Ordinal diagrams. By Gaisi TAKEUTI. (Received April 5, 1957) $(a)\frac{s_{1}s_{2}}{(b)\frac{s_{3}s_{4}}{(c)\frac{s}{s}6\underline{6}}}$ Fig.

Similar documents
Bernoulli Numbers Jeff Morton

Introduction to Group Theory

(e) if x = y + z and a divides any two of the integers x, y, or z, then a divides the remaining integer

Linearly Similar Polynomials

Handout: Natural deduction for first order logic

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

N 0 completions on partial matrices

Generalized Fano and non-fano networks

DIRECT CURRENT CIRCUITS

Self-similarity and symmetries of Pascal s triangles and simplices mod p

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

20 MATHEMATICS POLYNOMIALS

Theoretical foundations of Gaussian quadrature

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality

Quadratic Forms. Quadratic Forms

Frobenius numbers of generalized Fibonacci semigroups

Decomposition of terms in Lucas sequences

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

Binding Numbers for all Fractional (a, b, k)-critical Graphs

Journal of Inequalities in Pure and Applied Mathematics

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int

The Regulated and Riemann Integrals

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

UniversitaireWiskundeCompetitie. Problem 2005/4-A We have k=1. Show that for every q Q satisfying 0 < q < 1, there exists a finite subset K N so that

Coalgebra, Lecture 15: Equations for Deterministic Automata

ad = cb (1) cf = ed (2) adf = cbf (3) cf b = edb (4)

37 Kragujevac J. Math. 23 (2001) A NOTE ON DENSITY OF THE ZEROS OF ff-orthogonal POLYNOMIALS Gradimir V. Milovanović a and Miodrag M. Spalević

Graph Theory. Dr. Saad El-Zanati, Faculty Mentor Ryan Bunge Graduate Assistant Illinois State University REU. Graph Theory

On super edge-magic total labeling of banana trees

Review of Calculus, cont d

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Lecture 6. Notes. Notes. Notes. Representations Z A B and A B R. BTE Electronics Fundamentals August Bern University of Applied Sciences

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

p-adic Egyptian Fractions

HW3, Math 307. CSUF. Spring 2007.

Infinite Geometric Series

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Closure Properties of Regular Languages

By Ken Standfield, Director Research & Development, KNOWCORP

ON THE NILPOTENCY INDEX OF THE RADICAL OF A GROUP ALGEBRA. XI

Chapter 1: Fundamentals

ON ALTERNATING POWER SUMS OF ARITHMETIC PROGRESSIONS

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

Geometric Sequences. Geometric Sequence a sequence whose consecutive terms have a common ratio.

A NOTE ON PREPARACOMPACTNESS

The Algebra (al-jabr) of Matrices

DISCRETE MATHEMATICS HOMEWORK 3 SOLUTIONS

A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES. 1. Introduction

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Here we study square linear systems and properties of their coefficient matrices as they relate to the solution set of the linear system.

MAA 4212 Improper Integrals

Review of Riemann Integral

A recursive construction of efficiently decodable list-disjunct matrices

AQA Further Pure 1. Complex Numbers. Section 1: Introduction to Complex Numbers. The number system

Parse trees, ambiguity, and Chomsky normal form

Introduction to Determinants. Remarks. Remarks. The determinant applies in the case of square matrices

Spanning tree congestion of some product graphs

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

Bases for Vector Spaces

Zero-Sum Magic Graphs and Their Null Sets

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014

SPACES DOMINATED BY METRIC SUBSETS

CS 330 Formal Methods and Models

New Expansion and Infinite Series

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Vectors , (0,0). 5. A vector is commonly denoted by putting an arrow above its symbol, as in the picture above. Here are some 3-dimensional vectors:

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

Abstract inner product spaces

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015

Chapter 6 Notes, Larson/Hostetler 3e

2008 Mathematical Methods (CAS) GA 3: Examination 2

AT100 - Introductory Algebra. Section 2.7: Inequalities. x a. x a. x < a

and that at t = 0 the object is at position 5. Find the position of the object at t = 2.

