that, a max( d, c, b ) and min( d, c, b ), w gt: r2, r3, r5, r7 0. Now, th rsult follows from th formulas f x (x,y) = r 3yx 6 + 2r 2 y 2 x 5 + (r 9 + 3r 1 )y 3 x 4 + (4r 4 + 2r 8 )y 4 x 3 + (3r 10 + r 6 )y 5 x 2 + (2r 7 )y 6 x + r 5 y 7 (Ax 4 + Bxy 3 + Cx 2 y 2 + Dx 3 y + Ey 4 ) 2, f y (x,y) = r 3x 7 2r 2 yx 6 (r 9 + 3r 1 )y 2 x 5 (4r 4 + 2r 8 )y 3 x 4 (3r 10 + r 6 )y 4 x 3 2r 7 y 5 x 2 r 5 y 6 x (Ax 4 + Bxy 3 + Cx 2 y 2 + Dx 3 y + Ey 4 ) 2. (2) Th proof of (2) is similar and will b omittd. Th locally stability of th positiv quilibrium point x = a+b+c+d+ A+B+C+D+E dscribd in th following thorm. 2.3. Thorm. Assum that 3r1 +2r2 +r3 +4r4 +r5 +r6 +2r7 +2r8 +r9 +3r10 2 < 1. (a+b+c+d+)(a+b +C +D +E) Thn th positiv quilibrium point x = a+b+c+d+ A+B+C+D+E stabl. Proof. Th linarizd quation of (1.1) about x = a+b+c+d+ A+B+C+D+E is whr and x n+1 = px n +qx n 1 p = q = 3r1 +2r2 +r3 +4r4 +r5 +r6 +2r7 +2r8 +r9 +3r10 (a+b+c+d+)(a+b +C +D+E) 3r1 +2r2 +r3 +4r4 +r5 +r6 +2r7 +2r8 +r9 +3r10. (a+b+c+d+)(a+b +C +D+E) By using Thorm 1.3, w gt that x is locally asymptotically stabl if of (1.1) is of (1.1) is locally asymptotically 3r1 +2r2 +r3 +4r4 +r5 +r6 +2r7 +2r8 +r9 +3r10 2 < 1. (a+b+c+d+)(a+b +C +D +E)

870 N. Touafk Th nxt thorm is dvotd to th prmannc of th diffrnc quation (1.1). 2.4. Thorm. Lt {x n} + n= 1 b a positiv solution of quation (1.1). (1) Assum that (a) a max( d, c, b ), (b) min( d, c, b ). Thn, E xn a A for all n 1. (2) Assum that (a) a min( d, c, b ), (b) max( d, c, b ). Thn, a A xn E for all n 1. Proof. (1) W hav x n+1 a A = x n+1 E = r 3x n 1x 3 n r 2x 2 n 1x 2 n r 1x 3 n 1x n r 4x 4 n 1 A(Ax 4 n +Bx nx 3 n 1 +Cx2 nx 2 n 1 +Dx3 nx n 1 +Ex 4 n 1 ), r 4x 4 n +r 10x n 1x 3 n +r 7x 2 n 1x 2 n +r 5x 3 n 1x n E(Ax 4 n +Bx nx 3 n 1 +Cx2 nx 2 n 1 +Dx3 nx n 1 +Ex 4 n 1 ). Now, it suffics to gt r 1, r 2, r 3, r 4, r 5, r 7, r 10 0, which rsult from a A max( d D, c C, b B ) and E min( d D, c C, b B ). (2) Similarly w can asily prov (2). Hr w study th global asymptotic stability of quation (1.1). 