USA Mathematical Talent Search Round 1 Solutions Year 21 Academic Year

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

Math Lecture 23

ODE: Existence and Uniqueness of a Solution

13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS

Sturm-Liouville Eigenvalue problem: Let p(x) > 0, q(x) 0, r(x) 0 in I = (a, b). Here we assume b > a. Let X C 2 1

Diophantine Steiner Triples and Pythagorean-Type Triangles

1B40 Practical Skills

Solution to Fredholm Fuzzy Integral Equations with Degenerate Kernel

1 Sets Functions and Relations Mathematical Induction Equivalence of Sets and Countability The Real Numbers...

CM10196 Topic 4: Functions and Relations

ON THE EXCEPTIONAL SET IN THE PROBLEM OF DIOPHANTUS AND DAVENPORT

arxiv: v1 [math.ra] 1 Nov 2014

Properties of the Riemann Integral

On the degree of regularity of generalized van der Waerden triples

arxiv:math/ v2 [math.ho] 16 Dec 2003

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

Integral points on the rational curve

Anatomy of a Deterministic Finite Automaton. Deterministic Finite Automata. A machine so simple that you can understand it in less than one minute

5. (±±) Λ = fw j w is string of even lengthg [ 00 = f11,00g 7. (11 [ 00)± Λ = fw j w egins with either 11 or 00g 8. (0 [ ffl)1 Λ = 01 Λ [ 1 Λ 9.

Math Solutions to homework 1

Numerical Linear Algebra Assignment 008

Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations.

Transcription:

cn Journl the Mthemticl Society Jpn Vol 9, No 4, Octor, 1957 Ordinl digrms By Gi TAKEUTI (Received April 5, 1957) In h pper [2] on the constency-pro the theory nturl numrs, G Gentzen ssigned to every pro-figure n ordinl numr In modifying h method, we my do th s follows : (A) $()\frc{s_{1}s_{2}}{(b)\frc{s_{3}s_{4}}{(c)\frc{s}{s}6\underline{6}}}$ (B) $\bckslsh $1\bckslsh _{}/^{1}$ \swrrow$ 1 $c $ Fig 1 Suppose, to fix our ide, pro-figure (A) (in Fig 1) given $S_{1},$ $S_{2},$ $S_{4}$ inferences Th composed ginning sequences $(),$ $(b),$ $(c)$ To the inferences: wekening, contrction exchnge, we ssign the vlue ; to cut degree $n$, the vlue $0$ $n$ ; to n induction degree $n$, the vlue $n+1$ ; the vlue 1 to ll other inferences We denote the vlues inferences by $(),$ $(b),$ $(c)$ $,$ $b,$ $c$ respectively We replce the ginning sequences by 1, drw the figure (B) ccording to the form the pro-figure (A) If we consider $\lph\t$ $\vee$ $ (\lph,$ $\t$ ing ordinl numrs $$ $$ non-negtive integer) s opertions defining ordinl numrs (to defined properly, see low), then the figure like (B) represents itself n ordinl numr Th my clled Gentzen s numr for the pro-figure (A) Although th not the sme ordinl numr s ssigned to (A) by Gentzen himself, we cn ccomplh the constency-pro the theory nturl numrs just s in [2], in proving tht th Gentzen s numr diminhed by the reduction the pro-figure $\t$ $ $ $\vee$ The opertions descrid by Ackermnn s $$

men Ordinl digrms 387 construction in [1] We shll write for simplicity insted $(\lph, \t)$ Ackermnn s, use $(1, \lph, \t)$ $\lph+\t$ in the mening nturl sum in generl, while Ackermnn uses it only in cse $\lph\geqq\t$ $ $ $$ only for $\geqq 1$ $(, \lph+\t)$ ( $,$ $\lph 1$ respectively We put $(0, \lph)=\lph)$ Then $\lph\t$ $\vee$ $((, \lph)$ defined in [1] The purpose the present pper to construct system ordinl numrs the second Zhlenksse represented by wht we shll cll ordinl digrms Presumbly our system contins the system constructed by Ackermnn [1], but it not proved We hve in view to pply our result to constency-pro Ordinl digrms re constructed in the following wy Consider trees the following form: $e$ $g$ $$ $O^{\bckslsh _{\bullet}/^{\circ}}\bckslsh ^{o_{\bullet}}/$ $\circ\bckslsh _{\bullet}/^{o}$ $\bckslsh _{\bullet}/$ Fig 2 Such trees hve two sorts vertices, ginning vertices mrked with non-ginning vertices mrked with $0$ $\bullet$ We ssign to ech vertex positive integer clled vlue the vertex, to ech non-ginning vertex positive integer clled index the vertex, not exceeding n integer $n(>0)$ fixed once for ll, which we shll cll the order the system If we consider s opertion on digrms denote it by $(i;, \lph_{1}+\cdots+\lph_{k})(i$ the index $$ the vlue the vertex $(, i))$, then digrm like

$\omeg$ $\omeg$ $1$ 388 G TAKEUTI (C) cn descrived by $(i_{1} ; b_{1}, (i_{0} ; b_{c}, _{0}+_{1}+_{2})+_{3})+(i_{2} ; b_{2}, _{4})$ (C) $_{4}$ $(b_{1}, i_{1})$ $(b_{2}, i_{2})$ In the following lines, we shll give the forml definition ordinl digrms the ordering tween them, prove tht they re well-ordered In view pplictions to constency-pro, we should like to dd here the following remrk If we denote the system ordinl digrms order with $O(n)$, it cler tht we hve $n$ $O(1)\subset O(2)$ it will proved s ws sid bove, tht $O(n)$ wellordered $\subset\cdots$ It will lso proved tht V $0(n)$ not well-ordered $\tilde{n}$ Let some theory including the theory $N$ nturl numrs A constency-pro such theory my crried out s $\tilde{n}$ follows To ech pro-figure $P$ in $\tilde{n}$, we ssign n ordinl digrm certin order $n$, prove tht the ordinl digrm diminhed by reduction the pro-figure Th will not in contrdiction with Godel s result [3], tht the constency-pro $\tilde{n}$ not formulble in $\tilde{n},$ just s $n$ Gentzen s constency-pro $N$ not in contrdiction with $[3]$ th, even when $\tilde{n}$ rich theory, in the following sense Denote the ordinl numr firly $n$ $\omeg_{n}$ with let $Q(n)$ men the system ordinl numrs less thn $\omeg_{n}$ Then Gentzen hs ssigned to ech pro-figure $P$ in $N$ n ordinl numr $Q(n)$ for certin $n$, proved tht th ordinl

$\t$ re hs recursively hs Ordinl digrms 389 numr diminhed by reduction Although the trnsfinite induction in $Q(n)$ for given $n$, the system $\bigcup_{n}q(n)$ itself re both formulble in $N$, the trnsfinite induction in $\bigcup_{n}q(n)$ not formulble in $N$, thus Gentzen s constency-pro not in contrdiction with G\"odel s result The sme circumstnces will re when we replce $Q(n)$ by our $0(n)$ The uthor whes to express h herty thnks to Pr Iyng for h vluble dvice during the preprtion th pper \S 1 Ordinl digrm order $n$ Herefter let fixed positive integer $n$ 1 Ordinl digrm order constructed by two opertion $n$ $(i; )$ $(i=1,2, \cdots, n)$ $\#$, defined recursively s follows (If no confusion to fered, we use ordinl digrm or in plce ordinl digrm order $n$ $0$ s re denoted by $\lph,$ $\t$, $\gmm,$ $\ldots$ (possibly with suffixes) 11 If positive integer, then n $$ $$ 12 If positive integer $$ $i$ n, n integer stfying $0<i\leqq n$, then $(i;, \lph)$ n $\t$ 13 If $\lph\#\t$ s, then n $\lph,$ 2 Let $i$ s, n integer stfying $0<i\leqq n$ We $\t\subset i\lph$ $\t$ define recursively the reltion (to red : n i-section ) s follows: $\t\subset t\lph$ 21 If n integer, then never holds ( no i-section) 22 Let the form $(j;, \lph_{0})$ $\t\subset i\lph$ 221 If $j<i$, then if only if $\t\subset_{i}\lph_{0}$ $\t\subset i\lph$ $\t$ 222 If $j=i$, then if only if $\lph_{0}$ $\t\subset i\lph$ 223 If $j>i$, then never holds $\t\subset t\lph$ 23 Let the form $\lph_{1}\#\lph_{\gmm,\lrcorner}$ Then if only if either $\t\subset i\lph_{1}$ or $\t\subset t\lph_{2}$ holds $0$ 3 An $c$ clled (connected ordinl digrm), if only if the opertion used in the finl step construction not $\#$ $0$ Let n We define cornponents s follows: $c$ 31 If, then only one component which itself