2.5. Thorm. Lt Assum that p 1 = (A + D)+ Ab Ea, p 2 = (A + C + D) Ed + Ac + (A + D)b (B + E)a, p 3 = (A + B + C + D) + (A B E)d+(A + D E)c+(A + C + D)b (B + C + E)a, p 4 = (A + B + C + D + E) + (A B C + D E)d + (A B + C + D E)c + (A + B + C + D E)b + (A B C D E)a. (1) a max( d, c, b ), (2) min( d, c, b ), (3) 3r 1 +r 9 0, (4) 2r 4 +r 8 0, (5) r 6 +3r 10 0, (6) 2 3r 1+2r 2 +r 3 +4r 4 +r 5 +r 6 +2r 7 +2r 8 +r 9 +3r 10 < 1, (a+b+c+d+)(a+b+c+d+e) (7) p 1, p 2, p 3, p 4 0. Thn th quilibrium point x = a+b+c+d+ A+B+C+D+E of (1.1) is globally asymptotically stabl. Proof. Lt {x n} + n= 1 b a solution of quation (1.1). In viw of thorm 2.3 w nd only to prov that x is a global attractor. Lt m = lim n + infxn

On a Scond Ordr Rational Diffrnc Equation 871 and To prov that M = lim n + supxn. lim xn = x, n + it suffics to show that m = M. Lt ǫ ]0,m[ thn thr xist n 0 N such that for all n n 0 w gt m ǫ x n M +ǫ. Thus by using Lmma 2.2, Part (1); w gt for all n n 0 +1 x n+1 a(m ǫ)4 + b(m ǫ)(m + ǫ) 3 + c(m ǫ) 2 (M + ǫ) 2 + d(m ǫ) 3 (M + ǫ) + (M + ǫ) 4 A(m ǫ) 4 + B(m ǫ)(m + ǫ) 3 + C(m ǫ) 2 (M + ǫ) 2 + D(m ǫ) 3 (M + ǫ) + E(M + ε) 4, x n+1 a(m + ǫ)4 + b(m + ǫ)(m ǫ) 3 + c(m + ǫ) 2 (m ǫ) 2 + d(m + ǫ) 3 (m ǫ) + (m ǫ) 4 A(M + ǫ) 4 + B(M + ǫ)(m ǫ) 3 + C(M + ǫ) 2 (m ǫ) 2 + D(M + ǫ) 3 (m ǫ) + E(m ǫ) 4. Thn w gt th following inqualitis m a(m ǫ)4 + b(m ǫ)(m + ǫ) 3 + c(m ǫ) 2 (M + ǫ) 2 + d(m ǫ) 3 (M + ǫ) + (M + ǫ) 4 A(m ǫ) 4 + B(m ǫ)(m + ǫ) 3 + C(m ǫ) 2 (M + ǫ) 2 + D(m ǫ) 3 (M + ǫ) + E(M + ε) 4, M a(m + ǫ)4 + b(m + ǫ)(m ǫ) 3 + c(m + ǫ) 2 (m ǫ) 2 + d(m + ǫ) 3 (m ǫ) + (m ǫ) 4 A(M + ǫ) 4 + B(M + ǫ)(m ǫ) 3 + C(M + ǫ) 2 (m ǫ) 2 + D(M + ǫ) 3 (m ǫ) + E(m ǫ) 4. Ths inqualitis yild So, Hnc m am4 +bmm 3 +cm 2 M 2 +dm 3 M +M 4 Am 4 +BmM 3 +Cm 2 M 2 +Dm 3 M +EM 4, M am4 +bmm 3 +cm 2 m 2 +dm 3 m+m 4 AM 4 +BMm 3 +CM 2 m 2 +DM 3 m+em 4. mm M am4 +bmm 3 +cm 2 M 2 +dm 3 M +M 4 Am 4 +BmM 3 +Cm 2 M 2 +Dm 3 M +EM 4, mm m am4 +bmm 3 +cm 2 m 2 +dm 3 m+m 4 AM 4 +BMm 3 +CM 2 m 2 +DM 3 m+em 4. M am4 + bmm 3 + cm 2 M 2 + dm 3 M + M 4 Am 4 + BmM 3 + Cm 2 M 2 + Dm 3 M + EM 4 m am 4 + bmm 3 + cm 2 m 2 + dm 3 m + m 4 AM 4 + BMm 3 + CM 2 m 2 + DM 3 m + Em 4 0 which can b writtn Sinc w gt (M m) A(m8 + M 8 ) + p 1 mm(m 6 + M 6 ) + p 2 m 2 M 2 (M 4 + m 4 ) + p 3 m 3 M 3 (M 2 + m 2 ) + p 4 m 4 M 4 (Am 4 + BmM 3 + Cm 2 M 2 + Dm 3 M + EM 4 )(AM 4 + BMm 3 + CM 2 m 2 + DM 3 m + Em 4 ) 0. A(m 8 + M 8 ) + p 1 mm(m 6 + M 6 ) + p 2 m 2 M 2 (M 4 + m 4 ) + p 3 m 3 M 3 (M 2 + m 2 ) + p 4 m 4 M 4 (Am 4 + BmM 3 + Cm 2 M 2 + Dm 3 M + EM 4 )(AM 4 + BMm 3 + CM 2 m 2 + DM 3 m + Em 4 ) > 0 M m. So, m = M = x. By th sam argumnts, w can prov th following thorm.