$\lph_{2}$ re $\gmm_{l}$ hs such 390 G TAKEUTI 32 If $\t_{1},$ re $\t_{1},$ n $\t_{k}$ $\cdots,$ $\gmm_{1},$ $\t_{k},$ $\gmm_{1},\cdots,$ $\gmm_{l}$ $\lph_{1}\#\lph_{2}$ the form components $\lph_{1}$ $\lph_{1}\#\lph_{2}$ $\cdots,$ respectively, then components $\t_{1},$ $\t_{k}$ 4 $\cdots,$ Let $\t$ s We define recursively s follows: $\lph=\t$ 41 Let n integer Then, if only if $\lph=\t$ $\t$ the sme integer s 42 Let n the form $(i;, \lph_{0})$ Then $\lph=\t$, if only $\t$ if the form $\lph_{0}=\t_{c}$ $(i;, \t_{0})$ 43 Let non-connected with components $k$ $\lph_{1},\cdots,$ $\lph_{k}$ Then, if only if $\lph=\t$ $\t$ the sme numr components, ing these components, there exts permuttion $\cdots,$ $(l_{\tu}, \ldots, J_{k})$ $(1, \ldots, k)$ such tht $m=1,$ $\lph_{m}=\t_{lm},$ $\ldots,$ $\t=\lph$ 44 holds, if only if $\lph=\t$ 5 Let two $0$ s We define the reltions, $\lph<0\t$ $\lph<_{1}\t,$ $\cdots,$ $\lph<n\t$ recursively s follows Sometimes $\lph<0\t$ denoted $\t_{h}$ by $\lph\ll\t$ $\t$ 51 Let two integers Then $\lph<_{0}\t,$ $\lph<n\t$ $\cdots,$ ll men $\lph<\t$ in the sense integer 52 $\t$ Let the components $\lph_{1},$ $\t_{1},$ respectively $\cdots,$ $\lph_{k}$ $\ldots,$ $\lph<i\t(i=0,1, \cdots, n)$ holds, if only if one the follow- ing conditions fulfilled 521 There exts $\t_{m}(1\leqq m\leqq h)$ such tht for every $l(1\leqq l\leqq h)$ $\lph_{l}<_{i}\t_{m}$ 522 holds $k=1,$ $h>1$ $\lph_{1}=\t_{m}$ for suitble $m(1\leqq m\leqq h)$ 523 $k>1,$ $h>1$ there ext $\lph_{\iot}(1\leqq l\leqq k)$ $\t_{m}(1\leqq m\leqq l)$ $\lph_{l}=\t_{m}$ such tht $\lph<n\t$ by $\lph<\t$ $\lph_{1}\#\cdots\#\lph_{\iot-1}\#\lph_{\mthfrk{l}+1}\#\cdots\#\lph_{k}<i\t_{1}\#\cdots\#\t_{m-1}\#\t_{m+1}\#\cdots\#\t_{h}$ $\t$ $0$ $c$ $s$ 53 Let Then, $\lph<_{i}\t(i=1,2, \ldots, n)$ if only if one the following conditions fulfilled $\t$ $\t_{0}$ 531 There exts n i-section tht $\lph\leqq_{i}\t_{0}$ $\lph_{0t}<\t$ 532 for every $\lph_{0}$ i-section, $\lph<_{i-1}\t$ $\t$ 54 Let $c$ the form respectively, if only if one the following conditions $(i;, \lph_{0})$ $(j;b, \t_{0})$ $\lph\ll\t$ fulfilled 541 $<b$ 542 $=b$ $j<i$ 543 $=b,$ $i=j$ $\lph_{0}<_{i}\t_{0}$ $k$

in in 55 Let $$ positive integer $\t$ Ordinl digrms 391 $c$ $(j;b, \t_{0})$ Then $ \ll\t$, if only if $\leqq b$ And $\t\lngle\lngle if $b<$ $, if the form only Under these definitions the following propositions re esily proved PROPOSITION 1 $=$ n equivlence reltion tween $0d$ $s,$ $\lph=\lph$ $ie$ imply $\lph=\gmm$ $\lph=\t,$ $\t=\gmm$ $(i;, \lph_{2})$ $PROPOSI^{\prime}rION2$ $\lph_{1}=\lph_{2},$ $\t_{1}=\t_{2}$ imply PROPOSITION 3 $\lph_{1}=\lph_{2},$ $\t_{1}=\t_{2},$ $\lph_{1}<_{i}\t_{1}$, $\lph_{1}\#\t_{1}=\lph_{2}\#\t_{2},$ $(i;, \lph_{1})=$ imply $\lph_{2}<_{i}\t_{2}$ PROPOSITION 4 Everyone the reltions $<_{\iot}(i=0,1, \ldots, n)$ defines hner order tween s, $i$ $e$ $\lph<i\t,$ $\t<tr$ imply $\lph<t\gmm$ ; one only one reltion $\lph<i\t,$ $\lph=\t,$ $\t<i\lph$ holds for every pir $\lph,$ $\t$ s \S 2 Trnsfinite induction $\mthfrk{s}$ $\mthfrk{s}$ 1 Let system $s$ with liner order An element clled ccessible in th system (or ccessible for th order), if $\mthfrk{s}$ the subsystem consting elements, which re not greter thn $s$, well-ordered The following propositions re esily proved PROPOSITION 1 Let n If every Jess thn the sense $<_{i}$ ccessible, then $for<_{\iot}$ ccessible $for<_{i}$ $0$ PROPOSITION 2 Let n If ccessible $for<_{i}$, then every less thn the sense $<_{i}$ ccessible $for<_{i}$ $\lph_{1},$ $\lph_{k}$ PROPOSITION 3 Let $\cdots,$ $\lph_{1},$ $\lph_{k}$ s $\ldots,$ If re ccessible $\lph_{1}\#\cdots\#\lph_{k}$ $for<_{i}$, then ccessible $for<_{i}$ $i$ 2 Let n n integer stfying $0\leqq i\leqq n$ We define recursively n i-fn $i$-ccessibje s follows : 21 Every n n-fn 22 i-ccessible, if only if n i-fn ccessible for $<_{i}$ in the system i-fns 23 n i-fn, $(0\leqq i\leqq n)$ if only if n $(i+1)$-fn every $(i+1)$-section $(i+1)$-ccessible Every O-fn lso clled fn A fn sid to ccessible in the sense fn, if O-ccessible We see clerly tht propositions 1, 2, 3 remin correct, if we replce