872 N. Touafk 2.6. Thorm. Lt Assum that q 1 = A+Ed + (B + E)a, q 2 = (A + D) + (B + E)d+Ec Ab + (C + B + E)a, q 3 = (A + C + D)+ (B + C + E)d+( A + B + E)c + ( A D + E)b + (B + C + D + E)a, q 4 = ( A B C D + E) + ( A+ B + C + D + E)d+ ( A+ B + C D + E)c + ( A + B C D + E)b + (A + B + C + D + E)a. (1) a min( d, c, b ), (2) max( d, c, b ), (3) 3r 1 +r 9 0, (4) 2r 4 +r 8 0, (5) r 6 +3r 10 0, (6) 2 3r 1+2r 2 +r 3 +4r 4 +r 5 +r 6 +2r 7 +2r 8 +r 9 +3r 10 < 1, (a+b+c+d+)(a+b+c+d+e) (7) q 1, q 2, q 3, q 4 0. Thn th quilibrium point x = a+b+c+d+ A+B+C+D+E of (1.1) is globally asymptotically stabl. 2.7. Thorm. Assum that q 1, q 2, q 3, q 4 0. Thn, Equation (1.1) has no positiv solution of priod two. Proof. For th sak of contradiction, assum that thr xist distinct positiv ral numbrs α, β, such that..., α, β, α, β,... is a priod two solution of (1.1). Thn, Thus, w hav which implis Sinc α = f(β,α), β = f(α,β). βf(β,α) = αf(α,β), (β α) ae(α8 + β 8 ) + q 1αβ(α 6 + β 6 ) + q 2α 2 β 2 (α 4 + β 4 ) + q 3α 3 β 3 (α 2 + β 2 ) + q 4α 4 β 4 (Aβ 4 + Bβα 3 + Cβ 2 α 2 + Dβ 3 α + Eα 4 )(Aα 4 + Bαβ 3 + Cα 2 β 2 + Dα 3 β + Eβ 4 ) = 0. ae(α 8 + β 8 ) + q 1αβ(α 6 + β 6 ) + q 2α 2 β 2 (α 4 + β 4 ) + q 3α 3 β 3 (α 2 + β 2 ) + q 4α 4 β 4 (Aβ 4 + Bβα 3 + Cβ 2 α 2 + Dβ 3 α + Eα 4 )(Aα 4 + Bαβ 3 + Cα 2 β 2 + Dα 3 β + Eβ 4 ) > 0, w gt α = β, which is a contradiction. 2.8. Rmark. It follows from (1.1), whn r 1 = = r 10 = 0 that x n+1 = α for all n 1 for som constant α. 3. Numrical xampls In ordr to illustrat our rsults and to support our thortical discussions, w considr numrical xampls in this sction. 3.1. Exampl. Lt (a,b,c,d,,a,b,c,d,e) = (3.8,2.2,3.3,3,5,1.5,2,3.5,3.2,5.5) and (x 1,x 0) = (5,2.9). Thn, all th conditions of Thorm 2.5 ar satisfid and w hav th following rsults:

On a Scond Ordr Rational Diffrnc Equation 873 n x n x n x n x n x n x 1 0.1285600589 21 0.5070.10 5 31 0.27.10 7 2 0.1665995958 22 0.3589.10 5 32 0.14.10 7 3 0.014511762 23 0.504.10 6 33 0.5.10 8 4 0.062906849 24 0.1394.10 5 34 0.6.10 8 3.2. Exampl. Lt (a,b,c,d,,a,b,c,d,e) = (1.5,2,3.5,3.2,5.5,3.8,2.2,3.3,3,5) and (x 1,x 0) = (0.15,21). Thn, all th conditions of Thorm 2.6 ar satisfid and w hav th following rsults: n x n x n x n x n x n x 1 0.5089804983 31 0.2260828.10 3 97 0.2.10 9 2 0.1908955041 32 0.1757875.10 3 98 0.2.10 9 3 0.3068138396 33 0.1369202.10 3 99 0.6.10 9 4 0.1270735371 34 0.1065022.10 3 100 0.1.10 9 Acknowldgmnt Th hlpful suggstions of th anonymous rfr ar gratfully acknowldgd. Rfrncs [1] Bozkurt, F., Ozturk, I. and Ozn, S. Th global bhavior of th diffrnc quation, Stud. Univ. Babs-Bolyai Math. 54(2), 3 12, 2009. x [2] Cinar, C. On th positiv solutions of th diffrnc quation x n+1 = n 1, Appl. 1+x nx n 1 Math. Comp. 150(1), 21 24, 2004. [3] Cinar, C., Karatas, R. and Yalçinkaya, I. On solutions of th diffrnc quation x n+1 = x n 3, Math. Bohm. 132(3), 257 261, 2007. 1+x nx n 1 x n 2 x n 3 [4] Clark, C. W., A dlayd rcruitmnt of a population dynamics with an application to baln whal populations, J. Math. Biol. 3, 381 391, 1976. [5] Chn, D., Li, X. and Wang, Y. Dynamics for nonlinar diffrnc quation x n+1 = αx n k, Adv. Diffr. Equ., Articl ID 235691, 13 pags, 2009. β+γx p n l [6] Elabbasy, E.M., El-Mtwally, H. and Elsayd, E.M. On th diffrnc quation x n+1 = bx ax n n, Adv. Diffr. Equ. Articl ID 82579, 10 pags, 2006. cx n dx n 1 [7] Elabbasy, E. M. and Elsayd, E. M. On th global attractivity of diffrnc quation of highr ordr, Carpathian J. Math. 24(2), 45 53, 2008. [8] Elsayd, E. M. Exprssions of solutions for a class of diffrntial quations, An. Ştiint. Univ. Ovidius Constanta. Sr. Mat. 18(1), 99 114, 2010. [9] Fur, J. Priodic solutions of th Lynss max quation, J. Math. Anal. Appl. 288(1), 147 160, 2003. [10] Fur, J. Two classs of picwis-linar diffrnc quations with vntual priodicity thr, J. Math. Anal. Appl. 332(1), 564 569, 2007. [11] Kocic, V. L. and Ladas, G. Global bhavior of nonlinar diffrnc quations of highr ordr with applications (Kluwr Acadmic Publishrs, Dordrcht, 1993). [12] Kulnovic, M. R. S. and Ladas, G. Dynamics of scond ordr rational diffrnc quations with opn problms and conjcturs (Chapman and Hall, CRC Prss, 2001). [13] Ozturk, I., Bozkurt, F. and Ozn, S., On th diffrnc quation y n+1 = α+β yn γ+y n 1, Appl. Math. Comput. 181(2), 1387 1393, 2006. [14] Li, X. and Zhu, D. Global asymptotic stability in a rational quation, J. Diffrnc Equ. Appl. 9, 833 839, 2003.

874 N. Touafk [15] Li, X. Existnc of solutions with a singl smicycl for a gnral scond-ordr rational diffrnc quation, J. Math. Anal. Appl. 334(1), 528 533, 2007. [16] Stvić, S. A not on priodic charactr of a highr ordr diffrnc quation, Rostockr Math. Kolloq. 61, 21 30, 2006. [17] Stvić, S. On a class of highr-ordr diffrnc quations, Chaos Solitons and Fractals 42, 138 145, 2009. [18] Yalçinkaya, I., Iricanin, B. D. and Cinar, C. On a max-typ diffrnc quation, Discrt Dyn. Nat. Soc. Articl ID 47264, 10 pags, 2007. [19] Yalçinkaya, I. On th diffrnc quation x n+1 = α+ x n 2, Fasc. Math. 42, 133 139, 2009. x k n