$\gmm$ hs for hs such such 392 G TAKEUTI with i-fn ccessible for with i-ccessible $<_{i}$ We obtin esily the following propositions PROPOSITION 4 The following two conditions on n $$ re equivlent : 24 ccessible for $<$ 25 n-ccessible PROPOSITION 5 If n i-fn, then n $(i+1)$ -fn PROPOSITION 6 If every positive integer i-ccessible, then every i-fn i-ccessible PROOF Let n i-fn the mximl numr $$ integers, which composed Then clerly $\lph<_{i}(+1)$, whence the proposition 6 follows directly PROPOSITION 7 Every fn ccessible in the sense fn 3 Now we shll prove the following proposition PROPOSITION 8 If every $(i-1)$ -fn (i-l)-ccessible, then every i-fn i-ccessible $(i=1,2, \cdots, n)$ PROOF Let n rbitrry $(i-1)$-fn By the proposition 6 we hve only to prove tht i-ccessible Without loss generlity, we my ssume the following condition 31 on : $\t$ $\t$ 31 i-ccessible, if n $(i-1)$-fn $\t<_{i-1}$ $\gmm$ Now, let n rbitrry connected i-fn suppose $\gmm<i\lph$ $\gmm$ We hve only to prove tht i-ccessible We prove th by induction on the numr opertions in the construction $\gmm$ If $\gmm$ no i-section, then n $(i-1)$-fn one the following $\gmm<_{i}\lph$ conditions follows from : 32 $\gmm<i-1\lph$ $\delt$ $\gmm\leqq 33 There exts n i-section tht In cse 32, the proposition 8 follows from 31 In cse 33, the proposition 8 follows from the condition tht n $(i-1)$-fn $\gmm$ $\gmm$ Now, suppose n i-section Since every i-section less thn n $i$-fn, it follows from the hypothes $<_{i}$ $\gmm$ $\gmm$ the induction, tht every i-section i-ccessible Hence n $\gmm<_{i}\lph$ $(i-1)$-fn Therefore, from one the following conditions follows: 34 $r<i-1$ $\delt_{0}$ 35 There exts i-section tht $\gmm\leqq_{i}\delt_{0}$ In cse 34, the proposition 8 follows from 31 In cse 35, the proposition 8 follows from the condition tht n $(i-1)$-fn $$ i\delt$

other such Ordinl digrms 393 From propositions 7 8 follows: THEOREM The system ll the $s$ well-ordered $for<$ \S 3 Some properties o d s The following propositions on bove s follow esily from the $i$ $\t$ PROPOSITION 1 Let c o d s n integer stfying $0<i\leqq n$ If holds for every stfying for every $ _{0}<j\t$ $j$ $j\leqq i$ j-section $\lph_{0}$ $\lph\ll\t$, then $\lph<i\t$ PROPOSITION 2 Let n i-section Then $\t<i\lph$ $c$ $\t$ $\t$ $i,$ $k$ PROPOSITION 3 Let $c$ s integers stfying $0<i\leqq n$, $0<k\leqq i$ $\lph_{0}$ respectively If k-section the following cmditims 11 13 re fulfilled, then $\lph<i\t$ 11 Let ny integer stfying $j$ $0<j\leqq i$ $\lph_{1}$ $\t_{1}$ Then there exts j-section thn $\lph_{0}$ $\lph_{1}\leqq J\t_{1}$ 12 $\lph_{0}<k\t$ 13 $\lph\ll\t$ j-section tht PROPOSITION 4 In the nottion the introduction V $O(n)$ not well-ordered $n$ PROOF Th esily seen by the following exmple 2 2 2 $(1,2) $ $(1,3) $ $(1,4) $ $\t$ $(2\rfloor_{1})$ $>$ $(1,2) $ $>$ $(1,3) >\cdots$ $(2,1) $ $(1,2) $ $(2,1) $

394 G TAKEUTI References [1] W Ackermnn: Konstruktiver Aufbu eines Abschnitts der zweiten Cntorschen Zhlenklsse; Mth Z 53 (1951), 403-413 [2] G Gentzen: Die Widerspruchsfreiheit der reinen Zhlentheorie; Mth Ann 112 (1936), 493-565 [3] K G\"odel: \"Ur forml unentscheidbre S\"tze der Principi Mthemtic und verwter System I; Montsh f Mth Phys 38 (1931), 173-198